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Abstract

There is a lack of approaches for identifying pathogenic genomic structural variants
(SVs) although they play a crucial role in many diseases. We present a mechanism-
agnostic machine learning-based workflow, called SVFX, to assign pathogenicity
scores to somatic and germline SVs. In particular, we generate somatic and germline
training models, which include genomic, epigenomic, and conservation-based
features, for SV call sets in diseased and healthy individuals. We then apply SVFX to
SVs in cancer and other diseases; SVFX achieves high accuracy in identifying
pathogenic SVs. Predicted pathogenic SVs in cancer cohorts are enriched among
known cancer genes and many cancer-related pathways.

Background

Large-scale whole-genome sequencing is providing high-resolution maps of genomic

variation in various disease-specific studies [1–4]. These studies have created extensive

catalogs of genomic alterations that comprise single-nucleotide changes [single-nucleo-

tide variants (SNVs) or single-nucleotide polymorphisms (SNPs)], insertions and dele-

tions (indels, ranging between 1 and 50 bp), and structural variants (SVs, exceeding 50

bp). SVs are often classified as imbalanced or balanced based on their effect on the

copy number profile. Imbalanced SVs result in copy number changes through large de-

letions, duplications, or insertions. In contrast, balanced SVs (such as translocations

and inversions) do not alter the copy number profile of an individual. Despite their

lower frequency, SVs contribute more nucleotide-level changes than the aggregated

frequency of SNVs/SNPs and indels [5].

Due to their large size, SVs play a vital role in the progression of various diseases, in-

cluding cancer, intellectual disabilities, and neurodegenerative diseases [4]. In the context

of cancer, these rearrangements often lead to the removal or fusion of genes and their

cis-regulatory elements, thereby disrupting essential functions, including cell growth, dif-

ferentiation, signaling, and apoptosis [6]. Despite their important roles in various diseases,

ascertaining the pathogenicity and establishing mechanistic links between SVs and
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disease progression remain challenging [7]. These challenges are exacerbated by difficul-

ties associated with the accurate identification of SVs and their precise breakpoint [8].

Prior studies aiming to quantify the pathogenicity and ascertain the roles of genomic vari-

ations in disease have primarily been limited to point mutations and small indels [9–13]. In

contrast, only a handful of studies have sought to evaluate the molecular consequences of

SVs [14]. Initial attempts to characterize the molecular impact of SVs were limited to anno-

tating genes that overlap with germline SVs, without assigning pathogenicity scores. A re-

cent study [14] leveraged genome-wide per-base pathogenicity scores [9] (initially designed

for measuring the impact of single-nucleotide changes) to assign impact scores for germline

SVs. Despite these early efforts, there is a clear need for a systematic framework to clarify

the molecular and functional consequences of SVs and their roles in human disease.

To address this challenge, we present an integrative supervised machine learning frame-

work (SVFX) to assign pathogenic scores to somatic and germline SVs. We hypothesized

that the underlying genomic and epigenomic features of pathogenic SVs are very different

from those of benign SVs. Moreover, we expected that these differences could be sensi-

tively detected only in a tissue-specific context. Thus, we built machine learning models

that assign a pathogenic score by comparing the genomic and tissue-specific epigenomic

features of a given SV with those of known benign SVs. Our framework is highly flexible

and can be applied to identify pathogenic somatic and germline SVs in cancer as well as

other diseases. Toward this end, we utilized high-quality somatic and germline SV data

from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Project [15], Genome Se-

quencing Program (GSP), ClinVar database [16], Genome Aggregation Database (gno-

mAD) [17], and 1000 Genomes (1KG) Project [5, 18] to train our machine learning

models. Additionally, we employed tissue-specific epigenomic data from the Epigenome

Roadmap [19], various genomic element annotations [20, 21], and cross-species conserva-

tion metrics [22] to build our machine learning models.

Overall, our approach achieved high accuracy in discriminating pathogenic somatic

SVs from benign variants for large deletions (mean area under the curve [AUC] of

0.865) and duplications (mean AUC of 0.835) across multiple cancer types. Addition-

ally, our germline models attained good accuracy in identifying pathogenic germline

SVs in cancer, ClinVar, cardiovascular (CVD), and inflammatory bowel disease (IBD)

cohorts. In particular, in cancer genomes, our somatic model identified pathogenic de-

letions and duplications that are enriched among key pathways and biological pro-

cesses, including cell cycle regulation, cell differentiation, and signal transduction.

