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We demonstrate a fundamental lemma for the convergence of sequences in metric-like spaces, and by using it we prove some
Suzuki-type 
xed point results in the setup of metric-like spaces. As an immediate consequence of our results we obtain certain
recent results in partial metric spaces as corollaries. Finally, three examples are presented to verify the e�ectiveness and applicability
of our main results.

1. Introduction

�ere are a lot of generalizations of Banach 
xed-point prin-
ciple in the literature. So far several authors have studied
the problem of existence and uniqueness of a 
xed point for
mappings satisfying di�erent contractive conditions (e.g., [1–
20]). In 2008, Suzuki introduced an interesting generalization
of Banach 
xed-point principle. �is interesting 
xed-point
result is as follows.

�eorem 1 (see [19]). Let (�, �) be a complete metric space,
and let � be a mapping on�. De	ne a nonincreasing function� from [0, 1] into [1/2, 1] by

� (�) =
{{{{{{{{{{{{{{{{{{{

1, 0 ≤ � ≤ √5 − 12
1 − �
�2 ,

√5 − 1
2 ≤ � ≤ 1√21

1 + � ,
1
√2 ≤ � < 1.

(1)

Assume that there exists � ∈ [0, 1], such that

� (�) � (�, ��) ≤ � (�, �) �⇒ � (��, ��) ≤ �� (�, �) , (2)

for all �, � ∈ �, then there exists a unique 
xed-point � of �.
Moreover, lim�→∞��� = � for all � ∈ �.

Suzuki proved also the following version of Edelstein’s

xed point theorem.

�eorem2. Let (�, �) be a compactmetric space. Let� : � →� be a self-map, satisfying for all �, � ∈ �, � ̸= � the condition
1
2� (�, ��) ≤ � (�, �) �⇒ � (��, ��) < � (�, �) . (3)


en � has a unique 	xed point in�.
�is theorem was generalized in [3].
In addition to the above results, Kikkawa and Suzuki [8]

provided a Kannan type version of the theorems mentioned
before. In [14], Chatterjea type version is provided. Popescu
[15] presented a Cirić type version. Recently, Kikkawa and
Suzuki also provided multivalued versions which can be
found in [9, 10].

Very recently Hussain et al. [4] have extended Suzuki’s
�eorems 1 and 2, as well as Popescu’s results from [15] to the
case of metric type spaces and cone metric type spaces (see
also [5–7, 11]).

�e aim of this paper is to generalize the above-men-
tioned results. Indeed we prove a 
xed point theorem in the
set up of metric-like spaces and derive certain new results as
corollaries. Finally, three examples are presented to verify the
e�ectiveness and applicability of our main results.
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In the rest of this section, we recall some de
nitions
and facts which will be used throughout the paper. First, we
present some known de
nitions and propositions in partial
metric and metric-like spaces.

A partial metric on a nonempty set � is a mapping � :� × � → R
+ such that for all �, �, � ∈ �,

(p1) � = � if and only if �(�, �) = �(�, �) = �(�, �),
(p2) �(�, �) ≤ �(�, �),
(p3) �(�, �) = �(�, �),
(p4) �(�, �) ≤ �(�, �) + �(�, �) − �(�, �).
A partial metric space is a pair (�, �) such that � is a

nonempty set and � is a partial metric on �. It is clear that
if �(�, �) = 0, then from (p1) and (p2) � = �. But if � = �,�(�, �) may not be 0. A basic example of a partial metric
space is the pair (R+, �), where �(�, �) = max{�, �} for all�, � ∈ R+.
Lemma 3 (see [17]). Let (�, �) and (�, �) be a metric space
and partial metric space, respectively. 
en

(i) the function � : � × � → R
+ de	ned by �(�, �) =�(�, �) + �(�, �) is a partial metric;

(ii) let � : � × � → R
+ be de	ned by �(�, �) = �(�, �) +

max{�(�), �(�)}; then� is a partialmetric on�, where� : � → R
+ is an arbitrary function;

(iii) Let � : R × R → R be de	ned by �(�, �) = max{2�,2�}; then � is a partial metric on R;

(iv) Let � : �×� → R
+ be de	ned by �(�, �) = �(�, �)+�;

then � is a partial metric on �, where � ≥ 0.
Other examples of the partial metric spaces which are

interesting from a computational point of viewmay be found
in [7, 11, 12, 18].

