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Abstract—This paper presents a linear state-space model of a 

Static VAR Compensator. The model consists of three individual 
subsystem models: an AC system, a SVC model and a controller 
model, linked together through d-q transformation. The issue of 
non-linear susceptance-voltage term and coupling with a static 
frame of reference is resolved using an artificial rotating suscep-
tance and linearising its dependence on firing angle. The model is 
implemented in MATLAB and verified against PSCAD/EMTDC 
in the time and frequency domains. The verification demonstrates 
very good system gain accuracy in a wide frequency range 
f<150Hz, whereas the phase angle shows somewhat inferior 
matching above 25Hz. It is concluded that the model is sufficiently 
accurate for many control design applications and practical sta-
bility issues. The model’s use is demonstrated by analyzing the 
dynamic influence of the PLL gains, where the eigenvalue move-
ment shows that reductions in gains deteriorate system stability.  
 

Index Terms—Modeling, Power system dynamic stability, 
State space methods, Static VAR Compensators, Thyristor con-
verters. 

I.  INTRODUCTION 

tatic VAR Compensators are mostly analyzed using EMTP 
type programs like PSCAD/EMTDC or RTDS. These si-

mulation tools are accurate but they employ trial and error type 
studies only, implying a tedious blind search for the best solu-
tion in the case of complex analysis/design tasks. In order to 
apply dynamic systems analysis techniques or modern control 
design theories that would in the end shorten the design time, 
optimize resources and offer new configurations, there is a 
need for a suitable and accurate system dynamic model. In 
particular, an eigenvalue and frequency domain analysis based 
on an accurate state space system model would prove invalua-
ble for system designers and operators.  

There have been a number of attempts to derive an accurate 
analytical model of a Static VAR Compensator (SVC), or a 
Thyristor Controlled Series Capacitor (TCSC), that can be 
employed in system stability studies and controller design [1]-
[7].   

The SVC model presented in [1] belongs to classical power 
system modeling based on the fundamental frequency repre-
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sentation. These models are used with power flow studies and 
for stability analysis at very low frequencies (f<5Hz) only, 
whereas they show very poor performance with more detailed 
stability studies. The model presented in [2] uses a special 
form of discretisation, applying Poincare mapping, for the par-
ticular Kayenta TCSC installation. The model derivation for a 
different system will be similarly tedious and the final model 
form is not convenient for the application of standard stability 
studies and controller design theories. A similar final model 
form is derived in [3], however the model derivation is im-
proved since direct discretisation of the linear system model is 
used. The importance of having a state-space represented, li-
near continuous system model, is well recognized in [4]. The 
model derivation in this case is based on a complex mathemat-
ical procedure encompassing averaging and integration, fol-
lowed by discrete representation and the subsequent model 
conversion into linear continuous form. The model also does 
not have a modular form for subsystem representation, which 
would enable studies of internal system dynamics and subsys-
tem interactions. The approach used in [5] recognizes the ben-
efits of modular system representation, with d-q transformation 
used for coupling with the external AC system. However, since 
the open loop approach is used, the model does not address 
issues of coupling with the static controller model and coupl-
ing with the Phase Locked Loop (PLL). The modeling prin-
ciple reported in [6] employs rotating vectors that are difficult 
to use with stability studies, and only considers the open loop 
configuration. The SVC model developed in [7] is in a conve-
nient final form, nevertheless it is oversimplified and the deri-
vation procedure for non-linear segments is cumbersome. Most 
of the reported models are therefore concerned with a particu-
lar system, a specific operating problem or particular type of 
study and many do not include control elements.  

An ideal SVC system dynamic model would possess, beside 
high accuracy, a convenient (linear state-space) model form, 
and it would adequately represent most practical parameters 
and variables. The model should be compatible with modern 
control theories and preferably be readily implemented with 
software tools like MATLAB. 

