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Abstract

This paper proposes the SVDNet for retrieval problems,

with focus on the application of person re-identification (re-

ID). We view each weight vector within a fully connected

(FC) layer in a convolutional neuron network (CNN) as a

projection basis. It is observed that the weight vectors are

usually highly correlated. This problem leads to correla-

tions among entries of the FC descriptor, and compromises

the retrieval performance based on the Euclidean distance.

To address the problem, this paper proposes to optimize the

deep representation learning process with Singular Vector

Decomposition (SVD). Specifically, with the restraint and

relaxation iteration (RRI) training scheme, we are able to

iteratively integrate the orthogonality constraint in CNN

training, yielding the so-called SVDNet. We conduct ex-

periments on the Market-1501, CUHK03, and DukeMTMC-

reID datasets, and show that RRI effectively reduces the

correlation among the projection vectors, produces more

discriminative FC descriptors, and significantly improves

the re-ID accuracy. On the Market-1501 dataset, for in-

stance, rank-1 accuracy is improved from 55.3% to 80.5%

for CaffeNet, and from 73.8% to 82.3% for ResNet-50.

1. Introduction

This paper considers the problem of pedestrian retrieval,

also called person re-identification (re-ID). This task aims at

retrieving images containing the same person to the query.

Person re-ID is different from image classification in

that the training and testing sets contain entirely differ-

ent classes. So a popular deep learning method for re-ID

consists of 1) training a classification deep model on the

training set, 2) extracting image descriptors using the fully-

connected (FC) layer for the query and gallery images, and

3) computing similarities based on Euclidean distance be-

fore returning the sorted list [33, 31, 26, 10].

Our work is motivated by the observation that after train-
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Figure 1: A cartoon illustration of the correlation among

weight vectors and its negative effect. The weight vectors

are contained in the last fully connected layer, e.g., FC8

layer of CaffeNet [12] or FC layer of ResNet-50 [11]. There

are three training IDs in red, pink and blue clothes from the

DukeMTMC-reID dataset [17]. The dotted green and black

vectors denote feature vectors of two testing samples before

the last FC layer. Under the baseline setting, the red and

the pink weight vectors are highly correlated and introduce

redundancy to the descriptors.

ing a convolutional neural network (CNN) for classification,

the weight vectors within a fully-connected layer (FC) are

usually highly correlated. This problem can be attributed

to two major reasons. The first reason is related to the

non-uniform distribution of training samples. This problem

is especially obvious when focusing on the last FC layer.

The output of each neuron in the last FC layer represents

the similarity between the input image and a corresponding

identity. After training, neurons corresponding to similar

persons (i.e., the persons who wear red and pink clothes)

learns highly correlated weight vectors, as shown in Fig. 1.

The second is that during the training of CNN, there exists

few, if any, constraints for learning orthogonalization. Thus

the learned weight vectors may be naturally correlated.

Correlation among weight vectors of the FC layer com-
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promises the descriptor significantly when we consider the

retrieval task under the Euclidean distance. In fact, a critical

assumption of using Euclidean distance (or equivalently the

cosine distance after ℓ2-normalization) for retrieval is that

the entries in the feature vector should be possibly indepen-

dent. However, when the weight vectors are correlated, the

FC descriptor – the projection on these weight vectors of

the output of a previous CNN layer – will have correlated

entries. This might finally lead to some entries of the de-

scriptor dominating the Euclidean distance, and cause poor

ranking results. For example, during testing, the images

of two different persons are passed through the network to

generate the green and black dotted feature vectors and then

projected onto the red, pink and blue weight vectors to form

the descriptors, as shown in Fig. 1. The projection values

on both red and pink vectors are close, making the two de-

scriptors appear similar despite of the difference projected

on the blue vector. As a consequence, it is of vital impor-

tance to reduce the redundancy in the FC descriptor to make

it work under the Euclidean distance.

To address the correlation problem, we proposes SVD-

Net, which is featured by an FC layer containing decorre-

lated weight vectors. We also introduce a novel three-step

training scheme. In the first step, the weight matrix un-

dergoes the singular vector decomposition (SVD) and is

replaced by the product of the left unitary matrix and the

singular value matrix. Second, we keep the orthogonalized

weight matrix fixed and only fine-tune the remaining lay-

ers. Third, the weight matrix is unfixed and the network is

trained for overall optimization. The three steps are iterated

to approximate orthogonality on the weight matrix. Exper-

imental results on three large-scale re-ID datasets demon-

strate significant improvement over the baseline network,

and our results are on par with the state of the art.