Each partial metric � on� generates a �0 topology �� on� which has as a base the family of open �-balls {��(�, �) :� ∈ �, � > 0}, where ��(�, �) = {� ∈ � : �(�, �) < �(�, �) +�} for all � ∈ � and � > 0.
Let (�, �) be a partial metric.
A sequence {��} in a partial metric space (�, �) converges

to a point � ∈ � if and only if �(�, �) = lim�→∞�(�, ��).
A sequence {��} in a partial metric space (�, �) is

called a Cauchy sequence if there exists (and is 
nite)
lim�,�→∞�(��, ��).

A partialmetric space (�, �) is said to be complete if every

Cauchy sequence {��} in� converges, with respect to ��, to a
point � ∈ � such that �(�, �) = lim�,�→∞�(��, ��).

Suppose that {��} is a sequence in partial metric space(�, �); then we de
ne �(��) = {� | �� → �}.
�e following example shows that every convergent

sequence {��} in a partial metric space (�, �) may not be a
Cauchy sequence. In particular, it shows that the limit is not
unique.

Example 4 (see [17]). Let � = [0,∞) and �(�, �) =
max{�, �}. Let

�� = {0, " = 2#,1, " = 2# + 1. (4)

�en clearly it is a convergent sequence, and for every � ≥ 1
we have lim�→∞�(��, �) = �(�, �), hence �(��) = [1,∞).
But lim�,�→∞�(��, ��) does not exist; that is, it is not a
Cauchy sequence.

De	nition 5 (see [2]). A metric-like on a nonempty set� is a
mapping $ : � × � → R

+ such that for all �, �, � ∈ �,
($1) $(�, �) = 0 ⇒ � = �,
($2) $(�, �) = $(�, �),
($3) $(�, �) ≤ $(�, �) + $(�, �).
�e pair (�, $) is called a metric-like space. �en a

metric-like on � satis
es all of the conditions of a metric
except that $(�, �) may be positive for � ∈ �. Each metric-
like $ on � generates a topology �	 on � whose base is the
family of open $-ball, {�	(�, �) : � ∈ �, � > 0}, where�	(�, �) = {� ∈ � : |$(�, �) − $(�, �)| < �} for all � ∈ �
and � > 0.

A sequence {��} in ametric-like space (�, $) converges to
a point � ∈ � if and only if lim�→∞$(�, ��) = $(�, �).

A sequence {��} in a metric-like space (�, $) is
called a $-Cauchy sequence if there exists (and is 
nite)
lim�,�→∞$(��, ��).

A metric-like space (�, $) is said to be complete if every$-Cauchy sequence {��} in � converges, with respect to �	,
to a point � ∈ � such that

lim�→∞$ (��, �) = $ (�, �) = lim�,�→∞$ (��, ��) . (5)

Every partial metric space is a metric-like space. Below
we give some examples of a metric-like space.

Example 6. Let � = [0, 1]; then mapping $1 : � × � → R
+

de
ned by $1(�, �) = � + � − �� is a metric-like on�.
Example 7. Let� = R; then mappings $
 : �×� → R

+ (% ∈{2, 3, 4}) de
ned by

$2 (�, �) = |�| + &&&&�&&&& + �,
$3 (�, �) = |� − '| + &&&&� − '&&&& ,
$4 (�, �) = �2 + �2

(6)

are metric-like space on�, where � ≥ 0 and ' ∈ R.
2. Main Results

We start our work by proving the following crucial lemma.

Lemma 8. Let (�, $) be a metric-like space, and suppose that{��} is $-convergent to �. 
en for every � ∈ �, one has
$ (�, �) − $ (�, �) ≤ lim inf�→∞ $ (��, �)
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≤ lim sup
�→∞

$ (��, �)
≤ $ (�, �) + $ (�, �) .

