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Abstract

Novel solutions in the area of Explainable AI (XAI)

have made a significant breakthrough in increasing the

trust of end-users in Machine Learning (ML) models. How-

ever, validating the performance of these solutions remains

a challenging task. In this work, we focus on evaluating

the methods that attribute a model’s decision to their in-

put features. The prior metrics on this topic fail to con-

sider multiple properties that a usable explainability so-

lution should satisfy. Also, conducting experiments to as-

sess the concreteness of the explanations provided by these

solutions in large-scale datasets consumes excessive time

and resources. To overcome these shortcomings, we pro-

pose the Small-scale Visual Explanation Analysis (SVEA)

benchmark, which comprises the recent minimal MNIST-1D

dataset. Our proposed benchmarking tool aids the practi-

tioners and researchers to perform experiments on the Ex-

plainable AI methods without the need to access expensive

computational devices. Furthermore, we offer a framework

to evaluate various characteristics of the state-of-the-art

XAI methods and include several widely used interpretabil-

ity solutions in the SVEA benchmark to perform a thor-

ough analysis of their completeness and understandability.

The results obtained from our proposed evaluation metric

suggest that specific approaches lack the ability to transfer

the chosen model’s understanding to a second interpretable

model by the explanations generated. The users can repli-

cate our experiments within few minutes before working ex-

tensively on other larger datasets, thereby saving a lot of

experimental time and effort.

1. Introduction

As one of the considering directions in Trustworthy

AI [16], Explainable AI has become a highly demand-

ing field in a variety of real-world applications, such as

healthcare, autonomous driving, criminal justice, and fi-

nance [15, 4, 24]. The solutions proposed in this area lead
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Figure 1. Key features of the dataset and model employed in our

proposed benchmark.

a large group of developers, theorists, ethicists, and stake-

holders to achieve a more concrete understanding of the de-

cision mechanism of Machine Learning (ML) models and

increase their trust in the decisions made by these models

[22]. However, evaluating the performance of explanation

methods remains a significant challenge in both industrial

and academic research [11].

A concrete explainable AI method must accompany both

the target model and end-users as an interface between

computer-based predictors and humans. In general, expla-

nations are expected to be faithful from the model’s per-

spective. They should correctly depict the exact behavior of

the target model in a particular scope. From the users’ side,

explanations should be understandable and must provide

them with transparent and interpretable insights regarding

the model’s decision-making procedure [4]. If an explain-

able AI method’s output satisfies ‘faithfulness’ and ‘under-

standability’, it can be further extended for functional pur-

poses such as model understanding, model debugging, and

detecting dataset biases.

The expected properties of explanation algorithms are

organized more accurately in the “Explainability fact sheet”

proposed in [31]. According to this fact sheet, each explain-

ability solution should satisfy several properties to be con-
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sidered “usable” from the users’ point of view. Developing

a framework to assess these properties simultaneously is an

ambitious task, especially in large-scale applications such

as high-resolution image processing. The need for excessive

resources such as ample memory space and faster GPUs,

the training time, and providing feature-level annotations or

human feedback are common shortcomings among most of

these experiments that hinder the students and researchers

from taking advantage of these valuable frameworks.

To circumvent these limitations, we introduce a small-

scale framework to benchmark the attribution methods that

are functional in ML-based image and signal processing

applications. Attribution methods are a specific subgroup

of post-hoc and local explainability methods (according to

the terminologies defined in [31]) that take a trained tar-

get model and image (or signal data) as inputs and output

a heatmap with the same shape as the input that highlights

the features that are the most important towards the model’s

prediction.

Our proposed framework inherits the MNIST-1D dataset

[10], a low-dimensional analogous of the renowned MNIST

dataset [14]. This dataset was initially developed to enable

the researchers to study deep learning cases that mainly

focus on data recognition on a much small scale. Unlike

these objectives, we utilize the MNIST-1D dataset to in-

spect the faithfulness and understandability of the post-hoc

interpretability solutions in small scales. Carrying experi-

ments on such a scale aids in promoting future research in

this field as a whole. Our contributions in this work can be

summarized as follows:

• We present a low-memory and low-compute bench-

mark to compare the performance of state-of-the-art at-

tribution methods in various aspects. Our benchmark-

ing tool allows researchers and practitioners to ex-

plore solutions for model interpretability without deal-

ing with the burdensome problems in large-scale envi-

ronments.