2. Related Work

Deep learning for person re-ID. In person re-ID task,

deep learning methods can be classified into two classes:

similarity learning and representation learning. The former

is also called deep metric learning, in which image pairs or

triplets are used as input to the network [25, 24, 1, 13, 5, 19].

In the two early works, Yi et al. [29] and Li et al. [13] use

image pairs and inject part priors into the learning process.

In later works, Varior et al. [25] incorporate long short-term

memory (LSTM) modules into a siamese network. LSTMs

process image parts sequentially so that the spatial connec-

tions can be memorized to enhance the discriminative abil-

ity of the deep features. Varior et al. [24] insert a gating

function after each convolutional layer to capture effective

subtle patterns between image pairs. The above-mentioned

methods are effective in learning image similarities in an

adaptive manner, but may have efficiency problems under

large-scale galleries.

The second type of CNN-based re-ID methods focuses

on feature learning, which categorizes the training samples

into pre-defined classes and the FC descriptor is used for

retrieval [33, 21, 26]. In [33, 34], the classification CNN

model is fine-tuned using either the video frames or im-

age bounding boxes to learn a discriminative embedding

for pedestrian retrieval. Xiao et al. [26] propose learning

generic feature representations from multiple re-ID datasets

jointly. To deal with spatial misalignment, Zheng et al.

[31] propose the PoseBox structure similar to the picto-

rial structure [6] to learn pose invariant embeddings. To

take advantage of both the feature learning and similarity

learning, Zheng et al. [35] and Geng et al. [10] combine

the contrastive loss and the identification loss to improve

the discriminative ability of the learned feature embedding,

following the success in face verification [22]. This paper

adopts the classification mode, which is shown to produce

competitive accuracy without losing efficiency potentials.

PCANet and truncated SVD for CNN. We clarify

the difference between SVDNet and several “look-alike”

works. The PCANet [3] is proposed for image classifica-

tion. It is featured by cascaded principal component anal-

ysis (PCA) filters. PCANet is related to SVDNet in that it

also learns orthogonal projection directions to produce the

filters. The proposed SVDNet differs from PCANet in two

major aspects. First, SVDNet performs SVD on the weight

matrix of CNN, while PCANet performs PCA on the raw

data and feature. Second, the filters in PCANet are learned

in an unsupervised manner, which does not rely on back

propagation as in the case of SVDNet. In fact, SVDNet

manages a stronger connection between CNN and SVD.

SVDNet’s parameters are learned through back propagation

and decorrelated iteratively using SVD.

Truncated SVD [8, 28] is widely used for CNN model

compression. SVDNet departs from it in two aspects. First,

truncated SVD decomposes the weight matrix in FC layers

and reconstructs it with several dominant singular vectors

and values. SVDNet does not reconstruct the weight matrix

but replaces it with an orthogonal matrix, which is the prod-

uct of the left unitary matrix and the singular value matrix.

Second, Truncated SVD reduces the model size and testing

time at the cost of acceptable precision loss, while SVDNet

significantly improves the retrieval accuracy without impact

on the model size.

Orthogonality in the weight matrix. We note a con-

current work [27] which also aims to orthogonalize the

CNN filters, yet our work is different from [27]. In [27],

the regularization effect of orthogonalization benefits the

back-propagation of very deep networks, thus improving

the classification accuracy. The regularization proposed in

[27] may not directly benefit the embedding learning pro-

cess. But in this paper, orthogonalization is used to generate

decorrelated descriptors suitable for retrieval. Our network



Figure 2: The architecture of SVDNet. It contains an Eigen-

layer before the last FC layer of the backbone model. The

weight vectors of the Eigenlayer are expected to be orthog-

onal. In testing, either the Eigenlayer input feature or the

Eigenlayer output feature is employed for retrieval.

may not be suitable for improving classification.

3. Proposed Method

This section describes the structure of SVDNet, its train-

ing strategy, and its working mechanism.