Additionally, for somatic models in which we excluded conservation and known cancer

gene annotations as features, we found that high-scoring (pathogenic) SVs tend to in-

fluence highly conserved regions of the genome and are enriched among known cancer

genes. This observation provides further evidence for the robustness of our approach in

identifying pathogenic SVs. Finally, we annotate and discuss examples of somatic and

common disease SVs that we identified as highly pathogenic using our method.

Results

Training dataset and SV impact workflow

For each disease cohort, we built separate somatic and germline models. In the somatic

SV models, the training sets consisted of cancer and control (i.e., benign SVs from the
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1KG project) SVs (Fig. 1a). For the germline cancer model, we subsampled germline

SVs for each cancer cohort such that the number of germline SVs in the disease set

matched that of the common SVs (global allele frequency > 0.5%) in the 1KG SV data-

set [5]. Additionally, the CVD cohort in our study had a unique advantage of being a

careful case-control study. Thus, instead of using common 1KG SVs as benign variants,

Fig. 1 Machine learning-based workflow of SVFX to identify pathogenic SVs. The original SV dataset

consists of disease/case and control SVs. In our somatic model, disease SVs correspond to somatic SVs
found in a cancer cohort and control SVs correspond to SVs found in the 1KG SVs. We randomly select SVs
from the 1KG SV dataset such that the number of somatic SVs and control SVs matches. Similarly, for our

germline model, we have (1) disease germline SVs identified in a specific disease cohort and (2) control SVs
that correspond to common SVs in the 1KG SV dataset. For both germline and somatic models, we
generate 1000 random iterations of the original disease and control dataset. These permuted SVs are later

utilized for generating a Z-score-normalized feature matrix
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we utilized common SVs belonging to the control group from this study as the benign

SV dataset. For the IBD cohort model, we used common SVs belonging to the

gnomAD-SV database as the benign SVs. Finally, we utilized likely pathogenic SVs and

benign SVs from the ClinVar database to train our ClinVar model.

Previous studies [23–26] have shown that the distribution of somatic and germline

SVs depends on a complex interplay among different mechanistic biases, originating

from underlying chromosome conformations [25], DNA accessibility [24, 27], func-

tional embedding [5], methylation profiles [26], and cross-species conservation. For in-

stance, disease SVs disrupt topologically associated domains (TADs) that influence the

gene-enhancer interaction, leading to various diseases [25]. Similarly, the methylation

status [26] and DNA accessibility [27] of genomic regions have been previously associ-

ated with the emergence of somatic and germline SVs. Furthermore, the disruption of

coding and noncoding genomic elements—including promoters, untranslated regions

(UTRs), and enhancers—along with the disruption of highly conserved genomic regions

is likely to play a critical role in disease progression [5]. Despite these strong correla-

tions, the exact mechanism by which a pathogenic SV drives disease progression re-

mains elusive for many diseases. Thus, in this work, we adopted a data-driven approach

in which we built agnostic machine learning models, incorporating various genomic

and epigenomic features underlying SVs. Further, we hypothesized that the genomic

and epigenomic profiles of pathogenic SVs are highly distinct from the profiles of be-

nign SVs.

Accordingly, we built feature matrices for our somatic and germline models,

where each row corresponded to an SV and each column to a distinct feature.

These feature matrices consist of important epigenomic features, including average

histone mark signals, methylation levels, CTCF signals, open chromatin marks, and

replication timing data, that overlap with SVs in the disease and benign datasets

(Additional file 1: Table S1). Furthermore, we integrated relevant genomic element

annotations, including the fraction of overlap between SVs and the coding region,

3′ and 5′ UTRs, splice sites, and promoter regions of genes in the human genome.

The feature matrices also captured additional annotations, including TAD boundary

definitions, heterochromatic regions, fragile sites, sensitive sites, and ultra-

conserved regions in the genome (Fig. 1b).

