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Abstract

Summary: We have developed two novel methods for singular value decomposition analysis (SVD) of

microarray data. The first is a threshold-based method for obtaining gene groups, and the second is a

method for obtaining a measure of confidence in SVD analysis. Gene groups are obtained by identifying

elements of the left singular vectors, or gene coefficient vectors, that are greater in magnitude than the

threshold WN-1/2, where N is the number of genes, and W is a weight factor whose default value is three.

The groups are non-exclusive and may contain genes of opposite (i.e. inversely correlated) regulatory

response. The confidence measure is obtained by systematically deleting assays from the data set,

interpolating the SVD of the reduced data set to reconstruct the missing assay, and calculating the Pearson

correlation between the reconstructed assay and the original data. This confidence measure is applicable

when each experimental assay corresponds to a value of parameter that can be interpolated, such as time,

dose or concentration. Algorithms for the grouping method and the confidence measure are available in a

software application called SVDMAN (SVD Microarray ANalysis). In addition to calculating the SVD for

generic analysis, SVDMAN provides a new means for using microarray data to develop hypotheses for

gene associations and provides a measure of confidence in the hypotheses, thus extending current SVD

research in the area of global gene expression analysis.

Availability:  ftp://bpublic.lanl.gov/compbio/software

Contact: brettin@lanl.gov

Supplemental Information: http://public.lanl.gov/mewall/svdman
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Introduction

Principal component analysis (PCA), often performed by singular value decomposition (SVD), is a popular

analysis method that has recently been explored as a method for analyzing large-scale expression data

(Raychaudhuri et al., 2000; Holter et al., 2000; Alter et al., 2000). Additionally SVD/PCA has been used to

identify high-amplitude modes of fluctuations in macromolecular dynamics simulations (Garcia, 1992;

Romo et al., 1995), and identify structural intermediates in lysozyme folding using small-angle scattering

experiments (Chen et al., 1996). The first published microarray results are those of Raychaudhuri et al.

(2000), who used PCA to analyze time series yeast sporulation expression data (Chu et al., 1998). Their

study found that much of the sporulation data was explained by two principal components, and that

previously defined gene clusters could be visualized using the PCA coefficients. Subsequent reports

supported these results (Alter et al., 2000; Holter et al., 2000). Alter et al. (2000) analyzed yeast cell-cycle

expression data (Spellman et al., 1998), identified sinusoidal modes in the SVD which correspond to cell-

cycle modes, and found that 641 out of 784 previously identified cell-cycle genes had at least 25% of their

normalized expression signal due to cell-cycle modes. In similar work, Holter et al. (2000) analyzed cell-

cycle data (Spellman et al., 1998), sporulation data (Chu et al., 1998), and data from serum-treated human

fibroblasts (Iyer et al., 1999), demonstrating that groups obtained by cluster analysis tend to cluster in the

space of appropriately chosen SVD matrix elements.

Here we describe two novel methods for SVD analysis of microarray data. One is a threshold method for

obtaining gene groups. Another is a method for measuring confidence in SVD analysis.  We first give a

brief overview of the anatomy of the SVD.  Next we describe a computer program called SVDMAN (SVD

Microarray ANalysis) that implements the methods.  We have validated the performance of SVDMAN

using publicly available microarray data and biology databases (Dyck et al., 2000).  Finally we contrast

SVDMAN with two other analysis methods: clustering (see, e.g., Eisen et al., 1998) and gene shaving,

(Hastie et al., 2000).
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Methods and Implementation

Singular Value Decomposition (SVD)

We define the matrix of gene expression data as A, where A is a N x M matrix in which the N rows index

the genes, and the M columns index the assays. The SVD theorem states (see Press et al., 1992):

  A= UΣVT

where U is a N x M matrix whose columns are the left singular vectors (gene coefficient vectors); Σ is a M x

M diagonal matrix of singular values (mode amplitudes); and VT is a M x M matrix whose rows are the right

singular vectors (expression level vectors).  The gene coefficient vectors form an orthonormal set, the

expression level vectors form an orthonormal set, and Σ is diagonal. The SVD represents an expansion of

the original data in a coordinate system where the covariance matrix is diagonal.  PCA identifies principal

components by diagonalization of a matrix of variation such as the covariance matrix. SVD is thus a

method for performing PCA by diagonalization of the covariance matrix.

SVDMAN (SVD Microarray ANalysis)

SVDMAN calculates the SVD of the matrix A, generates gene groups, and calculates a confidence

measure.  The input matrix A contains tab-delimited ASCII data, with an extra column of gene labels at the

left, and an extra row of assay labels at the top.  The SVD is calculated using the CLAPACK linear algebra

library (http://www.netlib.org/clapack/).  The gene grouping algorithm makes use of a novel threshold that

is similar to a 3σ statistical significance cutoff.  Each element of each gene coefficient vector is compared

to the value WN-1/2, where N is the number of genes and W is a weight factor whose recommended value is

3.  If the magnitude of the element is greater than WN-1/2, the corresponding gene is placed in the group

corresponding to the gene coefficient vector.  Each column of U defines a unique group. The significance

of the threshold is that it provides a scale-independent way to determine group membership. The sign of the

gene coefficient indicates whether a gene has a positive or negative response to the expression level vector.