• We propose a validation experiment that strictly mea-

sures the usability of attribution methods without the

need for complicated feature-level annotations or hu-

man resources.

2. Related Works

As stated in [7], the approaches to validate the explana-

tion algorithms are classified into three types: application

level, human level, and function level.

2.1. Application Level Validation

The explanations are evaluated on real tasks at this level

by comparing with the explanations provided by a domain

expert. In terms of attribution methods, the visual explana-

tions are compared with ground truth annotations such as

bounding boxes or segmentation masks. These metrics are

also termed as ground truth-based metrics [25].

For instance, evaluation metrics such as Pointing Game

(PG) [35] and its expanded version, Energy-based Point-

ing Game (EBPG) [33, 19], quantify the fraction of en-

ergy in a set of explanations that are located inside their

corresponding ground truth labels. Moreover, the Bounding

box metric [26] as an adaptive analogous for mean Intersec-

tion over Union (mIoU), calculates the portion of the most

highlighted features captured by the annotation masks. In a

more novel experiment designated in [34], attribution meth-

ods are evaluated by being applied on two different mod-

els trained on a crafted dataset containing foreground and a

background class.

2.2. Human Level Validation

Human-level validation experiments evaluate the under-

standability and satisfaction of the explanations by includ-

ing people in the loop. This type of evaluation, which re-

lies on getting direct feedback from the users engaged with

the model, can be performed by asking the users to rate the

explanations generated by explainability methods or utiliz-

ing the explanations to perform specific tasks [7, 13, 21].

To carry human-level validation experiments, some prior

works [24, 27] created interfaces that enable the individuals

to compare multiple explanations in various aspects, such

as class discrimination, visual clarity, and trustworthiness.

2.3. Function Level Validation

This type of validation primarily evaluates the explana-

tions’ correctness by measuring the correlation between the

model’s behavior and the provided explanations. When it

comes to evaluating attribution methods, function-level val-

idation can be conducted in several ways. For instance, pairs

of metrics such as “Drop and Increase rate” and “Insertion

and Deletion” validate the faithfulness of explanations by

observing the model’s output when it is fed only with the

input features indicated as important by the explanations

[18, 5, 6, 33, 9]. The Remove and Retrain (ROAR) met-

ric runs by retraining the target model from scratch using

only the features that scored the highest by an attribution

method [12]. The sensitivity-n experiment operates by sta-

tistical computation of the covariance of the explanations

and the model’s predictions by applying random perturba-

tions in the input domain [3]. Instead of pre-defined ground

truth labels, these experiments consider the model’s predic-

tion to the given input as an evaluation baseline. Hence, they

are termed as model truth-based metrics. Furthermore, an-

other series of function-level experiments focus on evalu-

ating the explanation algorithms’ sensitivity to the model’s

specifications and parameters [2].

Compared with the two former validation types, a signif-

icant advantage of function-level experiments is that they
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Figure 2. Samples from the MNIST-1D data [10] and their corresponding Regions of Explanation (ROEs) extracted using SISE method

[25].

do not require providing extravagant information such as

annotations and user feedback to operate. Hence, they are

compatible with any ML-based model regardless of their

application. Our proposed validation framework can be cat-

egorized into function-level experiments. Unlike the prior

experiments in the same category, our benchmark takes ac-

count for a broader range of properties to guarantee the us-

ability of attribution methods [31].

3. Small-scale Visual Explanation Analysis

(SVEA) Benchmark

The Small-scale Visual Explanation Analysis (SVEA)

benchmark is designed to perform the function-level valida-

tion tasks quickly and efficiently reproducible. To achieve

our defined goal, we utilize MNIST-1D [10], a synthetic

dataset containing low-dimensional encoded data. When a

non-interpretable model trained on this dataset is provided

to a well-performing attribution method, it can decode the

data in a representative manner by discovering the model’s

understanding of the underlying data. We also designate an

evaluation framework that works by asking an interpretable

model to replicate the target model’s task by employing the

baseline model’s explanation.