As a unique challenge in feature-based representation, SVs exhibited an apparent

disparity in their length distributions in disease cohorts (particularly somatic co-

horts) and in the 1KG dataset (Additional file 2: SI Fig. S1). These differences in

length distributions for disease and benign SVs may implicitly influence various

feature values. Thus, to avoid any bias in the training features, we uniformly shuf-

fled the SVs in the disease cohorts and in the benign SV dataset to generate null

distributions of feature values (Fig. 1c). We next utilized these shuffled SVs to

transform each feature value in the original feature matrices (consisting of disease

and benign SVs) to obtain Z-score-normalized feature matrices using the null dis-

tribution of each corresponding element (Fig. 1d). While Z-score-based

normalization compensates for the length bias, we sought to ensure that our

models assign high pathogenic scores to extremely long SVs, such as chromosomal

arm-level variants. Thus, we appended the length of each SV as an explicit feature

in our Z-score-normalized feature matrices.
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For each disease cohort, we utilized these updated Z-score-normalized feature matri-

ces to train supervised machine learning models using random forests for somatic and

germline SVs separately (Fig. 1e). Finally, we validated these trained models using ten-

fold cross-validation and a holdout test dataset for each cohort.

Accuracy assessment of somatic cancer models

We applied our method to quantify the pathogenic scores of somatic SVs in six

different cancer cohorts, including breast, ovarian, liver, esophageal, stomach, and

skin cancer. We selected these cohorts because tissue-specific epigenomic data

were available and because these cancer types exhibit a significant number of SVs,

which are needed for training and testing the model. Subsequently, we evaluated

whether these models could distinguish pathogenic somatic SVs from benign SVs.

Intuitively, one would expect our somatic model to assign high impact scores to

cancer SVs and low pathogenicity scores to benign 1KG SVs. Moreover, we would

expect SVs with high pathogenic scores to act as cancer drivers, whereas low-

scoring SVs are likely to be passengers with little or no consequence on tumor

progression. We quantitatively assessed this hypothesis using tenfold cross-

validation and a holdout test dataset for each cancer cohort. Briefly, we measured

the average areas under the receiver operator characteristic (auROC) and the

precision-recall (auPR) curves.

Overall, our somatic models for both deletions and duplications performed very well.

For somatic deletions with the tenfold cross-validation strategy, the mean auROC and

auPR values across all six cancer types were 0.861 and 0.892, respectively (Fig. 2a, Add-

itional file 2: SI Fig. S2a). Furthermore, the mean auROC and auPR values for the som-

atic duplication models across the six cancer cohorts were 0.835 and 0.87, respectively

(Fig. 2b, Additional file 2: SI Fig. S3a). In addition to tenfold cross-validation, we

assessed the performance of our somatic deletion and duplication models in a hold-

out test dataset. Overall, we observed comparable performance, with average auROC

values of 0.865 and 0.835 across the six cancer types for deletions and duplications, re-

spectively (Fig. 2c, d). The average auPR values for the holdout test data were also very

similar to those for tenfold cross-validation. Our models achieved mean auPR values of

0.87 and 0.89 across the six cancer types for deletions and duplications, respectively

(Additional file 2: SI Fig. S2b & S3b). Furthermore, we quantified the pathogenic score

for large deletions and duplications that are predicted to be driver events on a pan-

cancer level using a recurrence-based analysis [28]. As expected, our workflow assigned

a high pathogenic score (average score greater than 0.85 across different somatic

models) to each putative driver event (Additional file 1: Table S2). We note that, to a

certain extent, the use of Z-score-normalized feature matrices helped us avoid implicit

bias in our somatic models due to differences in the length distribution of cancer-

associated and 1KG SVs. However, we also included the SV length as an explicit feature

in our final somatic models to assign high pathogenicity scores to extremely large SVs,

such as chromosomal arm deletions and duplications. The inclusion of SV length as an

explicit feature can potentially bias the predictive performance of our model. Thus, we

quantified the predictability differences for the original models when the SV length was

removed as a feature. Overall, we found that the AUC value was 3% lower, on average,
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for truncated somatic models that lacked SV length as a specific feature (Additional file

2: SI Fig. 4).

Finally, we evaluated the contribution of each feature to the performance of our som-

atic deletion and duplication models. We observed that SV length and overlap with

ultra-conserved regions were the most significant contributors to the predictive per-

formance of the model (Additional file 2: SI Fig. S5). Additionally, the predictability of

the somatic deletion models depended on other noncoding and epigenomic features,

including overlap with 3′ and 5′ UTRs, sensitive regions, and H3K4me3 signals, sug-

gesting an essential influence of SVs on cis-regulatory elements. Similarly, the predict-

ive performance of the somatic duplication models primarily depended on an overlap

with known cancer genes, heterochromatin annotation, UTRs, and sensitive regions

(Additional file 2: SI Fig. S6).

