
SVEF: an Open-Source Experimental Evaluation

Framework for H.264 Scalable Video Streaming

Andrea Detti, Giuseppe Bianchi, Claudio Pisa,

Francesco Saverio Proto, Pierpaolo Loreti

University of Rome Tor Vergata

{andrea.detti, claudio.pisa} @uniroma2.it

Abstract-This paper describes the H.264 Scalable Video
coding streaming Evaluation Framework (SVEF). This is the
first open-source framework for experimental assessment of
H.264 Scalable Video Coding (SVC) delivery over real networks.
Effectively adapting of the transport of an H.264 SVC stream to
time-varying, bandwidth constrained, and loss prone networks
is an important research area. However, very little experimental
work has been performed due to the unavailability of real-time
H.264 SVC players, the limitations of existing decoding software
libraries when challenged with network-imparied received SVC
streams (e.g., affected by random loss of Network Abstraction
Layer Units - NALUs), and the lack of solutions for SVC stream­
ing support. SVEF overcomes these issues by developing missing
components and by integrating them in a hybrid online/offline
experimental framework. We believe SVEF will be of significant
help to the research community interested in experimentally
benchmarking their own proposed SVC adaptation approaches
and delivery mechanisms. As a proof-of-concept of SVEF, we
provide the experimental performance evaluation of an SVC
cross-layer in-network scheduler in a Wireless LAN hot spot
scenario.

I. INTRODUCTION

Wireless networks are usually characterized by a network

capacity that may significantly vary over time. Such bandwidth

fluctuations may be caused by the arrival and departure of

traffic sessions competing for access to the shared medium, as

in the case of a Wireless LAN [1]. Moreover, channel quality

variations may trigger physical rate adaptation mechanisms

[2], which cause frequent and step-wise abrupt changes of the

available capacity. Most importantly, random loss of packets

is frequently due to network congestion and wireless channel

impairments [3], and further affects the available rate.

Scalable Video Coding (SVC) is a very promising encoding

technique that allows to adapt to such variable bandwidth

conditions [4]. Its basic concepts have been investigated by

the research community for almost two decades, and its ex­

ploitation sped up by the recent (2007) finalization of an SVC

specification in the framework of the ITU H.264 advanced

video coding standards family [5].

An SVC stream is composed of multiple "layers" which

carry incremental video enhancement information. More

specifically, H.264 SVC introduces three enhancement di­

mensions: video frame size, video frame rate, and video

quality. In SVC, adaptation of the video stream to bandwidth

constraints or bandwidth fluctuations is performed by dropping

978-1-4244-4671-1/09/$25.00 ©20091EEE

Wolfgang Kellerer, Srisakul Thakolsri, Joerg Widmer

DoCoMo Euro Labs

Munich, Germany

{kellerer, thakolsri, widmer} @docomolab-euro.com

(partly or entirely) one or more enhancement layers. This

avoids run-time video transcoding, which has a significant

processing overhead expecially for high quality video. H.264

SVC provides a very smooth adaptation that be performed

at a granularity level as low as that of a single Network

Abstraction Layer Unit (NALU). Such adaptation not only

requires information about the available channel bandwidth,

but it must also be done intelligently. For instance, dropping

NALUs belonging to a lower layer makes all the received

corresponding higher layer NALUs useless.

Many SVC adaptation solutions have been proposed [6],

[7], [8], [9], [10]. They are either locally implemented at

the video server, using bandwidth estimates obtained through

feedback inherent in the transport protocol or some other

control protocol, or implemented within the network, e.g., in

middleboxes such as intermediate proxies, or in a wireless

base station, where capacity information is available. This also

allows for cross-layer scheduling to improve the adaptation

efficiency.

Despite the large interest in H.264 SVC adaptation and

numerous proposed approaches, to date little experimental

work has been carried out on real network testbeds, especially

when random NALU losses may be encountered. We believe

the reasons for this are twofold.

The first relates to the fact that JSVM [11], the existing ref­

erence open source software for H.264 SVC coding/decoding

released and maintained by the MPEGIITU Joint Video Team,

in its current version (9.15) is not able to decode video

streams affected by out of order, corrupted, or missing NALUs.