This means that if a transcriptional regulator has a promoter activity for gene A and a repressor activity for

gene B, SVDMAN can place genes A and B in the same group while preserving the promoter/repressor

distinction.
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SVDMAN uses a novel confidence measure to evaluate results.  The program iterates through all columns

{aj} (i.e. assays) but the first and last in A. A new matrix A' is created by deleting aj.   The SVD of A' is

calculated, and the elements of an extra column vi
j of V'T are calculated by cubic spline interpolation (see

Press et al., 1992).  A reconstructed column ai
j of A is calculated by multiplying U'Σ' times vi

j..   The

confidence measure is the Pearson correlation between aj and ai
j. A low value can suggest high information

content due to excess noise or undersampling (see Discussion and Conclusion), which would produce a

relatively flat spectrum of mode amplitudes in Σ. A high value is consistent with good signal-to-noise and

sampling, but is not sufficient to validate these conditions.

SVDMAN is executed in the Unix shell (a Windows version is under development) by typing “svdman –

i input.dat –o output_base” where input.dat is a tab-delimited matrix of microarray data in

a format like that in the Stanford Microarray Database (http://genome-

www4.stanford.edu/MicroArray/SMD/restech.html), and output_base is the base name for all output

files.  Output files are tab-delimited ASCII flat files that enable easy importing into spreadsheets for

visualization and parsing by  scripts.  Seven assays on 6000 genes can be analyzed in a one second on a 500

MHz processor.

Discussion and Conclusion

Here we contrast SVDMAN with two other methods of gene expression analysis: clustering (see, e.g.,

Eisen et al., 1998) and gene shaving (Hastie et al., 2000).  In clustering, which does not make use of SVD,

groups of genes are defined by having similar expression patterns according to a rigorous distance metric

(e.g., correlation).  Common clustering methods generate mutually exclusive groups, a limitation

considering that a gene product (e.g. a kinase) may participate in several cellular reaction networks.  Gene

shaving does make use of PCA/SVD, but analysis is restricted to the first principal component, and higher-

order groups are obtained by orthogonalization of the expression data with respect to an averaged total

expression profile for the group.  Groups are generated by iterative exclusion of a fixed fraction of genes

and evaluation of the optimal group size using a “gap statistic.” As in cluster analysis, genes in a group
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have similar overall expression patterns, but they are not mutually exclusive. In SVDMAN, all principal

components are considered, with higher-order groups coming from higher-order components. A group is

formed by identifying all genes whose expression patterns are significantly influenced by a given mode,

generating a hypothesis that the genes participate in a common genetic network.  Genes in a group do not

necessarily have similar overall expression patterns, and groups are not mutually exclusive. There is also a

self-consistency measure to evaluate the analysis.  Clustering and gene shaving are well-suited for

categorization of comparative clinical data and detecting correlations between gene expression patterns

(e.g., classifying disease states). SVDMAN may be useful for similar applications, but it is particularly

well-suited to analysis of time-series data, where insight into modulation of genetic networks is desired.

We now describe a method for using our confidence measure to detect undersampling. If the data are

highly oversampled, the SVD will have an uneven distribution of mode amplitudes, with most of the data

accounted for by a small fraction of the modes. If the data are excessively noisy or have high information

content, the SVD will have a flat distribution of mode amplitudes. In the case of high oversampling, any

single deleted assay can be reconstructed with great accuracy.  As the sampling becomes sparser, the

correlations remain good until the sampling interval becomes comparable to the finest feature in the data.

If the number assays with poor correlation values is small compared to the total number of assays, the

distribution of mode amplitudes may remain flat. The confidence measure thus should enable localized

sampling problems to be detected where the mode amplitudes fail to indicate a problem.  If the problem

assays correspond to parameter values (e.g. time points) of biological interest, the researcher can choose to

acquire data that more finely sample the relevant range.  To use this method consistently, it will be

necessary to use well-characterized data (either experimental or simulated) to systematically study how the

degree of undersampling gives rise to specific correlation values.

The main biological significance of SVDMAN is its novel means of generating gene groups, which provide

testable hypotheses for gene associations. Previously published work has demonstrated that biologically

significant results can be obtained from SVD analysis of microarray data (Raychaudhuri et al., 2000, Holter

et al., 2000, Alter et al., 2000).  In addition we have validated the SVDMAN methods both computationally
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and biologically using publically available microarray data combined with biology databases (Dyck et al.,

2000).  Our purpose in distributing SVDMAN is twofold: to give biologists a useful application for gene

expression analysis; and to make the software available to developers who wish to use SVDMAN in their

own applications, e.g., as a component of a larger framework for analysis of expression data.
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