Our proposed benchmark includes four main compo-

nents: 1) The training and test data in the MNIST-1D

dataset, 2) A trained baseline predictive model, 3) An in-

terpretable linear classifier, and 4) A set of state-of-the-art

visual explanation algorithms. The significant advantage of

our proposed benchmark is that it allows simulations to run

without demanding an unreasonable amount of time, mem-

ory, and external acceleration devices like GPUs.

3.1. The MNIST­1D Dataset

As stated above, this minimal analogous for the MNIST

dataset was initially introduced to be applied in case studies

such as predicting lottery tickets, observing deep double de-

scent, and meta-learning [10]. However, this dataset has not

yet been employed for analyzing model interpretation tech-

niques in small scales. In this work, we utilize this dataset

to considerably decrease the computational overhead of our

validation experiments on novel attribution methods.

The MNIST-1D dataset is functional in real-world digit

classification. Though the training samples in this dataset

are 20 times smaller than MNIST, this dataset distinguishes

the critical machine learning models more broadly in terms

of test accuracy. In terms of structure, the main difference

between these datasets is that instead of handwriting images

representing the digits 0-9, the samples in the MNIST-1D

dataset are formed based on ten one-dimensional template

patterns, as shown in Fig. 2 which resemble the original dig-

its. Each MNIST-1D sample is created as follows:

1. Select the template for each class label. (Each template

is a one-dimensional pattern consisting of 12 points.)

2. Pad the template by randomly adding 36-60 points.

3. Apply random transformations such as translation, 1-D

shearing, and Gaussian noise addition.

4. Finally, scale and downsample the pattern to 40 points.

This procedure implies that in each MNIST-1D sample,

at least 70% of the data points do not represent the actual

template related to the sample’s correct label. Moreover,

since the samples are affected by random translation, the

spatial information of the patterns is not a reliable evidence

in the classification procedure. Hence, translation-variant

models such as linear classifiers fail to achieve a high classi-

fication accuracy in the MNIST-1D dataset. Fig. 3 illustrates

this massive gap between a logistic regressor and a Convo-

lutional Neural Network (CNN).

3.2. Region of Explanation (ROE)

To address the drawbacks of models with spatial induc-

tive biases, a simple but novel idea is to train them using the

visual explanations reached from a more complicated and

translation-invariant model instead of the original data. This

idea connects linear signal classification and Explainable

AI. The intuition behind this idea is to replace the noisy data
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Figure 3. The test accuracy for different classification models

trained on the MNIST-1D dataset, as reported in [10].

with their corresponding common features (CF) to avoid

manipulating the linear models in their learning process. As

defined in [34], a common feature is a set of points with

some semantic meaning that commonly appear in all exam-

ples of one class. In terms of the MNIST-1D dataset, com-

mon features are a set of connected data points representing

a template related to a specific digit. Hence, a usable ex-

planation method is expected to extract the common feature

from each given sample with a well-trained model on this

dataset.

Given a set of a model, input data, and attribution

method, we define the term Region of Explanation (ROE) as

a set of connected points in the input domain highlighted by

the attribution method as the most important in the model’s

prediction. Taking this definition into account, the ROEs de-

termined by an ideal attribution method should point out

the common features, which are the defined digit templates,

in our case. Thus, extracting ROEs using a well-performed

attribution method helps to learn an interpretable classifier

more accurately while eliminating the effect of spatial vari-

ation among the dataset.

3.3. Baseline Model

We trained an extremely shallow CNN with the same

architecture used in [10] as the baseline, shown in Fig. 1.

This selection allows us to evaluate the attribution methods

that are specialized to be applied only to CNNs (e.g., Grad-

CAM, Grad-CAM++, SISE [27, 5, 25]), as well as the pop-

ular model-agnostic methods (e.g., Integrated Gradients,

RISE [32, 18]). Considering that the baseline model con-

tains only 13,960 trainable parameters, training this model

from scratch is not a time-consuming process, even if done

without a GPU. For our use case, we trained this network

for 200 epochs using Stochastic Gradient Descent (SGD)

XAI algorithm

Yes

Yes

No

No
Region of

Explanation (ROE)

Template for
the predicted Class 6

Figure 4. The schematic diagram to extract the Region of Expla-

nation (ROE) for a given sample input. Each visual explanation

algorithm outputs a set of connected data points with dimension

l = 12 as the ROE associated with the input data given to the

baseline model.

optimizer and achieved a test accuracy of 87.7%. More de-

tails regarding the performance of the baseline CNN are

provided in the supplementary material.