3.1. Architecture

SVDNet mostly follows the backbone networks, e.g.,

CaffeNet and ResNet-50. The only difference is that SVD-

Net uses the Eigenlayer as the second last FC layer, as

shown in Fig. 2, the Eigenlayer contains an orthogonal

weight matrix and is a linear layer without bias. The reason

for not using bias is that the bias will disrupt the learned

orthogonality. In fact, our preliminary experiments indicate

that adding the ReLU activation and the bias term slightly

compromises the re-ID performance, so we choose to im-

plement the Eigenlayer based on a linear layer. The rea-

son for positioning Eigenlayer at the second last FC layer,

rather than the last one is that the model fails to converge

when orthogonality is enforced on the last FC layer, which

might be due to that the correlation of weight vectors in the

last FC layer is determined by the training sample distribu-

tion, as explained in the introduction. During training, the

input feature from a previous layer is passed through the

Eigenlayer. Its inner products with the weight vectors of

the Eigenlayer form the output feature, which is fully con-

nected to the last layer of c-dim, where c denotes the number

of training classes.

During testing, we extract the learned embeddings for

the query and gallery images. In this step, we can use ei-

ther the input or the output of Eigenlayer for feature repre-

sentation, as shown in Fig. 2. Our experiment shows that

using the two features can achieve similar performance, in-

dicating that the orthogonality of Eigenlayer improves the

performance of not only output but also input. The reason

is a bit implicit, and we believe it originates from the back-

propagation training of CNN, during which the orthogonal

characteristic of weight matrix within the Eigenlayer will

Algorithm 1: Training SVDNet

Input: a pre-trained CNN model, re-ID training data.

0. Add the Eigenlayer and fine-tune the network.

for t← 1 to T do
1. Decorrelation: Decompose W with SVD

decomposition, and then update it: W ← US
2. Restraint: Fine-tune the network with the

Eigenlayer fixed

3. Relaxation: Fine-tune the network with the

Eigenlayer unfixed

end

Output: a fine-tuned CNN model, i.e., SVDNet.

directly impact the characteristic of its input feature.

3.2. Training SVDNet

The algorithm of training SVDNet is presented in Alg.

1. We first briefly introduce Step 0 and then describe the

restraint and relaxation Iteration (RRI) (Step 1, 2, 3).

Step 0. We first add a linear layer to the network. Then

the network is fine-tuned till convergence. Note that after

Step 0, the weight vectors in the linear layer are still highly

correlated. In the experiment, we will present the re-ID per-

formance of the CNN model after Step 0. Various output

dimensions of the linear layer will be evaluated.

Restraint and Relaxation Iteration (RRI). It is the key

procedure in training SVDNet. Three steps are involved.

• Decorrelation. We perform SVD on the weight matrix

as follows:

W = USV T, (1)

where W is the weight matrix of the linear layer, U is

the left-unitary matrix, S is the singular value matrix,

and V is the right-unitary matrix. After the decompo-

sition, we replace W with US. Then the linear layer

uses all the eigenvectors of WWT as weight vectors

and is named as Eigenlayer.

• Restraint. The backbone model is fine-tuned till con-

vergence, but the Eigenlayer is fixed.

• Relaxation. The fine-tuning goes on for some more

epochs with Eigenlayer unfixed.

After Step 1 and Step 2, the weight vectors are orthogo-

nal, i.e., in an eigen state. But after Step 3, i.e., relaxation

training, W shifts away from the eigen state. So the train-

ing procedure enters another iteration t (t = 1, . . . , T ) of

“restraint and relaxation”.

Albeit simple, the mechanism behind the method is in-

teresting. We will try to provide insight into the mechanism

in Section 3.3. During all the analysis involved, CaffeNet

pre-trained on ImageNet is chosen as the backbone.



3.3. Mechanism Study

Why is SVD employed? Our key idea is to find a set of

orthogonal projection directions based on what CNN has al-

ready learned from training set. Basically, for a linear layer,

a set of basis in the range space of W (i.e., linear subspace

spanned by column vectors of W ) is a potential solution. In

fact, there exists numerous sets of orthogonal basis. So we

decide to use the singular vectors of W as new projection di-

rections and to weight the projection results with the corre-

sponding singular values. That is, we replace W = USV T

with US. By doing this, the discriminative ability of feature

representation over the whole sample space will be main-

tained. We make a mathematical proof as follows:

Given two images xi and xj , we denote ~hi and ~hj as the

corresponding features before the Eigenlayer, respectively.
~fi and ~fj are their output features from the Eigenlayer. The

Euclidean distance Dij between the features of xi and xj is

calculated by:

Dij = ‖
#»

fi −
#»

fj‖2 =

√

(
#»

fi −
#»

fj)T(
#»

fi −
#»

fj)

=

√

(
#»

hi −
#»

hj)TWWT(
#»

hi −
#»

hj)

=

√

(
#»

hi −
#»

hj)TUSV TV STUT(
#»

hi −
#»

hj), (2)

where U , S and V are defined in Eq. 1. Since V is a unit

orthogonal matrix, Eq. 2 is equal to:

Dij =

√

(
#»

hi −
#»

hj)TUSSTUT(
#»

hi −
#»

hj) (3)

Eq. 3 suggests that when changing W = USV T to US,

Dij remains unchanged. Therefore, in Step 1 of Alg. 1,

the discriminative ability (re-ID accuracy) of the fine-

tuned CNN model is 100% preserved.

There are some other decorrelation methods in addition

to SVD. But these methods do not preserve the discrimina-

tive ability of the CNN model. To illustrate this point, we

compare SVD with several competitors below.

1. Use the originally learned W (denoted by Orig).

2. Replace W with US (denoted by US).

3. Replace W with U (denoted by U ).

4. Replace W with UV T (denoted by UV T).

5. Replace W = QR (Q-R decomposition) with QD,

where D is the diagonal matrix extracted from the up-

per triangle matrix R (denoted by QD).

Comparisons on Market-1501 [32] are provided in Table

1. We replace the FC layer with a 1,024-dim linear layer

and fine-tune the model till convergence (Step 0 in Alg. 1).

We then replace the fine-tuned W with methods 2 - 5. All

the four decorrelation methods 2 - 5 update W to be an or-

thogonal matrix, but Table 1 indicates that only replacing

Methods Orig US U UV T QD

rank-1 63.6 63.6 61.7 61.7 61.6

mAP 39.0 39.0 37.1 37.1 37.3

Table 1: Comparison of decorrelation methods in Step 1 of

Alg. 1. Market-1501 and CaffeNet are used. We replace

FC7 with a 1,024-dim linear layer. Rank-1 (%) and mAP

(%) are shown.

W with US retains the re-ID accuracy, while the others de-

grade the performance.

When does performance improvement happen? As

proven above, Step 1 in Alg. 1, i.e., replacing W = USV T

with US, does not bring an immediate accuracy improve-

ment, but keeps it unchanged. Nevertheless, after this op-

eration, the model has been pulled away from the original

fine-tuned solution, and the classification loss on the train-

ing set will increase by a certain extent. Therefore, Step 2

and Step 3 in Alg. 1 aim to fix this problem. The major

effect of these two steps is to improve the discriminative

ability of the input feature as well as the output feature of

the Eigenlayer (Fig. 2). On the one hand, the restraint step

learns the upstream and downstream layers of the Eigen-

layer, which still preserves the orthogonal property. We

show in Fig. 5 that this step improves the accuracy. On

the other hand, the relaxation step will make the model de-

viate from orthogonality again, but it reaches closer to con-

vergence. This step, as shown in Fig. 5, deteriorates the

performance. But within an RRI, the overall performance

improves. Interestingly, when educating children, an alter-

nating rhythm of relaxation and restraint is also encouraged.

Correlation diagnosing. Till now, we have not provided

a metric how to evaluate vector correlations. In fact, the cor-

relation between two vectors can be estimated by the corre-

lation coefficient. However, to the best of our knowledge, it

lacks an evaluation protocol for diagnosing the overall cor-

relation of a vector set. In this paper, we propose to evaluate

the overall correlation as below. Given a weight matrix W ,

we define the gram matrix of W as,

G = WTW =
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where k is the number of weight vectors in W (k = 4,096 in

FC7 of CaffeNet), gij (i, j = 1, ..., k) are the entries in W ,

and wi (i = 1, ..., k) are the weight vectors in W . Given W ,

we define S(·) as a metric to denote the extent of correlation

between all the column vectors of W :

S(W ) =

∑k

i=1
gii

∑k

i=1

∑k

j=1
|gij |

. (5)

From Eq. 5, we can see that the value of S(W ) falls within

[ 1
k
, 1]. S(W ) achieves the largest value 1 only when W is

an orthogonal matrix, i.e., gij = 0, if i 6= j. S(W ) has

the smallest value 1

k
when all the weight vectors are totally

the same, i.e., gij = 1, ∀i, j. So when S(W ) is close to

1/k or is very small, the weight matrix has a high corre-

lation extent. For example, in our baseline, when directly

fine-tuning a CNN model (without SVDNet training) using

CaffeNet, S(WFC7) = 0.0072, indicating that the weight

vectors in the FC7 layer are highly correlated. As we will

show in Section 4.5, S is an effective indicator to the con-

vergence of SVDNet training.