(7)

In particular, if $(�, �) = 0, then one has lim�→∞$(��, �) =$(�, �).
Proof. Using the triangle inequality in a metric-like space, it
is easy to see that

$ (��, �) ≤ $ (��, �) + $ (�, �) ,
$ (�, �) ≤ $ (�, ��) + $ (��, �) . (8)

Taking the upper limit as " → ∞ in the 
rst inequality
and the lower limit as " → ∞ in the second inequality, we
obtain the desired result.

�eorem 9. Let (�, $) be a complete metric-like space. Let � :� → � be a self-map, and let � =: [0, 1) → (1/2, 1] be
de	ned by

� (�) =
{{{{{{{{{{{{{{{{{{{

1, 0 ≤ � ≤ √5 − 12 ,
1 − �
�2 ,

√5 − 1
2 ≤ � ≤ 1√2 ,1

1 + � ,
1
√2 ≤ � < 1.

(9)

If there exists � ∈ [0, 1) such that for each �, � ∈ �
� (�) $ (�, ��) ≤ $ (�, �) �⇒ $ (��, ��) ≤ �$ (�, �) . (10)


en � has a unique 	xed point � ∈ �, and for each � ∈ �,
the sequence {���} converges to �.
Proof. Putting � = �� in (10), hence from

� (�) $ (�, ��) ≤ $ (�, ��) , (11)

it follows

$ (��, �2�) ≤ �$ (�, ��) , (12)

for every � ∈ �. Let �0 ∈ � be arbitrary and form the
sequence {��} by �1 = ��0 and ��+1 = ��� for " ∈ N ∪ {0}.
By (12), we have

$ (��, ��+1) = $ (���−1, �2��−1)
≤ �$ (��−1, ���−1)
= �$ (��−1, ��)
...

≤ ��$ (�0, �1) .

(13)

Also, by the condition $3 of the de
nition of metric-like
space, for all7 ≥ ", we have
$ (��, ��) ≤ $ (��, ��+1)

+ $ (��+1, ��+2)
+ ⋅ ⋅ ⋅ + $ (��−1, ��)

≤ ��$ (�0, �1) + ��+1$ (�0, �1)
+ ⋅ ⋅ ⋅ + ��−1$ (�0, �1)

= �� − ��1 − � $ (�0, �1)
< ��
1 − �$ (�0, �1) 9→ 0 as " 9→ ∞.

(14)

Hence, {��} is a $-Cauchy sequence.
Since� is $-complete, there exists � ∈ � such that

lim�→∞$ (��, �) = $ (�, �) = lim�,�→∞$ (��, ��) = 0. (15)

�at is, lim�→∞��+1 = lim�→∞��� = �. We prove that �� =�. Putting � = ��−1� in (12), we get that

$ (���, ��+1�) ≤ �$ (��−1�, ���) (16)

holds for each " ∈ N (where �0� = �). It follows by induction
that

$ (���, ��+1�) ≤ ��$ (�, ��) . (17)

Let us prove now that

$ (�, ��) ≤ �$ (�, �) (18)

holds for each � ̸= �. Since $(��, ���) → 0 and by
Lemma 8 $(��, �) → $(�, �) ̸= 0, it follows that there exists"0 ∈ N such that

� (�) $ (��, ���) ≤ $ (��, �) (19)

holds for every " ≥ "0. Assumption (10) implies that for such"$(���, ��) ≤ �$(��, �), thus as " → ∞, we get that

$ (�, ��) ≤ �$ (�, �) . (20)

We will prove that

$ (���, �) ≤ $ (��, �) , (21)

for each " ∈ N. For " = 1, this relation is obvious. Suppose
that it holds for some 7 ∈ N. If ��� = �, then ��+1� =�� and $(��+1�, �) = $(��, �) ≤ $(��, �). If ��� ̸= �, then
applying (18) and the induction hypothesis; we get that

$ (��+1�, �) ≤ �$ (���, �)
≤ �$ (��, �) ≤ $ (��, �) , (22)

and (21) is proved by induction.
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In order to prove that �� = �, we consider two possible
cases.