Denoting the baseline model as Ψ : R
L → R

|C| and

the input as x ∈ R
L, an attribution method generates the

explanation for the model’s top prediction indicated as s ∈
R

L, where L is the size of the data (40 in our case), and C =
{0, 1, ..., 9} is the set of output classes (digits). In particular,

we define the ROE for this pair as a window of size l = 12,

centered by the data point with the highest importance score

in s, based on the condition,

l < argmax
1≤i≤L

(s(i)) < L− l (1)

If this condition is not satisfied, it implies that the highest

scored point is adjacent to the signal’s origin or end. Then,

the window matches the first or last l points. Fig. 4 shows

the procedure to extract ROE for a given input.

3.4. ROE Understandability Test

The usability of attribution methods can be validated by

employing the ROEs they determine to learn and evaluate

a translation-variant model. Unlike the ground truth-based

metrics that measure the explanations’ understandability by

matching them with human-crafted annotations, our pro-

posed test evaluates the ability of the explanations to trans-

fer the baseline model’s understanding to a second model

whose functionality is easy to interpret. Also, similar to the

ROAR experiment [12], our test accounts for validating the

“completeness” of the explanations generated by attribution

methods and assess whether the explanations can be gener-

alized and framed into a specific context.
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Figure 5. The schematic of the Region of Explanation (ROE) Understandability Test. Linear classifiers are not able to reach a high test

accuracy, when trained on the original MNIST-1D training data (left subfigure). In the ROE understandability test, the original MNIST-1D

data are replaced with the ROEs obtained by applying a visual explainabilty algorithm to the baseline model. The increase in the test

accuracy of the linear classifier indicates the understandability of the employed visual explainability algorithm (the right subfigure).

We coin our proposed test as ROE Understandability

Test. To conduct this test, we choose a 10-class linear classi-

fier as the hypothesis set, which is denoted by Γ : RL → C.

The applied Support Vector Machine (SVM) [20] learning

algorithm is defined as A. This function receives the set of

hypotheses Γ and a training set as input and returns a trained

function γ ∈ Γ. Representing the training set of the MNIST-

1D dataset as D = {(x(i), y(i))|i ∈ {1, ..., N}} where

N = 4000 is the number of training samples and x(i) and

y(i) indicate the i-th training data and label respectively, the

trained classifier is formulated as,

γ = A(Γ,D) (2)

On the other hand, we denote the test set of the MNIST-1D

as D′ = {(x′(i), y′(i))|i ∈ {1, ..., N ′}} where N ′ = 1000
is the number of test samples and x′(i) and y′(i) represent

the i-th test data and label, the test accuracy of the trained

SVM is calculated as,

z(γ,D′) = Ei∈{1,...,N ′}[γ(x
′(i)) 6= y′(i)] (3)

In our benchmark, we replace the original training and test

data with the ROEs derived by attribution methods when

applied to the baseline model Ψ(.). Each selected attribu-

tion method denoted as the function g : (Ψ(.),RL) → R
L,

extracts the ROE from the input data as instructed in the

previous subsections. For each input x, this region of expla-

nation is notated as ROE(g(x,Ψ)). Hence, an attribution

method g reformats the datasets D and D′ as follows:

Dg = {(ROE(g(x(i),Ψ)), y(i))|i ∈ {1, ..., N}} (4)

D′
g = {(ROE(g(x′(i),Ψ)), y′(i))|i ∈ {1, ..., N ′}} (5)

Considering these reformatted datasets, the linear classifier

model trained with the training set Dg is formulated as:

γg : RL → C = A(Γ,Dg) (6)

The model’s test accuracy Rg is evaluated by replacing the

original test set with only the ROEs for the test data. The

achieved accuracy rate is considered a metric to quantify

the extent to which the attribution method g can transfer the

baseline model’s understanding to a human-understandable

model.