Convergence Criteria for RRI. When to stop RRI is a

non-trivial problem, especially in application. We employ

Eq. 5 to evaluate the orthogonality of W after the relaxation

step and find that S(W ) increases as the iteration goes on.

It indicates that the correlation among the weight vectors

in W is reduced step-by-step with RRI. So when S(W ) be-

comes stable, the model converges, and RRI stops. Detailed

observations can be accessed in Fig. 5.

4. Experiment

4.1. Datasets and Settings

Datasets. This paper uses three datasets for evaluation,

i.e., Market-1501 [32], CUHK03 [13] and DukeMTMC-

reID [18, 37]. The Market-1501 dataset contains 1,501

identities, 19,732 gallery images and 12,936 training im-

ages captured by 6 cameras. All the bounding boxes are

generated by the DPM detector [9]. Most experiments

relevant to mechanism study are carried out on Market-

1501. The CUHK03 dataset contains 13,164 images of

1,467 identities. Each identity is observed by 2 cam-

eras. CUHK03 offers both hand-labeled and DPM-detected

bounding boxes, and we use the latter in this paper. For

CUHK03, 20 random train/test splits are performed, and

the averaged results are reported. The DukeMTMC-reID

dataset is collected with 8 cameras and used for cross-

camera tracking. We adopt its re-ID version benchmarked

in [37]. It contains 1,404 identities (one half for training,

and the other for testing), 16,522 training images, 2,228

queries, and 17,661 gallery images. For Market-1501 and

DukeMTMC-reID, we use the evaluation packages pro-

vided by [32] and [37], respectively.

For performance evaluation on all the 3 datasets, we use

both the Cumulative Matching Characteristics (CMC) curve

and the mean Average Precision (mAP).

Backbones. We mainly use two networks pre-trained on

ImageNet [7] as backbones, i.e., CaffeNet [12] and ResNet-

50 [11]. When using CaffeNet as the backbone, we directly

replace the original FC7 layer with the Eigenlayer, in case

that one might argue that the performance gain is brought

by deeper architecture. When using ResNet-50 as the back-

bone, we have to insert the Eigenlayer before the last FC

layer because ResNet has no hidden FC layer and the influ-

ence of adding a layer into a 50-layer architecture can be

neglected. In several experiments on Market-1501, we ad-

ditionally use VGGNet [20] and a Tiny CaffeNet as back-

bones to demonstrate the effectiveness of SVDNet on dif-

ferent architectures. The Tiny CaffeNet is generated by re-

ducing the FC6 and FC7 layers of CaffeNet to containing

1024 and 512 dimensions, respectively.

4.2. Implementation Details

Baseline. Following the practice in [33], baselines us-

ing CaffeNet and ResNet-50 are fine-tuned with the default

parameter settings except that the output dimension of the

last FC layer is set to the number of training identities. The

CaffeNet Baseline is trained for 60 epochs with a learning

rate of 0.001 and then for another 20 epochs with a learn-

ing rate of 0.0001. The ResNet Baseline is trained for 60

epochs with learning rate initialized at 0.001 and reduced

by 10 on 25 and 50 epochs. During testing, the FC6 or FC7

descriptor of CaffeNet and the Pool5 or FC descriptor of

ResNet-50 are used for feature representation.

On Market-1501, CaffeNet and Resnet-50 achieves rank-

1 accuracy of 55.3% (73.8%) with the FC6 (Pool5) descrip-

tor, which is consistent with the results in [33].

Detailed settings. CaffeNet-backboned SVDNet takes

25 RRIs to reach final convergence. For both the restraint

stage and the relaxation stage within each RRI except the

last one, we use 2000 iterations and fix the learning rate

at 0.001. For the last restraint training, we use 5000 itera-

tions (learning rate 0.001) + 3000 iterations (learning rate

0.0001). The batch size is set to 64. ResNet-backboned

SVDNet takes 7 RRIs to reach final convergence. For both

the restraint stage and the relaxation stage within each RRI,

we use 8000 iterations and divide the learning rate by 10

after 5000 iterations. The initial learning rate for the 1st to

the 3rd RRI is set to 0.001, and the initial learning rate for

the rest RRIs is set to 0.0001. The batch size is set to 32.