This research adopts a systematic modeling approach by 
segmenting the system into three subsystems and individually 
modeling them with d-q transformation and matrix coupling 
between them to achieve the above properties. It also seeks to 
offer complete closed loop model verification in the time and 
frequency domains. The modeling method resembles the one 
used with HVDC-HVAC systems in [8] and [9]. 
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II.  TEST SYSTEM 

The test system in use consists of a SVC connected to an 
AC system that is represented by an equivalent impedance and 
a local load, as shown in Figure 1. The SVC is very similar to 
the one proposed in [10] and used as tutorial example in [11], 
except that non-linear transformer effects (saturation and mag-
netizing current) are neglected. The AC system model is also 
based on [11], with the introduction of an additional local load 
and a variation in system impedance to represent different and 
extreme system strengths. Two AC system configurations are 
considered: System 1 with equivalent impedance z1=72Ω∠54o 
(200MVA), and System 2 having ten times increased strength 
z2=7.2Ω∠85o (2000MVA) in order to fully validate the model 
accuracy and flexibility. 

The control system is structurally based on [11] but gains 
are adjusted to reflect changes in the AC system. The test sys-
tem data are given in the Appendix.  
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Figure 1. Test system configuration. 

III.  ANALYTICAL  MODEL 

A.  Model structure 

To avoid pitfalls with modeling complex systems, the sys-
tem model is here divided into three subsystems: an AC system 
model, a SVC model and a controller model. Each subsystem 
is developed as a standalone state-space model, linking with 
the remaining two subsystems and with the outside signals. 
With this structure, the subsystems can be analyzed indepen-
dently and their influence after the model connections can be 
investigated, whilst enabling convenient coupling with more 
complex, future configurations.   

The state-space model for a subsystem unit “i” takes the 
following generic form: 
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where each of the indices i, j and k, take all values from the set 
of three textual labels: “ac” –AC system, “tc” –SVC, “co” –
Controller, where the following cases are excluded: i=j  and 
i=k . The variables with subscript “out” are the outside inputs 
and outputs. All matrices in the model (1) belong to the sub-
system denoted by the first index “i”. The input matrices, Bij, 
take the second index “j” from the particular input-side con-
necting subsystem (i.e.: Bacco is the AC model input matrix that 
takes input signals from the controller), and the output matric-
es Cik have the second index “k” associated with the linking 
subsystem that takes the particular output vector. With Dijk 
matrices the second and the third index label inputs and out-
puts, respectively. 

B.  AC System Model 

The AC system model is linear, developed in the manner 
described in  [8] and [9], and only a derivation summary is 
presented here.  

A single-phase dynamic model is developed firstly, using 
the instantaneous circuit variables as the states. The test system  
uses a third order model with iL1, iL2 and v1 as the states. A 
phase “a” model is given below (to increase clarity of presen-
tation we consider only one input link, one output link and 
only one D matrix): 
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where the subscript ”aca” denotes phase a of the AC system. 
Using the single-phase model and assuming ideal system sym-
metry, a complete three-phase model in the rotating coordinate 
frame is readily created. To enable a wider frequency range 
dynamic analysis and coupling with the static coordinate 
frame, the above model is converted to the d-q static frame 
using Park’s transformation [8],[12]. The AC model is 
represented in the d-q frame as: 
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where fπω 20 = , n- is the AC system order, m – the number 

of inputs, and r – the number of outputs. The states, inputs and 
outputs in the above model are the d-q components of the in-
stantaneous system variables: 
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C.  Static VAR Compensator Model 

The static VAR compensator under consideration is a 
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twelve pulse system with two six pulse groups in ∆ connection 
and coupled with the network through a single, three-winding 
transformer with Y and ∆ secondaries [10],[11].  