Accuracy assessment of germline cancer models

In addition to somatic models, we built germline SV models to identify pathogenic

germline SVs in six cancer cohorts. We assessed the predictive accuracy of our germ-

line models in cancer cohorts using tenfold cross-validation and a holdout test dataset.

Similar to the somatic deletion models, we observed good performance for our germ-

line deletion models in the cancer cohorts. For tenfold cross-validation, the mean

auROC and auPR values across the six cancer types were 0.79 and 0.74, respectively

(Additional file 2: SI Fig. S7a & S8a). Additionally, we observed similar auROC and

auPR values among the different cancer types. Among our test datasets, the average

auROC and auPR values across the different cancer cohorts were approximately 0.8

and 0.75, respectively (Additional file 2: SI Fig. S7b & S8b). We note that the ovarian

cancer cohort primarily drove the slight improvement of the model in the test dataset,

Fig. 2 Performance evaluation for somatic models to predict pathogenic SVs in various cancer types. This

figure presents area auROCs based on the validation datasets for large deletions (a) and duplications (b) in
six different cancer cohorts including breast adenocarcinoma (BRCA), esophageal carcinoma (ESCA), liver
(LIHC), ovary (OV), skin melanoma (SKCM), and stomach (STAD) cancers. Similarly, auROC plots are shown

for test datasets associated with large deletions (c) and duplications (d) in six different cancer cohorts.
Finally, auROC plots are shown for pathogenic SVs in the validation (e) and testing dataset (f) in the ClinVar,
CVD, and IBD cohort datasets
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with auROC and auPR values of 0.86 and 0.84, respectively (Additional file 2: SI Fig.

S7b & S8b).

Similar to the somatic models, we quantified the prediction contribution for each fea-

ture in our cancer germline deletion models. We observed that the SV length had the

greatest contribution to our cancer germline predictions. Additionally, we found sub-

stantial contributions from sensitive regions, cancer gene overlap, H3K9me3, and 3′

UTR overlap features (Additional file 2: SI Fig. S9).

Accuracy assessment of germline models for common and rare diseases

We note that our current framework is highly flexible and can be easily applied to iden-

tify pathogenic germline SVs for various common and rare diseases. Thus, we applied

our approach to detect pathogenic germline SVs in CVD and IBD cohorts (included in

the GSP [29]). Furthermore, we identified putative pathogenic SVs in the ClinVar SV

dataset, which is enriched with rare disease-associated SVs. Overall, our germline dele-

tion model in the CVD cohort achieved good predictive accuracy for the tenfold cross-

validation approach, with mean auROC and auPR values of 0.77 and 0.74, respectively

(Fig. 2e, Additional file 2: SI Fig. S10a). Similarly, our model performed very well in

identifying pathogenic deletions in the testing dataset for this cohort, with mean

auROC and auPR values of 0.76 and 0.84, respectively (Fig. 2f, Additional file 2: SI Fig.

S10b).

Compared with the CVD cohort, the IBD cohort had fewer deletions. Furthermore,

we utilized large deletions in the recently released gnomAD-SV dataset as a control for

the germline IBD model. Overall, due to the lower number of deletions in our training

and testing datasets, we observed a slight decrease in the performance of our IBD-

specific germline model, which had mean auROC and auPR values of 0.73 and 0.71, re-

spectively, based on the tenfold cross-validation approach (Fig. 2e, Additional file 2: SI

Fig. S11). Our model’s performance on the testing dataset for this cohort was compar-

able, with a mean auROC and auPR value of 0.72 (Fig. 2f, Additional file 2: SI Fig. S11).

Finally, we utilized known pathogenic and benign SVs, as reported in the ClinVar SV

database, to build a clinvar-specific germline model. We note that ClinVar database in-

cludes SVs from a wide range of diseases. Thus, we utilized functional and epigenomics

data from a generic cell line (GM12878) to train our ClinVar germline models. Com-

pared with data for common diseases such as CVD and IBD, the ClinVar SV database

is highly enriched with rare and likely deleterious SVs. Thus, our model achieved near-

perfect accuracy and recall (auROC and auPR values of 0.99) while distinguishing

pathogenic ClinVar deletions and duplications from benign SVs (Fig. 2e, f; Additional

file 2: SI Fig. S12).

Similar to our approach for somatic and germline cancer models, we quantified the

relative contribution of various features to the predictability of our rare and common

disease cohorts. In contrast to our cancer models, we observed that the overlap of SVs

with TAD boundary annotations had the most significant contribution in determining

pathogenicity scores for SVs belonging to the CVD cohort (Additional file 2: SI Fig.