However, these issues frequently occur when transmitting SVC

streams over unreliable wireless channels.

The second reason is the lack of freely available H.264 SVC

streaming servers as well as clients (solutions such as those

provided in [12] are restricted). For the case of servers, it is

worth to remark that, to date, the support of H.264 SVC over

the widely used Real-time Transmission Protocol (RTP) is still

work in progress [13]. This may be a reason why, to the best of

our knowledge, no public domain software appears available.

These shortcomings have motivated us to develop, and pub­

licly release an open-source software framework SVEF [14],

aimed at the performance evaluation of H.264 scalable video

streaming. SVEF uses JSVM for H.264 SVC coding/decoding,

but includes additional software to i) support H.264 SVC

36

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on September 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

DID greater than a specific value. For simplicity's sake, we do

not consider Coarse Grain Scalability in the remainder of this

paper. However, extending our work to CGS is straightforward.

Temporal Scalability allows to adapt the video frame-rate.

The TID specifies the temporal-layer of the NALU, i.e., the

"frame-rate sub-stream". A NALU belonging to the temporal­

layer tid > 0 and with qid == 0 depends on NALUs of

temporal layer tid-I, with the same DID and QID parameters.

Following this rule, a frame-rate scaling may be accomplished

by removing NALUs with a TID greater than a specific value.

Medium Grain Scalability (also known as progressive re-

finement) allows the adaptation of video quality. The video

should be encoded with a set of quality enhancement sub­

streams, called quality-layers. Adding a quality layer reduces

the encoding quantization error, and thus improves the PSNR.

The QID parameter identifies the quality layer to which a

NALU belongs. A NALU belonging to quality layer qid > 0

depends on NALUs belonging to quality layer qid -1, having

the same DID and TID parameters. Following this dependency

rule, quality scaling may be achieved by removing NALUs

with a QID greater than a specific value.

Overall, with reference to temporal and medium grain scal­

ability, the dependency rules can be summarized as follows,

where the arrows have the meaning of "depends on":

video streaming over IP, through encapsulation of NALUs in a

simplified RTP structure, and ii) support receiver side decoding

and reproduction of an SVC stream affected by arbitrary

NALU losses and playout delay constraints. The latter is done

in an offline fashion, over a raw NALU trace received at the

client. The same uncompressed video that would have been

displayed by a real video player client at the user side is, in

SVEF, obtained through post-processing of the raw NALU

trace, and subsequent application of i) a Filter for NALU

decoding dependency and playout delay checking, ii) a custom

method to extract and decode the resulting video stream, and

iii) an offline Filler devised to provide a simple form of error

concealment.

An important part of this paper is dedicated to the ap­

plication of the SVEF evaluation framework in a proof-of­

concept scenario of SVC delivery over a Wireless LAN hot­

spot 1. In addition to showing the benefits provided by a cross­

layer NALU scheduler running in a middlebox placed at the

boundary of the WLAN domain, such an example scenario

allows us to i) describe supplementary techniques employed

in SVEF for solving practical problems such as fragmentation

of large NALUs, and ii) present an example performance as­

sessment. This performance evaluation is based on the metrics

of luminance PSNR (Peak Signal-to-Noise Ratio) and number

of lost video frames with respect to the unencoded video file,

as well as a novel performance metric called transmission

efficiency, devised to quantify the usefulness of the packet

transmission process.

(tid> 0,

(tid ~ 0,

qid == 0)
qid > 0)

(tid - 1,

(tid,

qid == 0)
qid - 1)

II. H.264 SVC BACKGROUND

An H.264 SVC stream is defined as a sequence of NALUs.

A NALU is composed of a header and a payload carrying,

partially or entirely, an encoded video frame. The NALU

header contains information about the type of data and its

relevance in the decoding process. From the information

reported in the NALU header (for full details see [5], [6]), we

are specifically interested in three parameters: dependency_id

(DID), temporal_id (TID), and quality_id (QID). Each parame­

ter determines a specific scalability feature. DID allows Coarse

Grain Scalability, TID allows Temporal Scalability, and QID

allows Medium Grain Scalability.