The SVC impedances are converted to Y configuration and 
transferred to the primary transformer voltage. Each six-pulse 
group consists of the transformer model, the thyristor con-
trolled reactor (TCR) and the capacitor unit in parallel with a 
resistance. An equivalent, six-pulse group model is shown in 
the singe phase diagram in Figure 2.   
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Figure 2. SVC electrical circuit model 
 

The model can be represented in the state-space domain as 
follows:  
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Equation (8) is non-linear in view of the fact that the TCR 
reactance is dependent upon the firing angle obtained from the 
controller model. This equation cannot be directly linearised 
since the SVC model is developed in the AC frame with oscil-
lating variables, (i.e. )cos( ϕω += tVv 22 ) whereas the firing 

angle signal is derived as a signal in the controller reference 
frame (i.e. a non-oscillating signal).  

To link the SVC model with the controller model, the ap-
proach of artificial rotating susceptance is adopted. It is firstly 
presumed that the AC terminal voltage has the following value 

in the steady state: )cos( ooo tVv ϕω += 22 , where superscript 

“o” denotes the steady-state variable, i.e., V2
0 is a constant 

magnitude, ϕ0 is a constant angle and ov2
 is a rotating vector of 

a constant magnitude and angle. The susceptance value in the 
steady-state is o

tcrL/1 . 

Assuming small perturbations around the steady state we have: 
 

)( 222 vvv o ∆+=                 (9) 

)/(// tcrtcrtcr LLL 111 0 ∆+= .         (10) 

Small perturbations are justified assuming an effective voltage 
control at the nominal value. Multiplying the terms in (9) and 
(10) and substituting in (8) results in: 
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The susceptance in (11) is further represented, using only the 
fundamental component, as [13]: 
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where Ltcrm corresponds to the maximum conduction period, 
φ=90o. Equation (12) can be linearised as: 
 

φ∆=∆ svctcr KL )/(1   , ( ) φ∂∂= // tcrsvc LK 1 . (13) 

The above linearisation is justified in practice since most mod-
ern SVC control systems will have a gain compensation 
scheme (look-up table) that maintains a constant system gain 
[13]. 

In view of (13), and neglecting the small terms, equation 
(11) is written as: 

o
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          (14) 

and it replaces (8) in the model. Equation (14) is in the AC 
coordinate frame, and the following term: 
 

)cos( o
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o
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o tKVKv ϕωφφ +∆=∆ 22      (15) 

is an artificial oscillating variable (susceptance) that has a va-
rying magnitude and a constant angle equal to the voltage no-
minal angle. In this way, the SVC model (6),(7),(14) has all 
oscillating variables that are converted to d-q variables, as is 
done with the AC system model in (3)-(5). Subsequently, using 
the d-q components of the inputs and outputs, this model is 
linked with the other model units. In order to link the d-q com-
ponents of the rotating susceptance (15) with the controller 
module, these components are further converted to magnitude-
angle components using the x-y to polar co-ordinate transfor-
mation [8]. 
 It should be noted that the transformer impedance (Lt) must 
be included in this model since the eigenvalue analysis proves 
that this parameter has noticeable effects on system dynamics. 
This conclusion is contrary to HVDC modeling principles, 
since it has been demonstrated [8],[9] that transformer dynam-
ics can be excluded from system dynamic models.  

D.  Controller Model 

The controller model consists of a second order feedback 
filter, PI controller, Phase Locked Loop (PLL) model and 
transport delay model, as shown in Figure 3. The PLL system 
is of the d-q-z type and its functional diagram is given in [14] 
and [10], whereas the state space linearised second-order mod-
el is developed in [8].   

The delay filter does not have dynamic equivalent in the ac-
tual system. It is introduced to represent the effects of the dis-
crete nature of the signal transfer caused by thyristor firings at 
discrete instants in the fundamental cycle. This simplified con-
tinuous-element modeling of a discrete phenomenon has li-
mited accuracy, but the model application value is much in-
creased with the continuous form and, as demonstrated in the 
following sections, accuracy proves satisfactory for most ap-
plications. Researchers in [1] conclude that the delay filter 
time constant has a value of 3-6ms and reference [13] suggests 
2.77ms. During the proposed model verification, simulation 
studies have suggested that the value of approximately 
Td=2.85ms is used, which is in agreement with the above rec-
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Figure 3. Controller model 

E.  Model Connections 

The above three models are linked to form a single system 
model in the state-space form. The final model has the follow-
ing structure:  
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where “s” labels the overall system and the model matrices 
are:  
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All the subsystems’ D matrices are assumed zero in (17) since 
they are zero in the actual model and this noticeably simplifies 
development.  