The output dimension of Eigenlayer is set to be 1024 in

all models, yet the influence of this hyper-parameter is to

be analyzed in Section 4.4. The reason of using different

times of RRIs for different backbones is to be illustrated in

Section 4.5.



Models & Features dim
Market-1501 CUHK03 DukeMTMC-reID

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

Baseline(C) FC6 4096 55.3 75.8 81.9 30.4 38.6 66.4 76.8 45.0 46.9 63.2 69.2 28.3

Baseline(C) FC7 4096 54.6 75.5 81.3 30.3 42.2 70.2 80.4 48.6 45.9 62.0 69.7 27.1

SVDNet(C) FC6 4096 80.5 91.7 94.7 55.9 68.5 90.2 95.0 73.3 67.6 80.5 85.7 45.8

SVDNet(C) FC7 1024 79.0 91.3 94.2 54.6 66.0 89.4 93.8 71.1 66.7 80.5 85.1 44.4

Baseline(R) Pool5 2048 73.8 87.6 91.3 47.9 66.2 87.2 93.2 71.1 65.5 78.5 82.5 44.1

Baseline(R) FC N 71.1 85.0 90.0 46.0 64.6 89.4 95.0 70.0 60.6 76.0 80.9 40.4

SVDNet(R) Pool5 2048 82.3 92.3 95.2 62.1 81.8 95.2 97.2 84.8 76.7 86.4 89.9 56.8

SVDNet(R) FC 1024 81.4 91.9 94.5 61.2 81.2 95.2 98.2 84.5 75.9 86.4 89.5 56.3

Table 2: Comparison of the proposed method with baselines. C: CaffeNet. R: ResNet-50. In ResNet Baseline, “FC” denotes

the last FC layer, and its output dimension N changes with the number of training identities, i.e., 751 on Market-1501, 1,160

on CUHK03 and 702 on DukeMTMC-reID. For SVDNet based on ResNet, the Eigenlayer is denoted by “FC”, and its output

dimension is set to 1,024.

Figure 3: Sample retrieval results on Market-1501. In each

row, images are arranged in descending order according to

their similarities with the query on the left. The true and

false matches are in the blue and red boxes, respectively.

4.3. Performance Evaluation

The effectiveness of SVDNet. We comprehensively

evaluate the proposed SVDNet on all the three re-ID bench-

marks. The overall results are shown in Table 2.

The improvements achieved on both backbones are sig-

nificant: When using CaffeNet as the backbone, the Rank-

1 accuracy on Market-1501 rises from 55.3% to 80.5%,

and the mAP rises from 30.4% to 55.9%. On CUHK03

(DukeMTMC-reID) dataset, the Rank-1 accuracy rises by

+26.3% (+20.7%), and the mAP rises by +24.7% (+17.5%).

When using ResNet as the backbone, the Rank-1 accu-

racy rises by +8.4%, +15.6% and +11.2% respectively

on Market-1501, CUHK03 and DukeMTMC-reID dataset.

The mAP rises by +14.2%, +13.7% and +12.7% corre-

spondingly. Some retrieval examples on Market-1501 are

shown in Fig. 3.

Comparison with state of the art. We compare SVD-

Net with the state-of-the-art methods. Comparisons on

Methods
Market-1501 CUHK03

rank-1 mAP rank-1 mAP

LOMO+XQDA[14] 43.8 22.2 44.6 51.5

CAN[16] 48.2 24.4 63.1 -

SCSP[4] 51.9 26.4 - -

Null Space[30] 55.4 29.9 54.7 -

DNS[30] 61.0 35.6 54.7 -

LSTM Siamese[25] 61.6 35.3 57.3 46.3

MLAPG[15] - - 58.0 -

Gated SCNN[24] 65.9 39.6 61.8 51.3

ReRank (C) [38] 61.3 46.8 58.5 64.7

ReRank (R) [38] 77.1 63.6 64.0 69.3

PIE (A)* [31] 65.7 41.1 62.6 67.9

PIE (R)* [31] 79.3 56.0 67.1 71.3

SOMAnet (VGG)* [2] 73.9 47.9 72.4 -

DLCE (C)* [35] 62.1 39.6 59.8 65.8

DLCE (R)* [35] 79.5 59.9 83.4 86.4

Transfer (G)* [10] 83.7 65.5 84.1 -

SVDNet(C) 80.5 55.9 68.5 73.3

SVDNet(R,1024-dim) 82.3 62.1 81.8 84.8

Table 3: Comparison with state of the art on Market-1501

(single query) and CUHK03. * denotes unpublished papers.