Coarse Grain Scalability (CGS) provides the ability to

coarsely adapt video properties, e.g., the video's spatial

resolution from CIF to 4CIF. The video should be en­

coded with a suitable set of coarse enhancement sub-streams,

called dependency-layers. The DID parameter identifies the

dependency-layer to which a NALU belongs. The decoding of

a NALU having did> 0 depends on NALUs belonging to the

dependency-layer did - 1, and having the same value for the

TID and QID parameters. Following this dependency rule, we

can coarsely reduce video quality by removing NALUs with a

1We remark that the usefulness of the SVEF framework is not limited to
the Wireless LAN application that we consider here; as a matter of fact it
can be used for several other networked applications. For instance, SVEF
can be used to evaluate the performance of overlay multicasting for video
applications, where overlay nodes implement cross-layer scheduling

978-1-4244-4671-1/09/$25.00 ©2009 IEEE

III. THE SVEF EVALUATION FRAMEWORK

SVEF is meant to reproduce a distribution chain formed

by three actors: streaming server, middlebox and receiver. All

actors are connected by an IP network.

Figure 1 shows the structure of SVEF with interactions

between single tools and data flows depicted as arrows. The

software modules inherited from the JSVM package [11] are

represented in grey. The whole process, from the encoding of

the original video source to the evaluation after the streaming

over a network can be summarized in four steps, better detailed

in the following sub-sections:

1) A YUV video is encoded in H.264 SVC format through

the JSVM Encoder. The encoded video and its NALU­

trace are transferred to the Streamer.

2) The encoded video is transmitted over the IP network

by the Streamer, at a fixed frame-rate.

3) In presence of a middlebox, the video NALUs first enter

a cross-layer scheduler and then the NALUs are for­

warded to the receiver (for example through a wireless

link).

4) The Receiver generates in real time a trace of the re­

ceived NALUs. At the end of the streaming process, the

received NALU trace is processed to produce a YUV file

(filtered- YUV video) characterized by missing frames

due to transmission losses, unsatisfied decoding de­

pendencies or excessive delay. The filtered- YUV video

is processed to achieve a simple error concealment,

37

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on September 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

obtaining a final-YUV video with the same number of

frames as the original video.

A. Video Encoding

We use raw video files stored in the standard YUV format.

Video sources are encoded in the H.264 SVC format through

the JSVM Encoder. Currently, the framework supports SVC

with a single dependency layer and an arbitrary number of

quality enhancement layers. From the resulting H.264 encoded

video file, we generate an original NALU trace file through the

JSVM BitStreamExtractor tool. This trace contains for each

NALU the entry shown in Figure 2, where mem- of fs et rep­

resents the memory offset from the beginning of the encoded

video file up to the current NALU, NALU- si z e represents

the length of the current NALU and Frame-Nu mber is the

number of the video frame to which the NALU belongs. This

latter parameter is not provided by JSVM BitStreamExtractor.

For this purpose we developed the F-N Stamp module.

B. The Streamer

The Streamer transfers the NALUs over an IP network by

parsing the NALU trace and loading data from the H.264 file.

For each entry in the NALU trace file, the streamer seeks

and loads the corresponding NALU from the H.264 file. This

NALU constitutes the payload of a custom layer-S packet,

whose header (see Figure 3) resembles the RTP [13] header,

as both have the same size (including payload header). Hence

the Streamer feeds the network with packets that have the same

length as if a real RTP stack was used. Moreover, with respect

to RTP, the custom layer-S header does not add information

that may improve the cross-layer scheduling process, but

simply exploits the DID, TID, and QID parameters that are

also contained in the RTP payload header. We choose to use

a custom header, because we make use of the mem-o f f set

information in the generation of the "filtered H.264 video file"

described in section III-D.