S13). This observation is consistent with previous studies highlighting the role of germ-

line SVs in various diseases through disruption of the three-dimensional genome struc-

ture. We note that TADs are highly conserved across multiple tissues and cell types
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[30]. Thus, upon replacement of the TAD definition (based on a different cell type) in

our original CVD model, we observed a similar contribution of TAD annotation to the

predictability of the modified model (Additional file 2: SI Fig. S14). Similarly, we ob-

served higher contributions from the overlap of CTCF boundaries, sensitive regions,

and SV length to our IBD germline model's predictive performance (Additional file 2:

SI Fig. S15).

Model evaluation: somatic models and gene enrichment analyses

In addition to accuracy assessment, we performed various analyses to investigate the

biological validity and robustness of our approach for quantifying the pathogenicity of

cancer SVs. For instance, we carried out a separate round of investigations in which we

excluded cross-species conservation scores and overlap fractions with ultra-conserved

and sensitive regions from our models. We computed the pathogenic score of each SV

using these modified models and correlated them with the average PhyloP score for

genomic regions overlapping with the SV. Relative to low pathogenic score SVs, som-

atic SVs with higher scores should intuitively overlap with more conserved regions of

the genome. Indeed, we observed that highly pathogenic (SV pathogenic score ≥ 0.9)

deletions and duplications exhibited higher conservation scores compared to benign

deletions and duplications (SV pathogenic score ≤ 0.2). This observation was highly sig-

nificant for both deletions and duplications (Fig. 3a).

Next, we assessed whether our machine learning approach assigns a high pathogenic

score to SVs that are enriched among known cancer genes. As with the analysis de-

tailed above, we excluded the known cancer gene overlap as a feature to generate modi-

fied random forest models for this analysis. We recomputed the pathogenic score for

each SV using these modified models, and then classified SVs as high- and low-

pathogenic SVs based on the thresholds detailed above. Subsequently, we quantified

the enrichment of known cancer genes in the high- and low-pathogenic SV groups. As

expected, we observed more substantial enrichment of known cancer genes among

highly pathogenic deletions and duplications compared to those with lower pathogenic

scores (Fig. 3b). As with our conservation analysis, the differences in enrichment be-

tween these SV groups were highly significant.

Finally, we used our original model to identify highly pathogenic deletions and

duplications (SV pathogenic score ≥ 0.9) on the pan-cancer level. We then identi-

fied all coding genes that entirely or partially overlapped with these pathogenic de-

letions and duplications. Using this overlapping gene list, we performed ontology

and pathway enrichment analysis. We found that pathogenic deletions influence

genes that are enriched for vital biological processes, including signal transduction,

cell cycle progression, post-translational modification, and DNA repair. Pathway-

level analyses indicated that these pathogenic deletions affect critical pathways that

involve Wnt and Ras signaling, cellular senescence, transcriptional regulation, and

ubiquitin-mediated proteolysis (Additional file 2: SI Fig. S16, Additional file 1:

Table S3-4). As an example, we highlight genes that are deleted by highly patho-

genic SVs and are involved in the ubiquitin-mediated proteolysis pathway (Fig. 3c).

Our results are consistent with prior studies that have shown that disruption of

these pathways can drive tumor progression [31].
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Similarly, highly pathogenic duplication influenced genes that are enriched for cell

differentiation, development, signal transduction, and various metabolic processes.

Pathway-level enrichment analysis suggested that such duplicated genes play a pivotal

role in tyrosine receptor kinase signaling, post-translational protein modifications,

membrane trafficking, and the Wnt signaling pathway (Additional file 2: SI Fig. S17,

Additional file 1: Table S5-6). We highlight a set of genes—including those encoding

cadherin, actin, SMAD4, DEP, and TGF beta receptor—that are affected by highly

pathogenic duplication and play a vital role in the adherens junction pathway (Fig. 3d).

The adherens junction pathway maintains homeostatic cell signaling, and its disruption

is known to drive breast cancer progression [32].