Rg = Ei∈{1,...,N ′}[γ(ROE(g(x′(i),Ψ)) 6= y′(i)] (7)

The test accuracy reached from the Eqn. (7) is the output of

the ROE test when it is applied on the attribution method

g. The higher this value is, the more soundness, complete-

ness, contextfulness, and actionability (refer Sec. 5 for def-

initions) is offered by the method g.

The detailed methodology of the proposed ROE test is

depicted in Fig. 5. Using any attribution method g that offers

sound and complete explanations, the expected result is that

pre-processing the training and test data by extracting the

ROEs defined by the attribution method improves the linear

model’s classification accuracy (z(γg,D
′
g) > z(γ,D′)),

given that the baseline model is well-trained. The achieved

higher test accuracy Rg indicates the better ability of the at-

tribution method g in forming concrete, sound, and under-

standable explanations and its usability in real-world tasks.

4. Empirical Results

With the components introduced in the previous sec-

tion, we implement the SVEA framework for the MNIST-
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Figure 6. The qualitative results of six different attribution methods on multiple samples. The first four columns show the results for the

data correctly classified by the baseline model, while the two latter columns depict the explanations for the data incorrectly classified by

the baseline model.

1D dataset1 along with various attribution methods (how-

ever, we have converted the source code to TensorFlow 2.x

framework [1]). We have selected the following visual ex-

planation methods to evaluate in our benchmark.

• Backpropagation-based methods: operate by back-

propagating the signals from the model’s output to its

input or hidden features, e.g., Vanilla Gradient (VG)

[29, 8], Integrated Gradients (IG) [32], SmoothGrad

(SG) [30].

• Perturbation-based methods: run by feeding the tar-

get model with the perturbed copies of the input. e.g.,

Randomized Input Sampling for Explanation (RISE)

[18] and Semantic Input Sampling for Explanation

(SISE)2 [25].

• CAM-based methods: are specialized for CNNs and

aim to visualize the high-level features extracted by

the convolutional units of these networks in a specific

layer. e.g., Grad-CAM [27], Grad-CAM++ [5], Score-

CAM [33], XGrad-CAM [9].

For each attribution method, a summarized fact sheet ac-

cording to [31] is provided in the supplementary material

that includes their methodology and other notable imple-

mentation details in our proposed benchmark.

1https://github.com/greydanus/mnist1d
2As far as the baseline model consists of only one convolutional block,

we calculate SISE explanation maps by applying their framework only on

the last convolutional layer.

4.1. Qualitative Analysis

Fig. 6 represent the explanations generated by six differ-

ent attribution methods in few samples. Additional qualita-

tive results for more samples and methods are included in

our supplementary material. In summary, these results sug-

gest that 1) The methods such as Grad-CAM++ and SISE

[5, 25] that take account for the presence of smaller pat-

terns detected by the baseline model show a more extraor-

dinary ability in highlighting the related regions confidently,

2) In some cases, the “gradient saturation” problem which

is addressed in prior works like [28] hurdles the ability of

the methods such as Grad-CAM and Vanilla Gradient that

highly rely on signal backpropagation [27, 29] to concretely

estimate the importance of the input features, 3) The men-

tioned limitation in Grad-CAM and Vanilla Gradient are cir-

cumvented to a satisfying extent in some methods such as

Integrated Gradients and RISE, by employing unique ideas

such as perturbation-based analysis and calculating the path

integral of input gradients, 4) However, in some cases, In-

tegrated Gradients and RISE fail to explain the reason that

the model is unable to make a correct prediction.

4.2. Quantitative Analysis

In addition to the ROE Understandability Test, we cal-

culate a pair of model truth-based metrics named “Drop%”

and “Increase%”. It was initially introduced to compare

the performance between Grad-CAM and Grad-CAM++ [5]

and then expanded in later works [6, 33, 9]. This metric
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Metric
Vanilla

XGrad-CAM
Score-

Grad-CAM
Grad-

SISE
Integrated

RISE
Gradient CAM CAM++ Gradient

ROE Test 32.7 39.3 42.1 47.6 59.0 61.5 65.1 66.4

Drop% 29.54 24.69 27.03 26.18 17.81 12.19 9.85 7.64

Increase% 29.6 37.7 28.9 36.4 33.9 38.5 40.4 41.0

Table 1. Results of the quantitative metrics applied on the state-of-the-art visual explanation methods. For Drop%, the lower is the better.