Base networks are annotated. C: CaffeNet, R: ResNet-50,

A: AlexNet, G: GoogleNet [23]. The best, second and third

highest results are in blue, red and green, respectively.

Market-1501 and CUHK03 are shown in Table 3. Compar-

ing with already published papers, SVDNet achieves com-

petitive performance. We report rank-1 = 82.3%, mAP

= 62.1% on Market-1501, and rank-1 = 81.8%, mAP =

84.8% on CUHK03. The re-ranking method [38] is higher

than ours in mAP on Market-1501, because re-ranking ex-

ploits the relationship among the gallery images and results

in a high recall. We speculate that this re-ranking method

will also bring improvement for SVDNet. Comparing with



(a) CaffeNet-backboned SVDNet (b) ResNet-backboned SVDNet

Figure 4: Dimension comparison on (a) CaffeNet-backboned and (b) ResNet-backboned. The marker prefixed by “step0”

denotes that the corresponding model is trained without any RRI. The marker prefixed by “eigen” denotes that the corre-

sponding model is trained with sufficient RRIs to final convergence. For (a), the output dimension of Eigenlayer is set to 16,

32, 64, 128, 256, 512, 1024, 2048 and 4096. For (b), the output dimension of Eigenlayer is set to 32, 64, 128, 256, 512, 1024

and 2048.

Methods
DukeMTMC-reID CUHK03-NP

rank-1 mAP rank-1 mAP

BoW+kissme [32] 25.1 12.2 6.4 6.4

LOMO+XQDA [14] 30.8 17.0 12.8 11.5

Baseline (R) 65.5 44.1 21.3 19.7

GAN (R) [37] 67.7 47.1 - -

PAN (R) [36] 71.6 51.5 36.3 34.0

SVDNet (C) 67.6 45.8 27.7 24.9

SVDNet (R) 76.7 56.8 41.5 37.3

Table 4: Comparison with the state of the art on

DukeMTMC-reID and CUHK03-NP. Rank-1 accuracy (%)

and mAP (%) are shown. For fair comparison, all the results

are maintained without post-processing methods.

the unpublished Arxiv papers, (some of) our numbers are

slightly lower than [10] and [35]. Both works [10] and [35]

combine the verification and classification losses, and we

will investigate into integrating this strategy into SVDNet.

Moreover, the performance of SVDNet based on rela-

tively simple CNN architecture is impressive. On Market-

1501, CaffeNet-backboned SVDNet achieves 80.5% rank-1

accuracy and 55.9% mAP, exceeding other CaffeNet-based

methods by a large margin. Additionally, using VGGNet

and Tiny CaffeNet as backbone achieves 79.7% and 77.4%

rank-1 accuracy respectively. On CUHK03, CaffeNet-

backboned SVDNet even exceeds some ResNet-based com-

peting methods except DLCE(R). This observation suggests

that our method can achieve acceptable performance with

high computing effectiveness.

In Table 4, comparisons on DukeMTMC-reID and

CUHK03 under a new training/testing protocol (denoted as

CUHK03-NP) raised by [38] are summarized. Relatively

fewer results are reported because both DukeMTMC-reID

and CUHK03-NP have only been recently benchmarked.

On DukeMTMC-reID, this paper reports rank-1 = 76.7%,

mAP = 56.8%, which is higher than the several compet-

ing methods including a recent GAN approach [37]. On

CUHK03-NP, this paper reports rank-1 = 41.5%, mAP =

37.3%, which is also the highest among all the methods.

4.4. Impact of Output Dimension

We vary the dimension of the output of Eigenlayer. Re-

sults of CaffeNet and ResNet-50 are drawn in Fig. 4.