Case I. 0 ≤ � < 1/√2 (and hence �(�) ≤ (1 − �)/�2). We will
prove 
rst that

$ (���, ��) ≤ �$ (��, �) (23)

for " ≥ 2. For " = 2, it follows from (16). Suppose that (23)
holds for some " > 2. �en

$ (��, �) ≤ $ (�, ���) + $ (���, ��)
≤ $ (�, ���) + �$ (�, ��) , (24)

which implies (1 − �)$(�, ��) ≤ $(�, ���). Using (17) we
obtain

� (�) $ (���, ��+1�) ≤ 1 − ��� $ (���, ��+1�)
≤ 1 − ��� ⋅ ��$ (�, ��)
= (1 − �) $ (�, ��) ≤ $ (�, ���) .

(25)

Assumption (10) and relation (21) imply that

$ (��, ��+1�) ≤ �$ (�, ���)
≤ �$ (�, ��) . (26)

So relation (23) is proved by induction.
Now �� ̸= � and (23) implies that ��� ̸= � for each " ∈ N.

Hence, (18) imply that

$ (�, ��+1�) ≤ �$ (�, ���)
≤ �2$ (�, ��−1�)
≤ ��$ (�, ��) .

(27)

Hence lim�→∞$(�, ��+1�) = 0 = $(�, �), thus ��� → �
and; using Lemma 8 in (23), we have $(�, ��) ≤ �$(��, �) as" → ∞ which implies that $(�, ��) = 0, a contradiction.
Case II. 1/√2 ≤ � < 1 (and so �(�) = 1/(1+�)). We will prove
that there exists a subsequence {���} of {��} such that

� (�) $ (��� , ����) = � (�) $ (��� , ���+1) ≤ $ (��� , �) (28)

holds for each # ∈ N. From (12) we know that $(��, ��+1) ≤�$(��−1, ��) holds for each " ∈ N. Suppose that
1
1 + �$ (��−1, ��) > $ (��−1, �) ,
1
1 + �$ (��, ��+1) > $ (��, �)

(29)

hold for some " ∈ N. �en

$ (��−1, ��) ≤ $ (��−1, �) + $ (�, ��)
< 1
1 + �$ (��−1, ��) + $ (��, �)
< 1
1 + �$ (��−1, ��) +

1
1 + �$ (��, ��+1)

≤ 1
1 + �$ (��−1, ��) +

�
1 + �$ (��−1, ��)

= $ (��−1, ��) ,

(30)

which is impossible.Hence one of the following holds for each":
� (�) $ (��−1, ��) ≤ $ (��−1, �) , (31)

or

� (�) $ (��, ��+1) ≤ $ (��, �) . (32)

In particular,

� (�) $ (�2�−1, �2�) ≤ $ (�2�−1, �) , (33)

or

� (�) $ (�2�, �2�+1) ≤ $ (�2�, �) . (34)

In other words, there is a subsequence {���} of {��} such that
(28) holds for each # ∈ N. But then assumption (10) implies
that

$ (���� , ��) ≤ �$ (��� , �) , (35)

or

$ (����−1 , ��) ≤ �$ (���−1 , �) . (36)

Passing to the limit when # → ∞, we get that $(�, ��) ≤ 0,
which is possible only if �� = �.

�us, we have proved that � is a 
xed point of �. �e
uniqueness of the 
xed point follows easily from (10). Indeed,
if � and � are two 
xed points of � such that � ̸= �, then from
(18) we have

$ (�, �) = $ (�, ��)
≤ �$ (�, �) , (37)

which is a contradiction.

According to�eorem 9, we get the following result.

Corollary 10 (see [19]). Let (�, �) be a complete metric space,
and let � be a mapping on�. De	ne a nonincreasing function� from [0, 1] into [1/2, 1] by

� (�) =
{{{{{{{{{{{{{{{{{{{

1, 0 ≤ � ≤ √5 − 12 ,
1 − �
�2 ,

√5 − 1
2 ≤ � ≤ 1√2 ,1

1 + � ,
1
√2 ≤ � < 1.