A layer-S packet is entirely encapsulated in a UDP packet,

which in turn is encapsulated in a set of IP packets. For the

Streamer design, we had to choose where to fragment large

NALUs to fit into network packets . The two options were

fragmentation at the IP layer or at the RTP layer. Fragmen­

tation of IP or RTP packets is similar, with the additional

limitation that UDP imposes a maximum payload size of

64 kbytes. Moreover, the NALU SVC header is considered

as RTP payload and is thus carried only by the first IP

fragment. This means that to perform a cross-layer NALU­

based scheduling , a complete reconstruction of the NALU is

necessary, both in case of IP or RTP fragmentation.

To limit the programming effort, we choose to fragment at

the IP layer, as IP fragmentation/reassembly is a native feature

of the Linux kernel. Thus, the Streamer cannot transfer NALUs

with a length exceeding 64 kbytes . When some NALUs exceed

this threshold, it becomes necessary to re-encode the video

enabling the generation of two or more slices per frame.

978-1-4244-4671 -1/09/$25 .00 ©20091EEE

Fig. I. Software Chain

38

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on September 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

IPROUTE2

SCHEDULER @ C(t)

our framework reproduces such a chain of client-side opera­

tions based on three tools: NALU-Receiver, NALU-Filter and

Frame-Filler.

The NALU-Receiver represents the network end-point. It

decodes and writes in real time the layer-5 headers of the

received packets, thus building a client-side (received) NALU

trace file. Moreover, the NALU reception times are recorded

through time-stamps .

The NALU trace file is then passed to the NALU-Filter

tool that: i) reorders the NALUs according to the sending

order, ii) removes NALUs received after the play-out buffer

deadline and, iii) removes NALUs with unfulfilled decoding

dependencies. The latter cannot be decoded and, moreover,

are not handled properly by the current version (v 9.15) of the

JSVM Decoder.

The NALU reordering is performed by the NALU Filter on

the mem-offset field's basis.

To discard NALUs because of excessive delay, the NALU

Filter computes a NALU's expected reception time from

first NALU's reception time to and frame-rate f as follows:

to + f*frame-number. When the difference between the

reception time and the expected time exceeds a specific play­

out delay, the NALU is deleted from the NALU trace file.

After the removal of NALUs with eccessive delay, the

NALU Filter discards those NALUs for which the decoding

dependencies described in section II are not satisfied (i.e., if a

NALU y depends on NALU x and NALU x is not available

in the NALU trace-file, then NALU y is deleted).

The resulting (filtered) NALU trace-file is used as a "map"

pointing out which NALUs of the original H.264 video file

are effectively decoded at the receiving side. We use this

map and the original H.264 video file as input to the JSVM

BitStreamExtractor tool to obtain a (filtered) H.264 video file.

In essence, this is a NALU-subsampled version of the original

video file, corresponding to what a hypotetical H.264 SVC

client would have decoded and displayed in real time. Then

this filtered H.264 video is handed to the JSVM Decoder,

which generates a video in uncompressed YUV format.

The filtered YUV video has, in general, fewer frames than

the original YUV video because of missing base-layer NALUs.

In order to properly compute the PSNR, the Frame-Filler has

to conceal the missing frames by copying the previous frame.

Missing frames are identified through the frame-number

field of the filtered NALU trace.

IV. PERFORMANCE PARAMETERS

Currently, SVEF measures the following performance pa-

rameters :

I) number of lost frames,

2) frame-by-frame PSNR, and

3) transmission-efficiency.

The number of lost frames is computed by the Frame­

Filler, and the frame-by-frame PSNR is obtained using the

JSVM PSNR tool, fed with the original YUV video and the

error-concealed YUV video. We report below the definition of

Pre-routing Chain

UP_Conntrack)
......~

IP

Fragments

Post-routing Chain

0 31

DID I TI D I QI D I fl a gs

mem- o f fse t

NALU-s ize I Fr a me-num

D. Receiver-side Tools

This section describes the tools used at the client side to

reproduce a YUV video equivalent to the one that would have

been displayed by an H.264 SVC video player. We expect the

client to receive the NALUs and dejitter and order them in

a play-out buffer, which synchronously provides NALUs to

the decoder. The decoder is expected to appropriately discard

the NALUs with unsatisfied dependencies (see section II)

and also to conceal missing frames. We now describe how

Fig. 4. The Middlebox

When the IP fragments reach the ingress interface, they

are reassembled into whole IP packets. For this purpose, the

IP30nntrack module of the Linux Kernel is used. When an IP

packet (i.e., a NALU) is fully reconstructed, it is transferred to

an Intermediate Queue device (IMQ) by means of an Iptables

jump. On the IMQ egress we can enforce a custom scheduling

policy, taking care that the overall output bandwidth C is equal

(or smaller) to the one available on the following network path.