When trained without RRI, the model has no intrinsic

difference with a baseline model. It can be observed that

the output dimension of the penultimate layer significantly

influences the performance. As the output dimension in-

creases, the re-ID performance first increases, reaches a

peak and then drops quickly. In this scenario, we find that

lowering the dimension is usually beneficial, probably due

to the reduced redundancy in filters of FC layer.

The influence of the output dimension on the final per-

formance of SVDNet presents another trend. As the output

dimension increases, the performance gradually increases

until reaching a stable level, which suggests that our method

is immune to harmful redundancy.

4.5. RRI Boosting Procedure

This experiment reveals how the re-ID performance

changes after each restraint step and each relaxation step,

and how SVDNet reaches the stable performance step by

step. In our experiment, we use 25 epochs for both the re-



Figure 5: Rank-1 accuracy and S(W ) (Eq. 5) of each intermediate model during RRI. Numbers on the horizontal axis denote

the end of each RRI. SVDNet based on CaffeNet and ResNet-50 take about 25 and 7 RRIs to converge, respectively. Results

before the 11th RRI is marked. S(W ) of models trained without RRI is also plotted for comparison.

Methods Orig US U UV T QD

FC6(C) 57.0 80.5 76.2 57.4 58.8

FC7(C) 63.6 79.0 75.8 62.7 63.2

Pool5(R) 75.9 82.3 80.9 76.5 77.9

FC(R) 75.1 81.4 80.2 74.8 77.3

Table 5: Comparison of the decorrelation methods speci-

fied in Section 3.3. Rank-1 accuracy (%) on Market-1501

is shown. Dimension of output feature of Eigenlayer is set

to 1024. We run sufficient RRIs for each method.

straint phase and the relaxation phase in one RRI. The out-

put dimension of Eigenlayer is set to 2,048. Exhaustively,

we test re-ID performance and S(W ) values of all the inter-

mediate CNN models. We also increase the training epochs

of baseline models to be equivalent of training SVDNet, to

compare S(W ) of models trained with and without RRI.

Results are shown in Fig. 5, from which four conclusions

can be drawn.

First, within each RRI, rank-1 accuracy takes on a pat-

tern of “increase and decrease” echoing the restraint and re-

laxation steps: When W is fixed to maintain orthogonality

during restraint training, the performance increases, imply-

ing a boosting in the discriminative ability of the learned

feature. Then during relaxation training, W is unfixed, and

the performance stagnates or even decreases slightly. Sec-

ond, as the RRI goes, the overall accuracy increases, and

reaches a stable level when the model converges. Third, it is

reliable to use S(W ) – the degree of orthogonality – as the

convergence criteria for RRI. During RRI training, S(W )
gradually increases until reaching stability, while without

RRI training, S(W ) fluctuates slightly around a relatively

low value, indicating high correlation among weight vec-

tors. Fourth, ResNet-backboned SVDNet needs much fewer

RRIs to converge than CaffeNet-backboned SVDNet.

4.6. Comparison of Decorrelation Methods

In Section 3.3, several decorrelation methods are intro-

duced. We show that only the proposed method of replacing

W with US maintains the discriminative ability of the out-

put feature of Eigenlayer, while all the other three methods

lead to performance degradation to some extent. Here, we

report their final performance when RRI training is used.

Results on Market-1501 are shown in Table 5. It can be

observed that the proposed decorrelating method, i.e., re-

placing W with US, achieves the highest performance, fol-

lowed by the “U”, “QD” and “UV T” methods. In fact, the

“UV T” method does not bring about observable improve-

ment compared with “Orig”. This experiment demon-

strates that not only the orthogonality itself, but also the

decorrelation approach, are vital for SVDNet.

5. Conclusions

In this paper, SVDNet is proposed for representation

learning in pedestrian retrieval, or re-identification. Decor-

relation is enforced among the projection vectors in the

weight matrix of the FC layer. Through iterations of “re-

straint and relaxation”, the extent of vector correlation is

gradually reduced. In this process, the re-ID performance

undergoes iterative “increase and decrease”, and finally

reaches a stable accuracy. Due to elimination of correlation

of the weight vectors, the learned embedding better suits

the retrieval task under the Euclidean distance. Significant

performance improvement is achieved on the Market-1501,

CUHK03, and DukeMTMC-reID datasets, and the re-ID

accuracy is competitive with the state of the art.

In the future study, we will investigate more extensions

of SVDNet to find out more about its working mechanism.

We will also apply SVDNet on the generic instance retrieval

problem.
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