(38)
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Assume that there exists � ∈ [0, 1], such that
� (�) � (�, ��) ≤ � (�, �) �⇒ � (��, ��) ≤ �� (�, �) , (39)

for all �, � ∈ �; then there exists a unique 	xed-point � of �.
Moreover, lim�→∞��� = � for all � ∈ �.
Proof. Using a similar argument given in �eorem 9 for$(�, �) = �(�, �), the desired result is obtained.

Now, in order to support the useability of our results, let
us introduce the following example.

Example 11. Let� = [0,∞). De
ne $ : � × � → R
+ by

$ (�, �) = � + � (40)

for all �, � ∈ �. �en (�, $) is a complete metric-like space.
De
ne a map � : � → � by

� (�) = ln(1 + 1√2�) (41)

for � ∈ �. �en for each �, � ∈ �, we have
1

1 + 1/√2$ (�, ��) =
√2
√2 + 1 (� + ln(1 +

1
√2�))

≤ √2
√2 + 1 (� +

1
√2�) = �

≤ � + � = $ (�, �) .

(42)

On the other hand, we have

$ (��, ��) = ln(1 + 1√2�) + ln(1 +
1
√2�)

≤ 1√2� +
1
√2�

= 1√2$ (�, �) .
(43)

�us � satis
es all the hypotheses of�eorem 9, and hence �
has a unique 
xed point. Indeed, � = 1/√2, �(�) = 1/(1 + �),
and 0 is the unique 
xed point of �.
�eorem 12. Let (�, $) be a complete metric-like space. Let @,� : � → � be two self-mappings. Suppose that there exists� ∈ [0, 1) such that

max {$ (@ (�) , �@ (�)) , $ (� (�) , @� (�))}
≤ �min {$ (�, @ (�)) , $ (�, � (�))} (44)

for every � ∈ � and that

A (�) = inf {$ (�, �) +min {$ (�, @ (�)) , $ (�, � (�))} :
� ∈ �} > 0

(45)

for every � ∈ � with � that is not a common 	xed point of @
and �. 
en there exists � ∈ � such that � = @(�) = �(�).
Moreover, if V = @(V) = �(V), then $(V, V) = 0.

Proof. Let �0 ∈ � be arbitrary, and de
ne a sequence {��} by
�� = @ (��−1) , if " is odd
= � (��−1) , if " is even. (46)

�en if " ∈ N is odd, we have

$ (��, ��+1)
= $ (@ (��−1) , � (��))
= $ (@ (��−1) , �@ (��−1))
≤ max {$ (@ (��−1) , �@ (��−1)) ,

$ (� (��−1) , @� (��−1))}
≤ �min {$ (��−1, @ (��−1)) , $ (��−1, � (��−1))}
≤ �$ (��−1, @ (��−1))
= �$ (��−1, ��) .

(47)

If " is even, then by (44), we have

$ (��, ��+1)
= $ (� (��−1) , @ (��))
= $ (� (��−1) , @� (��−1))
≤ max {$ (� (��−1) , @� (��−1)) ,

$ (@ (��−1) , �@ (��−1))}
≤ �min {$ (��−1, � (��−1)) , $ (��−1, @ (��−1))}
≤ �$ (��−1, � (��−1))
= �$ (��−1, ��) .

(48)

�us for any positive integer ", it must be the case that

$ (��, ��+1) ≤ �$ (��−1, ��) . (49)

Repeating (49), we obtain

$ (��, ��+1) ≤ ��$ (�0, �1) . (50)

So, if7 > ", then
$ (��, ��) ≤ $ (��, ��+1)

+ $ (��+1, ��+2) + ⋅ ⋅ ⋅ + $ (��−1, ��)
≤ [�� + ��+1 + ⋅ ⋅ ⋅ + ��−1] $ (�0, �1)
≤ ��
1 − �$ (�0, �1) .