For Increase% and our proposed metric (ROE Understandability Test), the higher is the better. All values are reported in percentage.

ROE Thresholding

       Attribution method

Figure 7. The framework for calculating Drop% and Increase% on

individual data in our proposed benchmark.

assesses the faithfulness of attribution methods by probing

the model’s behavior when fed only with the features high-

lighted by the attribution method.

The intuition for “Drop%” is that when the essential fea-

tures for the model’s prediction are retained while the other

features are masked, the model’s confidence score should

not drop significantly. In the same manner, the intuition

for “Increase%” is that in some cases, by perturbing the

unimportant features, the model’s confidence in a predic-

tion may increase. Unlike feature perturbation techniques

in prior works, we perturb the features that do not fall into

a region of explanation (ROE) as determined by the attribu-

tion method to be evaluated. The detailed methodology of

calculating these metrics for a given attribution method is

shown in Fig. 7.

To conduct the ROE Understandability Test, we em-

ployed an SVM learning algorithm to train 10 linear clas-

sifiers in a ‘one-vs-rest’ manner. We set the learning algo-

rithm A to minimize the square of a hinge loss by applying

10,000 steps of the gradient descent optimization method.

Since the learning algorithm configurations are fixed in the

training procedure, all attribution methods are evaluated in

this framework fairly. As reported in Fig. 5 and Table 1,

in case of the usage of original MNIST-1D data to train

the linear classifiers, the achieved test accuracy is too low

(29.7%). However, processing the data by extracting the

ROEs from the baseline model results in a remarkable im-

provement in training the linear classifiers. This improve-

ment is expected since the well-performed attribution meth-

ods help us discard the spatial information that manipulates

the linear classifiers while retaining the semantic patterns.

Moreover, the suggestions obtained through qualitative

evaluation are verified by the results presented in Table

1. For instance, “Vanilla Gradient” that reaches the low-

est scores in the ROE test also generates visually unclear

and confusing explanations, especially for few samples

whose template-related patterns are highly influenced by

the applied transformations. The attribution methods that

score features’ importance in a size-invariant manner reach

ROE test accuracy higher than 50%. Also, RISE and Inte-

grated Gradients, two model-agnostic methods that address

the “gradient saturation” problem in backpropagation-based

methods, reach the top ranks both in ROE Test and in terms

of Drop/Increase rates.

5. Discussion

According to the properties defined in [31], the highest

scores achieved in our quantitative evaluation framework

verifies the following properties in visual explainability al-

gorithms:

• Soundness: Attribution methods should be able to rep-

resent how the baseline model discriminates the pat-

terns related to different classes. The higher test ac-

curacy achieved by the linear model depicts more so-

lidity to represent the discrimination by the attribution

method.

• Completeness: ROE Understandability Test measures

how the explanations are generalized across the dataset

applied to the baseline model. Unlike metrics such as

Drop/Increase rates that score the faithfulness of the

explanations separately, the ROE test evaluates all gen-

erated explanations across the target dataset simultane-

ously and in a unified interpretable framework.

• Contextfulness: The ROEs that the linear classi-

fier fails to predict correctly indicate the explana-

tions that lack understandability. Observing the linear

model’s predictions can help the users estimate unre-

liable explanations generated by the evaluated attribu-

tion method.

• Actionability: Through the ROEs given to the linear

classifier, an actionable model can determine the im-

portance of the input features. Since the classifiers are

trained using the ROEs corresponding to the training

data, the classifier’s weight parameters corresponding

to the correct class may imitate the guideline for the

end-users in the visual explanations.
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Below we discuss the advantages and limitations of

our proposed benchmark and evaluation framework and its

functionality for the individuals interested in researching

Explainable AI.