The matrix As has the subsystem matrices on the main di-
agonal, with the other sub-matrices representing interactions 
between subsystems. The model in this form has advantages in 
flexibility since, as an example, if the SVC is connected to a 
more complex AC system only the Aac matrix and the corres-
ponding input and output matrices need modifications. Differ-
ent FACTS can be modeled using the TCR/SVC model unit or, 
similarly, more advanced controllers can be developed using 
modern control theory (H∞, MPC,..) and implemented directly 
by replacing the Aco matrix. The above structure enables the 
model to be readily interfaced with the MATLAB HVDC 
model or other FACTS elements or Power Systems Blockset, 
for the purpose of investigating interactions and coordination.  

IV.  MODEL VERIFICATION 

A.  Time domain 

The model was implemented in MATLAB and tested 
against the detailed, non-linear simulation PSCAD/EMTDC. 
In the time domain, step responses were verified using the con-
troller reference as the input, given by Vref in Figure 3, and the 
disturbance represented by the esi magnitude variation in Fig-
ure 1.  

Figures 4 and 5 show the System 1 verification for the refer-
ence and disturbance inputs, respectively. Very good response 
matching is evident for the voltage magnitude output signal; 
similar matching was confirmed for all other model variables 
that are not shown. To confirm the model robustness with dif-

ferent system parameters, System 2 was also tested and the 
results are shown in Figures 6 and 7. A satisfactory response 
matching is clear and the accuracy is further emphasized, since 
the lightly damped oscillatory mode at 70Hz in the case of the 
disturbance input (Figure 7) is very well represented. As seen 
in Figure 7, however, MATLAB gives more noticeable error in 
the phase angle, particularly at high frequencies. 
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Figure 4. System 1 response following a 3kV voltage reference step change.  
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Figure 5. System 1 response following a 2kV disturbance (remote source) step 
change. 
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Figure 6. System 2 response following a 3kV voltage reference step change. 

B.  Frequency domain 

The two test systems were also tested against PSCAD in the 
frequency domain. PSCAD does not possess a frequency do-
main analysis capability, and the results were obtained “ma-
nually”, by injecting a single frequency component at a time. 
The individual points were then linked in a single curve with 
minimal filtering of the experimental data.  
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Figure 7. System 2 response following a 2kV disturbance (remote source) step 
change. 

 

 Figure 8 shows the gain frequency response comparison in 
the frequency range 1-150Hz, where the “error” is the differ-
ence between the two curves. Very good matching was found 
across the entire frequency range, and at higher frequencies the 
error is mostly within a 5dB envelope. Certainly, below 40Hz  
very high accuracy is evident.  

The phase angle frequency response is shown in Figure 9. In 
this case the error increased, and particularly in the frequency 
range 25-60Hz was pronounced. This result is a consequence 
of poor representation of the discrete system: if the delay filter 
in the controller model is omitted the error increases. Research 
is currently under way to offer new modeling approaches to 
eliminate this phase error.   

In the majority of applications at higher frequencies, such as 
the analysis of amplification of a particular oscillatory mode in 
the system, the system gain is of primary importance, and in 
this aspect the model represents the system correctly in a wide 
frequency range. 

Regarding the overall time and frequency domain responses, 
and being aware of the phase response errors, it can be con-
cluded that the model has reasonably good accuracy when em-
ployed as a design and analysis tool for phenomena such as 
subsynchronous resonance, or interactions with other fast 
FACTS/HVDC controls. 
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Figure 8. System 1 gain frequency response with the reference voltage input. 
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Figure 9. System 1 phase frequency response with the reference voltage input. 