(51)

�us lim�,�→∞$(��, ��) = 0.
�at is, {��} is a $-Cauchy sequence in the metric-like

space (�, $). Since (�, $) is $-complete, there exist � ∈ �
such that

$ (�, �) = lim�→∞$ (��, �) = lim�,�→∞$ (��, ��) = 0. (52)
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Assume that � is not a common 
xed point of @ and �.
�en by hypothesis

0 < inf {$ (�, �) +min {$ (�, @ (�)) , $ (�, � (�))} : � ∈ �}
≤ inf {$ (��, �) +min {$ (��, @ (��)) , $ (��, � (��))} :

" ∈ N}
≤ inf { ��1 − �$ (�0, �1) + $ (��, ��+1) : " ∈ N}

≤ inf { ��1 − �$ (�0, �1) + ��$ (�0, �1) : " ∈ N} = 0
(53)

which is a contradiction. �erefore, � = @(�) = �(�).
If V = @(V) = �(V) for some V ∈ �, then
$ (V, V) = max {$ (@ (V) , �@ (V)) , $ (� (V) , @� (V))}

≤ �min {$ (V, @ (V)) , $ (V, � (V))}
= �min {$ (V, V) , $ (V, V)}
= �$ (V, V)

(54)

which gives that $(V, V) = 0.
Example 13. Let (�, $) be a metric-like space where � ={1/"}∞�=1 ∪ {0} and $(�, �) = � + �. De
ne @ : � → � by@(0) = 0, @(1/2") = 1/(4" + 3), and @(1/(2" − 1)) = 0 and�(0) = 0, �(1/(2" − 1)) = 1/(4" + 4), and �(1/2") = 0. �en
for � = 1/2", we have
max {$ (@ (�) , �@ (�)) , $ (� (�) , @� (�))}

= max {$ (@ ( 12") , � (@ (
1
2"))) ,

$ (�( 12") , @ (�(
1
2")))}

= max { 1
4" + 3 +

1
8" + 12 , 0} =

1
4" + 3 +

1
8" + 12

≤ �min {$ (�, @ (�)) , $ (�, � (�))}
= �min { 12" +

1
4" + 3 ,

1
2" + 0} = �

1
2" .

(55)

It is easy to see that the above inequality is true for� = 1/(2"−1) and for 3/4 ≤ � < 1. Also,
A (�) = inf {$ (�, �) +min {$ (�, @ (�)) , $ (�, � (�))} :

� ∈ �} > 0
(56)

for every � ∈ � with y is not a common 
xed point of @ and�. �is shows that all conditions of �eorem 12 are satis
ed
and 0 is a common 
xed point for @ and �.

Corollary 14. Let (�, $) be a complete metric-like space, and
let � : � → � be a mapping. Suppose that there exists � ∈[0, 1) such that

$ (� (�) , �2 (�)) ≤ �$ (�, � (�)) (57)

for every � ∈ � and that

A (�) = inf {$ (�, �) + $ (�, � (�)) : � ∈ �} > 0 (58)

for every � ∈ � with � ̸= �(�). 
en there exists � ∈ � such
that � = �(�). Moreover, if V = �(V), then $(V, V) = 0.
Proof. Taking @ = � in�eorem 12, the conclusion of the cor-
ollary follows.

�eorem 15. Let (�, $) be a complete metric-like space. Let@, � be mappings from � onto itself. Suppose that there exists� > 1 such that
min {$ (�@ (�) , @ (�)) , $ (@� (�) , � (�))}

≥ �max {$ (@�, �) , $ (��, �)} (59)

for every � ∈ � and that

A (�) = inf {$ (�, �) +min {$ (�, @ (�)) , $ (�, � (�))} :
� ∈ �} > 0

(60)

for every � ∈ � with � that is not a common 	xed point of @
and �. 
en there exists � ∈ � such that � = @(�) = �(�).
Moreover, if V = @(V) = �(V), then $(V, V) = 0.
Proof. Let �0 ∈ � be arbitrary. Since @ is onto, there is an
element �1 satisfying �1 ∈ @−1(�0). Since � is also onto, there
is an element �2 satisfying �2 ∈ �−1(�1). Proceeding in the

same way, we can 
nd that �2�+1 ∈ @−1(�2�) and �2�+2 ∈�−1(�2�+1) for " = 1, 2, 3, . . . . �erefore, �2� = @�2�+1 and�2�+1 = ��2�+2 for " = 0, 1, 2, . . . . If " = 27, then using (59)