Model evaluation: comparison with a previous method and long-read analyses

We also compared our data-driven approach with the prior SVScore method [14] that

assigns deleteriousness scores to SVs by applying a pre-computed base-pair score (mea-

sured for assessing the impact of single-nucleotide changes). We found that our SVFX

method performed significantly better than SVScore in identifying pathogenic SVs in

both somatic and germline contexts. For instance, in our independent testing dataset

for various cancer cohorts, our somatic deletion model had better precision and recall

(average auROC value of 0.84) compared to SVScore (an average auROC of 0.73) across

Fig. 3 Orthogonal biological validations of somatic models in cancer. a This plot presents a mean conservation score

comparison for genomic regions that overlap with predicted highly pathogenic deletions against benign deletions
(left panel) and duplications (right panel) for a model where conservation was excluded from the original model.

b This plot presents cancer gene enrichment values for coding regions that overlap with predicted highly pathogenic
deletions against benign deletions (left panel) and duplications (right panel) for a model where overlap fraction with
cancer genes was excluded from the original model. c Example showing the ubiquitin-mediated proteolysis pathway

that is enriched among genes affected by highly pathogenic deletions on the pan-cancer level. Genes that are
influenced by highly pathogenic deletions in this pathway are highlighted in red. d Example showing the adherens

junction pathway, which is enriched among genes affected by highly pathogenic duplications on the pan-cancer
level. Genes that are influenced by highly pathogenic duplications in this pathway are highlighted in red
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multiple cancer cohorts (Additional file 2: SI Fig. S18a). Similarly, for the germline

ClinVar [16] SV model, our approach showed significantly better performance (auROC

of 0.99) compared to the SVScore method (auROC value of 0.9) in the independent

testing dataset (Additional file 2: SI Fig. S18b). These observations further highlight the

efficacy of our approach for detecting pathogenic SVs.

In recent years, there has been increasing interest in characterizing accurate SV maps

for human genomes using long-read sequencing platforms. Our method is highly flexible

and can be easily applied to SVs identified using long-read sequencing data. Despite the

relative superior performance of long-read sequencing platforms in identifying SVs, we

currently lack a large-scale SV dataset based on these approaches. Thus, as a proof of

principle, we applied our method on deletions identified using long-read sequencing data

for a breast cancer cell line [33] and “benign deletions” identified in healthy individuals

[34]. We note that the number of samples in these datasets is relatively limited. However,

we observed similar performance for our long-read germline deletion model compared to

those using deletions based on short-read sequencing data (Additional file 2: SI Fig. S19).

Overall, for the tenfold cross-validation (auROC value of 0.74) and the holdout testing

datasets (auROC value of 0.7), our model showed good performance.

Case studies highlighting high-impact deletions and duplications

Our machine learning framework can clearly distinguish between pathogenic cancer

SVs and benign SVs. Based on the pathogenicity score, we highlight examples of som-

atic deletions and duplications that are predicted to be highly pathogenic in different

cancer cohorts. Overall, we found that many deletions and amplifications with high

pathogenic scores overlapped with regulatory regions in the genome. To visually in-

spect the effect of these variants, we used the H3K27ac histone modification from mul-

tiple tissues generated by the Roadmap Epigenome Mapping Consortium [19]. This

particular histone modification marks the presence of cis-regulatory elements such as

promoters and enhancers in the genome. We found that these example SVs influence

regulatory elements that are active in multiple tissues, as reflected in the conserved

H3K27ac signal profiles. Presumably, these conserved regulatory elements play an es-

sential role in gene regulation, and thus their disruption through deletion or duplica-

tion is likely to be highly pathogenic. Moreover, we used the Hi-C contact matrix to

inspect the chromatin structure around these deletions and amplifications [35].

As an example, Fig. 4 shows annotation of a high-impact deletion that is also recur-

rent across multiple cancer types. As expected, this particular deletion overlapped with

several noncoding elements, completely engulfing two genes (SYT11 and RIT1) and

partially overlapping with the first exon of another gene (GON4L). The RIT1 gene en-

codes for a protein that plays a crucial role in the RAS/MAPK pathway and regulates

the cellular signals required for cell proliferation and differentiation. The RIT1 gene be-

longs to the RAS family of oncogenes. A previous study [36] reported an association

between RIT1 gene inactivation and lymphoma progression. Similarly, the GON4L

gene is a transcription regulator that plays vital roles in cell division and differentiation.

In particular, GON4L gene-based transcription regulation is essential for B cell devel-

opment and differentiation [37]. Finally, the SYT11 gene encodes a protein that facili-

tates calcium signal-dependent membrane trafficking. In addition to affecting the
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coding regions of these genes, this particular deletion engulfs many cis-regulatory ele-

ments and thus influences their long-range interactions. In particular, we found that a

deleted enhancer disrupts numerous three-dimensional interactions (shown by the Hi-

C contact matrix above) within the vicinity of the locus.