5.1. Computational Complexity

In large-scale applications, applying evaluation metrics

such as Remove and Retrain (ROAR) [12] that operate

by training a network with a reformatted dataset require

an enormous amount of GPU time. However, in our low-

compute benchmark, the cost of performing this type of val-

idation decreases remarkably.

For conducting the ROE understandability test, the com-

putational cost of evaluating each attribution method is

equivalent to 1) applying the attribution method to the entire

data in the MNIST-1D dataset, 2) saving a dataset contain-

ing the extracted ROEs with a size of 30% of the MNIST-1D

dataset, 3) training a classifier with 130 trainable parame-

ters by the SVM algorithm. Using a CPU with a disk space

that is extremely larger than the overall size of the SVEA

benchmark components, training a multi-class linear classi-

fier with 10,000 iterations takes only 17.9 seconds, on aver-

age. Thus, performing this validation can not be considered

a time-consuming or resource-exhausting process.

5.2. Transfer Ranking

Compared with Drop and Increase rates, the ROE Un-

derstandability Test ranks attribution methods with a slight

variance. This slight variation in the standings is acceptable

since the aspects based on which the attribution methods are

evaluated differ (to some extent) between the ROE test and

the prior validation frameworks. The differences between

the rankings provided in Table 1 is because the Drop and

Increase metrics quantify the faithfulness that the explana-

tions had provided, while the scores assigned in the ROE

Understandability Test are sensitive to a broader range of

properties that attribution methods should satisfy.

5.3. The Limitations of the SVEA Benchmark

Despite that our proposed benchmark is functional for

measuring the concreteness and correctness of the visual ex-

planation algorithms in a small-scale experimental environ-

ment, some methods’ performance may fluctuate when ap-

plications with larger scales are included. Of course, inter-

preting deeper machine learning models with complicated

structures and millions of trainable parameters is a more

challenging task for all attribution methods compared to the

baseline model in the SVEA benchmark.

For instance, when CAM-based methods are applied to

deep CNNs with several convolutional blocks, they would

generate blurry and noisy explanation maps since they run

by visualizing the deepest convolutional layer of the CNN’s

feature extractor. Later works such as [23, 25, 17] attempt

to circumvent this issue by aggregating the information ob-

tained by visualizing multiple layers of the CNN. Also, the

RISE methods suffer from the same problem while dealing

with high-dimension inputs. In this method, generating ex-

planations using random perturbation masks distributes the

energy in explanation maps across the whole input domain.

Besides, in image processing applications where numer-

ous high-level features may be formed from the interaction

between image pixels, backpropagation-based methods like

Vanilla Gradient and Integrated Gradient usually produce

extremely sparse explanation maps. Though the method

Integrated Gradients shows outperforming soundness and

completeness in our small-scale benchmark, empirical re-

sults in prior works suggest that this method fails to analyze

abstract features detected by the target model in large-scale

applications [33, 25].

Another shortcoming of the SVEA benchmark is that

this framework cannot measure the complexity of attribu-

tion methods when applied in large-scale tasks. For exam-

ple, the RISE method ranked first in our leaderboard, op-

erates extremely slow in image recognition tasks, as this

method works by feeding the target model with numer-

ous masked copies of the input image [18]. The SISE

method decreases this computational overhead substantially

by eliminating the need for employing random masks and

replacing them with smaller sets of attribution masks [25].

This simplification is not apparent to measure in a compu-

tationally inexpensive setup.

6. Conclusion

In this work, we employed the MNIST-1D dataset to

create SVEA, a low-memory and minimalist benchmark

for evaluating the visual explanations generated by state-

of-the-art attribution methods in small scales, before trans-

forming the empirical results to large scales, such as im-

age processing experiments. The SVEA benchmark elim-

inates the need for conducting exhaustive experiments to

perform high-level quantitative evaluations. We also pro-

posed the ROE Understandability Test, a function-level val-

idation metric that compares an attribution method’s usabil-

ity from numerous aspects. Our experiments’ empirical re-

sults show a high correlation between our proposed metric

and the prior evaluation frameworks. We believe that our

proposed benchmark and evaluation metric becomes a step-

ping stone for future research in the field of Explainable AI.
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