$ (��−1, ��)
= $ (�2�−1, �2�)
= $ (��2�, @�2�+1)
= $ (�@�2�+1, @�2�+1)
≥ min {$ (�@ (�2�+1) , @ (�2�+1)) ,

$ (@� (�2�+1) , � (�2�+1))}
≥ �max {$ (@�2�+1, �2�+1) , $ (��2�+1, �2�+1)}
≥ �$ (@�2�+1, �2�+1)
= �$ (�2�, �2�+1)
= �$ (��, ��+1) .

(61)
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If " = 27 + 1, then using (59)

$ (��−1, ��)
= $ (�2�, �2�+1)
= $ (@�2�+1, ��2�+2)
= $ (@��2�+2, ��2�+2)
≥ min {$ (�@ (�2�+2) , @ (�2�+2)) ,

$ (@� (�2�+2) , � (�2�+2))}
≥ �max {$ (@�2�+2, �2�+2) , $ (��2�+2, �2�+2)}
≥ �$ (��2�+2, �2�+2)
= �$ (�2�+1, �2�+2)
= �$ (��, ��+1) .

(62)

�us for any positive integer ", it must be the case that

$ (��−1, ��) ≥ �$ (��, ��+1) (63)

which implies that

$ (��, ��+1) ≤ 1�$ (��−1, ��) ≤ ⋅ ⋅ ⋅ ≤ (
1
�)
�$ (�0, �1) . (64)

Let A = 1/�; then 0 < A < 1 since � > 1.
Now, (64) becomes

$ (��, ��+1) ≤ A�$ (�0, �1) . (65)

So, if7 > ", then
$ (��, ��) ≤ $ (��, ��+1)

+ $ (��+1, ��+2) + ⋅ ⋅ ⋅ + $ (��−1, ��)
≤ [A� + A�+1 + ⋅ ⋅ ⋅ + A�−1] $ (�0, �1)
≤ A�
1 − A$ (�0, �1) .

(66)

�us lim�,�→∞$(��, ��) = 0. �at is, {��} is a $-Cauchy
sequence in the metric-like space (�, $). Since (�, $) is $-
complete, there exists � ∈ � such that

$ (�, �) = lim�→∞$ (��, �) = lim�,�→∞$ (��, ��) = 0. (67)

Assume that � is not a common 
xed point of @ and �. �en
by hypothesis

0 < inf {$ (�, �) +min {$ (�, @ (�)) , $ (�, � (�))} : � ∈ �}
≤ inf {$ (��, �) +min {$ (��, @ (��)) , $ (��, � (��))} :

" ∈ N}
≤ inf { A�1 − A$ (�0, �1) + $ (��−1, ��) : " ∈ N}
≤ inf { A�1 − A$ (�0, �1) + A�−1$ (�0, �1) : " ∈ N} = 0

(68)

which is a contradiction. �erefore, � = @(�) = �(�).

If V = @(V) = �(V) for some V ∈ �, then
$ (V, V) = min {$ (�@ (V) , @ (V)) , $ (@� (V) , � (V))}

≥ �max {$ (@ (V) , V) , $ (� (V) , V)}
= �max {$ (V, V) , $ (V, V)}
= �$ (V, V)

(69)

which gives that $(V, V) = 0.
Corollary 16. Let (�, $) be a complete metric-like space, and
let � : � → � be an onto mapping. Suppose that there exists� ∈ [0, 1) such that

$ (�2 (�) , � (�)) ≥ �$ (� (�) , �) (70)

for every � ∈ � and that

A (�) = inf {$ (�, �) + $ (� (�) , �) : � ∈ �} > 0 (71)

for every � ∈ � with � ̸= �(�). 
en there exists � ∈ � such
that � = �(�). Moreover, if V = �(V), then $(V, V) = 0.
Proof. Taking @ = � in�eorem 15,we have the desired result.