We also describe an example of a highly pathogenic somatic duplication (Fig. 5) that

directly overlapped with the SETD3 gene, a histone methyltransferase that is implicated

in many diseases, including cancers [38]. The SETD3 gene also plays roles in cell cycle

regulation, cell death, and chromosomal translocation [39, 40]. Furthermore, the over-

expression of SETD3 leads to cell proliferation and tumor growth in liver cancer cells

[41]. In addition to SETD3, this particular amplification affects the CCNK gene, which

plays a vital role in transcriptional regulation. The chromatin structure from Hi-C data

showed interactions of the regulatory element affected by this amplification with nearby

genes that include YY1. The YY1 gene plays a dual role in activating and repressing of

a large number of gene promoters. Overall, both of these examples highlight the effi-

cacy of our approach in identifying highly pathogenic SVs. Furthermore, they provide

essential insights into higher-order regulatory interactions that are affected by some of

these variants.

Finally, we present a few examples of highly pathogenic germline deletions in the

CVD and IBD cohorts. For instance, one of the predicted highly pathogenic deletions

in our CVD cohort overlaps with the coding region of the Clcn3 gene, which encodes

the voltage-gated chloride channel protein CLC-3 (Additional file 2: SI Fig. S20). A pre-

vious study showed that the deletion of Clcn3 potentially affects the ion channel in-

volved in cell volume homeostasis, which likely drives the development of myocardial

hypertrophy and heart failure [42]. Similarly, we identified a putative pathogenic

deletion in the IBD cohort that is proximal to the promoters of the SLC23A2 gene

(Additional file 2: SI Fig. S21), which has essential roles in vitamin C metabolism that

Fig. 4 Example of a highly pathogenic cancer deletion that influences coding and regulatory elements in
the genome. This figure presents a highly pathogenic deletion that disrupts entirely or partially the coding
and regulatory regions of three distinct genes: RIT1, SYT11, and GON4L. The regulatory elements are marked

by peaks observed in the histone mark (H3K27ac) signals across multiple tissues. The Hi-C matrix plot shows
the TAD boundaries disrupted by this deletion
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are directly associated with the manifestation of IBD [43]. This deletion overlaps with

weak enhancer sites and boundaries of two large TADs, which can be potentially dele-

terious to the proper regulation of the surrounding genes. These examples further high-

light the ability of our method to detect biologically relevant pathogenic SVs in

common disease cohorts.

Discussion

One of the fundamental goals of population-level [17] and disease-specific [15, 29, 44]

sequencing studies has been to identify causal SNPs and indels in a large pool of candi-

date variants. Such efforts have resulted in multiple tools and metrics to prioritize SNPs

and indels. However, large SVs represent an essential set of variations that influence

the linear as well as the three-dimensional genome structure. These alterations can per-

turb protein-coding regions and cis-regulatory elements alike, and they are often in-

volved in various diseases, including cancer [7]. Despite altering a considerable fraction

of the genome, there have been relatively few systematic studies to prioritize and iden-

tify pathogenic SVs. A lack of such efforts can be partially attributed to challenges asso-

ciated with the accurate identification of SVs and their precise breakpoints using short-

read sequencing technologies [8]. However, with the development of better tools and

methods for SV discovery using short- and long-read techniques [8], we anticipate that

generating a high-resolution map of genomic rearrangements will soon become routine.

Thus, new methodologies for evaluating the pathogenicity of SVs are needed.

In this work, we present a new machine learning-based framework to assess the

pathogenicity of SVs in disease cohorts. We note that our SV pathogenicity score quan-

tifies the probability of given SVs belonging to a particular disease cohort compared to

being present in a healthy population. Thus, one could interpret our models as disease

classifiers rather than frameworks that explicitly quantify the endophenotypic effect of

Fig. 5 Example of a highly pathogenic cancer duplication that influences coding and regulatory elements
in the genome. This panel presents a highly pathogenic duplication that influences coding and regulatory
elements for multiple genes, including BCL11B, SETD3, CCNK, and HHIPL1. Similar to pathogenic deletion

Fig. 4, this panel also displays the Hi-C profile to highlight TAD boundaries that are disrupted by this highly
pathogenic duplication
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a given SV. Although we applied our method to a handful of cancer, common (CVD

and IBD), and rare disease contexts, it could be easily extended to other disease studies.