Obviously, if this capacity varies over time, the scheduler has

to be timely informed by an additional module. The scheduler

can operate in a "cross-layer" fashion, since it is able to

classify traffic according to the (DID, TID, QID) information

contained in the RTP payload header, or in the custom layer-5

header. After exiting the scheduler, the IP packets return to

the routing decision module and are fragmented again.

Finally, we observe that the streamer transmits only NALUs

of type "SliceData", while the H.264 "ParameterSet" and

"StreamHeader" NALUs are provided to the receiver off-line.

C. The Middlebox

The SVEF Middlebox is devised upon a Linux OS to

perform cross-layer scheduling. Figure 4 shows the middlebox

architecture that we have designed .

Fig. 3. Layer-5 header

me m o ff s et NAL U size DID T I D QID Frame Number

Fig. 2. NALU-trace entry

978-1-4244-4671 -1/09/$25 .00 ©2009 IEEE 39

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on September 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

PSNR for frame number n:
TABLE I

VIDEO TEST-S EQ UEN CE PARAM ET ERS

Highest priority

Lowest priority

Queue priority

32

n = 5qid + tid

Fig. 6 . The Cross-Layer Scheduler

NALU mapping on queues

o

I = NAlU depend ency

pri x = priority queue ass ociated to NALU (110 ,QI0)

o

QID

2

1) efficient usage of the wireless resource by avoiding

the transfer of NALUs that cannot be decoded by the

receiver because of unsatisfied dependencies;

2) smooth adaptation of the video quality versus changes

in the available capacity C or the offered load of the

video traffic.

These two goals can be accomplished through a priority

queuing discipline (with an overall output rate equal to C) ,

dedicating a separate queue to each possible TID-QID com­

bination. Considering that the default range for TID values

is from 0 to 4, and considering two additional enhancement

quality-layers (i.e., QID values in the range from 0 to 2),

5 x 3 = 15 limited-size queues were deployed. Queue #0

has the highest priority and queue #14 has the lowest one,

as shown in Figure 6. With such a discipline, an incoming

NALU is delivered to queue #n according to the following

classification rule:

This ensures that an incoming NALU x will have a lower

service priority than the NALUs it depends upon (first goal) .

Moreover, if congestion occurs, the NALUs belonging to

higher quality layers will be discarded first, and only after­

wards will the NALUs of the base layer be dropped (second

goal).

We use a 10 seconds clip of a publicly available 4CIF YUY

video (soccer game) at 30 fps. By concatenating 5 repetitions

of the video, a 50 second video sequence is generated and then

encoded in H.264 SYC format with JSYM, enabling Medium

Grain Scalability with three quality-layers (base-layer BL and

two enhancement layers MG 1 and MG2) . The resulting video

parameters are summarized in Table I.

A first user starts retrieving the video stream at time O. Then,

a new user arrives every 8 seconds (240 frames) and begins

to download the same video stream. Performance parameters

are measured on the first user and the play-out delay is fixed

to 5 seconds .

Figure 7 shows the Y-PSNR (luminance) over time with and

without scheduler. The PSNR is compared with two reference

Experimental testbedFig. 5.

PSNR(n)dB =

In the middlebox we have devised a cross-layer scheduler

with the following goals:

1 ",Ncol ",Nro w [y: (n i j) - YD(n i j)J2
N colNrow Ut=O 6J=0 S " , ,

If k is the number of bits per pixel (considering only the

luminance component) we have Vpeak := 2
k

- 1. The part

under the fraction line is the mean square error (MSE)

computed from the luminance components Ys and YD of the

source image S and of the destination image D.