V.  STUDY OF INFLUENCE OF PLL GAINS 

This section gives an example of the model use in the sys-
tem dynamic analysis. A PLL is typically used with thyristor 
converters to provide the reference signal that follows the syn-
chronizing line voltage or current. As a dynamic element, a 
PLL will also have influence on the system’s dynamic res-
ponses and stability, although this aspect not been analyzed in 
the FACTS/HVDC references. Further, since a PLL has two 
adjustable gains (kp and kI), these can be used as a convenient 
means of adjusting system performance in respect of stability 
issues or improving performance.  

Figure 10 shows the dislocation of dominant eigenvalues af-
ter reduction in the PLL gains. As the gains are reduced, the 
eigenvalues migrate from the original “x” to the location “o”, 
representing ten times reduced gains. It is seen that the PLL 
gains have significant influence on the system dynamics and 
that the frequency of the dominant oscillatory mode reduces, 
accompanied by a small reduction in mode damping (branch 
“a”). The next dominant real mode is at the same time moved 
away from the imaginary axis, as shown by the branch “b”.  
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Figure 10. System 1. Influence of the PLL gains on the system eigenvalue 
location. “x” – original eigenvalues, “o” – final location with 10 times re-
duced gains. 
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Figure 11. System 1 with PLL gains reduced ten times. System response fol-
lowing a 3 kV voltage reference change. 
 

This result was confirmed with PSCAD simulation, as shown 
in Figure 11. Although not shown in Figure 10, the increase in 
the PLL gains increases the speed of response and it is sug-
gested that this effect on the positioning of the dominant mode 
can be exploited in the design stage to improve performance, 
or to avoid negative interactions at a particular frequency.   

VI.  CONCLUSIONS 

This paper presents a state-space linear continuous model of 
a Static VAR Compensator. The model is built of three indi-
vidual subsystem models: an AC system, a SVC and a control-
ler model. Such a structure enables model application to a 
wide range of system configurations. The issue of the non-
linear susceptance-voltage relationship and coupling with the 
rotating coordinate frame is solved using an artificial rotating 
susceptance that has a variable magnitude. The representation 
of a discrete system using a first order filter proved adequately 
accurate. Model verification in the time and frequency do-
mains against a PSCAD simulation confirmed very high accu-
racy for f<25Hz, and fair accuracy even beyond the first har-
monic frequencies. The phase angle frequency response shows 
less precise matching, particularly in a certain mid-frequency 
band. The model’s application to the analysis of dynamic in-
fluence of PLL gains variation is demonstrated. The eigenva-
lue dislocation reveals, confirmed with digital simulation, that 
a reduction in PLL gains has a negative influence on system 
stability.  

VII.  A PPENDIX 

TABLE I. 
TEST SYSTEM DATA 

AC system data: 

 System 1 System 2 
R1 0.6 Ω 0.3 Ω 
R2 200 Ω 2000  Ω 
R3 0.1  Ω 0.1  Ω 
R4 300 Ω 300  Ω 
L1 0.3 H 0.023 H 
L2 0.2 H 0.2 H 
Z(MVA) 72Ω ∠54° (200MVA) 7.2Ω ∠85° (2000MVA) 

V1 120kV 120kV 
Controller data 
kp 8.33e-4 rad/kV 4e-3 rad/kV 

KI 0.417 rad/(kVs) 2.5 rad/(kVs) 
Td 2.85e-3 s 2.85e-3 s 
ζf 0.5 0.5 
ωf 753.6 rad/s 753.6 rad/s 
PLL kp 100 100 
PLL kI 900 1/s 900 1/s 
SVC data (+167/-100 MVA) 
Total reactive MVA 100 MVA 
Total capacitive MVA 167 MVA 
Transformer voltages 120kV/12.65kV 
Transformer rating MVA 200 MVA 
Transformer Xps, Xpd, Xsd 0.17pu, 0.17pu, 0.021pu 
Resistance Rcp 167Ω 
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