De	nition 17. Let (�, $) and (M, �) bemetric-like spaces.�enN : � → M is said to be a continuous mapping, if
lim�→∞�� = � implies that lim�→∞N(��) = N(�).
Corollary 18. Let (�, $) be a complete metric-like space, and
let � be a mapping of � into itself. If there is a real number �
with � > 1 satisfying

$ (�2 (�) , � (�)) ≥ �$ (� (�) , �) (72)

for every � ∈ � and � is onto and continuous, then � has a
	xed point.

Proof. Assume that there exists � ∈ � with � ̸= �(�) and
inf {$ (�, �) + $ (� (�) , �) : � ∈ �} = 0. (73)

�en there exists a sequence {��} such that

lim�→∞ {$ (��, �) + $ (� (��) , ��)} = 0. (74)

So, we have $(��, �) → 0 and $(�(��), ��) → 0 as " → ∞.
Since, $(�, �) ≤ $(�, ��) + $(��, �), hence $(�, �) → 0 as" → ∞. Now,

$ (� (��) , �) ≤ $ (� (��) , ��) + $ (��, �) 9→ 0
as " 9→ ∞. (75)

Since � is continuous, we have
� (�) = � ( lim�→∞��) = lim�→∞� (��) = �. (76)

�is is a contradiction. Hence if � ̸= �(�), then
inf {$ (�, �) + $ (� (�) , �) : � ∈ �} > 0, (77)

which is condition (71) of Corollary 16. By Corollary 16, there
exists � ∈ � such that � = �(�).
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Now we give an example to support our result.

Example 19. Let � = [0,∞) and $(�, �) = � + �. De
ne � :� → � by �(�) = 2�.
Obviously � is onto and continuous. Also for each �, � ∈�, we have
$ (�2�, ��) = 4� + 2� = 6� ≥ �3� = �$ (��, �) , (78)

where � = 2. �us � satis
es the conditions given in
Corollary 18, and 0 is the 
xed point of �.
Corollary 20. Let (�, $) be a complete metric-like space, and� be a mapping of� into itself. If there is a real number � with� > 1 satisfying
$ (� (�) , � (�)) ≥ �min {$ (�, � (�)) , $ (� (�) , �) , $ (�, �)}

(79)

for every �, � ∈ � and � is onto and continuous, then � has a
	xed point.

Proof. Replacing � by �(�) in (79), we obtain

$ (� (�) , �2 (�))
≥ �min {$ (�, � (�)) , $ (�2 (�) , � (�)) , $ (�, � (�))}

(80)

for all � ∈ �.
Without loss of generality, we may assume that �(�) ̸=�2(�). Otherwise � has a 
xed point. Since � > 1, it follows

from (80) that

$ (�2 (�) , � (�)) ≥ �$ (� (�) , �) (81)

for every � ∈ �. By the argument similar to that used in
Corollary 18, we can prove that if � ̸= �(�), then

inf {$ (�, �) + $ (� (�) , �) : � ∈ �} > 0, (82)

which is condition (71) of Corollary 16. So, Corollary 16
applies to obtain a 
xed point of �.

According to�eorem 12, we get the following result.

Corollary 21 (see [17, �eorem 1]). Let (�, �) be a complete
partial metric space. Let @, � : � → � be two self-mappings.
Suppose that there exists � ∈ [0, 1) such that

max {� (@ (�) , �@ (�)) , � (� (�) , @� (�))}
≤ �min {� (�, @ (�)) , � (�, � (�))} (83)

for every � ∈ � and that

A (�) = inf {� (�, �) +min {� (�, @ (�)) , � (�, � (�))} :
� ∈ �} > 0

(84)

for every � ∈ � with � that is not a common 	xed point of @
and �. 
en there exists � ∈ � such that � = @(�) = �(�).
Moreover, if V = @(V) = �(V), then �(V, V) = 0.

Proof. Using a similar argument given in the �eorem 12 for$(�, �) = �(�, �), the desired result is obtained, where � is a
partial metric on�.

Also, according to �eorem 15, we get �eorem 2 from
[17].
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