The transmission efficiency (TE) is defined as the ratio of

the number of NALUs received by the client which can be

usefully decoded (NALusejul) to the total number of received

NALUs (N ALreceived)'

T E = N ALusej ul

N ALreceived

This measure represents the efficiency of the overall stream-

ing process in exploiting the communication resources. A

low transmission efficiency means that most of the received

NALUs are useless, and thus their transmission only wasted

communication resources. Without a scheduler, NALUs are

lost at random and this leads to a considerable number of

unsatisfied dependencies at the receiving side and a low

transmission efficiency. Conversely, a well-devised cross-layer

scheduler should substantially improve the transmission effi­

ciency.

V. USAGE OFTHE FRAMEWORK IN A WLAN SCENARIO

We evaluate the performance of a simple, effective cross­

layer scheduler in a WLAN scenario as depicted in Figure 5.

All the stations experience optimal channel conditions and the

PHY WLAN bitrate is set to 11 Mbps. Under these conditions

we measure a maximum UDP bitrate of about 6.3 Mbps . To

fully control the packet losses in the middlebox, we throttle

its output bandwidth C to 6.0 Mbps (see section III-C). Using

this technique, the middlebox becomes the virtual bottleneck

(YBN) of the communication path and thus no packet loss

occurs on the wireless interface (e.g., no overflow of the AP's

buffer occurs). The online estimation of C is a fundamental

functionality of the middlebox. However, in this paper we

are only interested to demonstrate the validity of our SYC

streaming framework by means of a cross-layer scheduler in

the middlebox. The run-time estimation of C has been dealt

with in the literature [15] [16] [17].

978-1-4244-4671 -1/09/$25 .00 ©2009 IEEE 40

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on September 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

50 r--r== = = = = = = ===;,--------,--------r"""]

TABLE II

S UMMARY PERFORMA NCE

Fig. 7. Y-PSNR of received SVC streams, with and without scheduler, over
a mixed network including a WLAN at 11 Mbps

share a wireless medium, the available bandwidth changes

with the number of users. An evaluation framework is a

fundamental instrument to fine tune the encoding parameters

and the scheduling technique in a specific service environment.

We provide it as a set of open-source tools and assess its

effectiveness in evaluating the performance of a cross-layer

scheduler in a WLAN hot-spot scenario.

ACKNOWLEDGMENT

The author Andrea Detti has been founded by the Italian re­

search program PRIN 2007 within the "SORPASSO" project.

REFERENCES

[I] IEEE Standard 802.11-2007, IEEE Standard for Information technology

- Telecommunications and information exchange between systems ­
Local and metropolitan area networks-Specific requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications; June 2007.
[2] K. Ramachandran, H. Kremo, M. Gruteser, P. Spasojevic, I. Seskar, "Scal­

ability Analysis of Rate Adaptation Techniques in Congested IEEE 802.11
Networks: An ORBIT Testbed Comparative Study", IEEE WoWMoM

2007.
[3] Chuan Heng Foh, Yu Zhang, Zefeng Ni, Jianfei Cai, King Ngi Ngan,

"Optimized Cross-Layer Design for Scalable Video Transmission Over
the IEEE 802.lle Networks", IEEE Transactions on Circuits and Systems

for Video Technology, Volume 17, Issue 12, Dec. 2007
[4] M. van der Schaar, S. Krishnamachari, Choi Sunghyun, Xu Xiaofeng,

"Adaptive cross-layer protection strategies for robust scalable video

transmission over 802.11 WLANs", IEEE Journal on Selected Areas in
Communications , Volume 21, Issue 10, Dec. 2003, pp. 1752-1763

[5] ITU-T recommendation H.264: Advanced video coding for generic au­

diovisual services, International Telecommunications Union, November

2007.
[6] R. Kuschnig, I. Koller, M. Ransburg, H. Hellwagner, "Design options

and comparison of in-network H.264/SVC adaptation", Journal of Visual
Communication and Image Representation, Volume 19, Issue 8, Decem­

ber 2008, pp. 529-542.
[7] H. Liqiao, D. Raychaudhuri, Liu Hang, K. Ramaswamy, "Cross layer

optimization for scalable video multicast over 802.11 WLANs", 3rd IEEE

Consumer Communications and Networking Conference, Jan. 2006
[8] Y. P. Fallah, P. Nasiopoulos, H. Alnuweiri, "Efficient Transmission of

H.264 Video over Multirate IEEE 802.1Ie WLANs", EURASIP Journal

on Wireless Communications and Networking, Volume 2008
[9] I. Koller,M. Prangl, R. Kuschnig, H. Hellwagner, "An H.264/SVC-based

adaptation proxy on a WiFi router", Proceedings of the 18th ACM

International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), Braunschweig, Germany, May
2008, pp. 63-68.

[10] M. Eberhard, L. Celetto, C. Timmerer, E. Quacchio, H. Hellwagner,

F.S. Rovati, "An interoperable streaming framework for Scalable Video
Coding based on MPEG-21", 5th International Conference on Visual

Information Engineering, Aug. 2008. VIE 2008, pp.723-728
[1I] Joint Scalable Video Model - reference software:

http://ip.hhi.de/imagecom_G I/savce/downloads/SVC-Reference­

Software.htm
[12] Th. Zahariadis, "ASTRALS Project presentation", !BC 2007, Amster­

dam, September 2007

[13] S. Wenger, Y.-K. Wang, T. Schierl, and A. Eleftheriadis, "RTP payload
format for SVC video", Internet Draft, draft-ietf-avt-rtp-svc-l Z, February
2009, work in progress.

[14] SVEF - reference software:

http://netgroup.uniroma2.itlAndrea_DettilSVCEvaIFrame/
[15] H. K. Lee, V. Hall, K. H. Yum, K. Kim, E. Kim, "Bandwidth estimation

in wireless lans for multimedia streaming services", IEEE International
Conference on Multimedia and Expo (fCME), 2006.

[16] M. Neilsen, K. Ovsthus, and L. Landmark, Field trials of two 802.11

residual bandwidth estimation methods, IEEE International Conference
on Mobile Adhoc and Sensor Systems (MASS), 2006.

[17] C. Sarr, C. Chaudet, G. Chelius, and I. Lassous, "A node-based available
bandwidth evaluation in ieee 802.11 ad hoc networks", l l th International
Conference on Parallel and Distributed Systems (fCPADS), 2005.

4840

5V5V4V3V

16 24 32
Time (sec.)

2V

8

, - , - ,without sched

1 V

Scenario TX # Missing Average
Efficiency Frames PSNR

with sched 100.00 % 0/1490 34.67

no sched 54.64 % 941/1490 22.52

curves: i) the ideal PSNR (top curve labeled "all layers") of

the stream for the case of no NALU loss, where the resulting

PSNR depends only on the degradation due to the encoding

process, and ii) the PSNR provided by the base layer only

(labeled "base layer"), assuming that all base layer NALUs are

received and all NALUs of other layers are dropped. Figure 7

confirms that the delivery performan ce of H.264 SVC is poor

without cross-layer scheduling , i.e., when MAC frames, and

as a consequence NALUs, are dropped randomly due to the

overloading of the AP buffer. The resulting video frequently

"freezes" due to frames lost, and therefore, the overall video

quality is unacceptable. With an average total video rate of

2.86 Mbps, this happens when three streams are delivered.

The PSNR does not degrade further when additional streams

are admitted. This is due to the fact that the PSNR given

by the comparison of two random frames from the same test

sequence is around 15 dB, as confirmed by further experiments

(not shown here). Thus, this is the lowest PSNR value that we

can expect.

In Table II, we provide some summarizing results on the

delivery efficiency for the previously described experiments.

The most interesting result is that the transmission efficiency

of the considered scheduler is 100%. Without the scheduler,

transfer efficiency is very poor. The column reporting the

number of missing video frames gives an estimate of the

perceived quality of the final video stream (refer to the web

site [14] for a visual comparison of the actual streams).

VI. CONCLUSION

H.264 scalable video coding is a highly interesting for video

streaming services, especially when the bandwidth available

to a stream is variable over time. For instance, when users

978 -1-4244-4671-1/09/$25.00 ©2009 IEEE 41

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on September 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