Overall, our method accurately identifies highly deleterious SVs and distinguishes them

from low-scoring benign SVs. For somatic deletions and duplications in cancer, our

models performed very well with mean auROC values of 0.865 and 0.835, respectively.

We observed small differences in the predictive performances among different cancer

cohort models, which can be related to the underlying differences in sample size (influ-

encing the number of SVs). Likewise, our cancer germline deletion model was highly

accurate (with a mean auROC of 0.8) across six cancer cohorts. Additionally, the

auROC values of the germline models for different cancer cohorts were remarkably

similar. We expect that including additional high-quality common SVs in our training

dataset will further improve the discriminative performance of the germline model. Fi-

nally, we applied our framework to assign a pathogenic score to germline SVs in com-

mon and rare disease contexts. For instance, our germline models for CVD (mean

auROC of 0.76) and IBD (mean auROC of 0.73) cohorts achieved high predictive accur-

acy, comparable to that of germline cancer models. Notably, our model trained on the

ClinVar SV database achieved near-perfect accuracy (auROC of 0.99) compared to the

previous SVScore method (auROC of 0.9). These results further highlight the applic-

ability of our approach in different disease contexts.

We also built multiple versions of our original somatic models to evaluate the bio-

logical validity and robustness of our approach. For instance, we applied a truncated

somatic model (by excluding conservation score and related annotations) to show that

pathogenic SVs overlap with highly conserved regions in the genome. Similarly, we

built another version of our original model in which we removed annotations for

known cancer genes. We found that high-scoring SVs identified from these models

were significantly enriched among known cancer genes compared to low-scoring SVs.

These observations further suggest that our machine learning framework is robust and

assigns biologically intuitive pathogenic scores. Finally, we performed pathway and

ontology enrichment analyses of genes that overlapped with high-scoring SVs, as iden-

tified by our original model. We observed an enrichment of genes in many cancer-

related pathways, including Wnt signaling, Ras signaling, DNA repair, cell differenti-

ation, and ubiquitin-mediated proteolysis. These results further support the biological

validity of our approach for assigning pathogenic scores to cancer-associated SVs.

As noted above, our machine learning framework is flexible and can be easily ex-

tended to assign pathogenic scores for SVs in whole-genome studies on other diseases,

including autism and neuro-developmental diseases. Additionally, our current frame-

work primarily focuses on identifying pathogenic deletions and duplications. However,

it can be readily extended to detect pathogenic inversions and translocations in these

diseases. We note that, currently, there is a lack of high-quality inversions and translo-

cations in public databases, including 1KG [45], gnomAD [46], and ClinVar SV data-

bases [47], limiting the applicability of our approach toward distinguishing all disease-

associated SVs from benign ones. However, the rapid rise in long-read base sequencing

platforms and their inherent ability to resolve inversions, translocations, and complex

SVs will facilitate the generation of comprehensive SV resources. In the future, we can

employ such extensive resources to train somatic and germline models to detect highly

pathogenic inversions and translocations from benign ones.
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In summary, despite the crucial role of SVs in various diseases, few approaches are

currently available for interpreting and prioritizing these variants. At a per-nucleotide

level, SVs contribute far more substantial variation in an individual genome than other

mutations. However, SVs are often neglected as a consequence of the technical chal-

lenges associated with their identification and interpretation. We addressed this chal-

lenge by building a new framework that utilizes tissue-specific genomic and

epigenomic features to quantify the pathogenicity of SVs. Identifying such pathogenic

SVs along with deleterious point mutations and indels will facilitate a more complete

understanding of the biology of various diseases.

Methods

Model construction and validation

SV coordinates were first gathered from the PCAWG project [15, 28] and 1KG SV

datasets. 1KG SVs were assumed to be benign, and the variants from the cancer source,

while not all deleterious, were expected to contain some set of harmful variants, which

we aimed to identify through our method. We followed a similar approach for germline

SVs. However, for cancer germline SVs, we utilized common 1KG SVs (AF > 0.5%) as

benign variants. In contrast, for the CVD and IBD cohorts, we leveraged SVs present in

the control group and gnomAD as the benign variant set, respectively. Moreover, we

also utilized pathogenic and common benign SVs present in the ClinVar database to

train and assess the performance of the germline models. Furthermore, to assemble

these disease and benign SV datasets, we also considered the underlying SV types. For

instance, our somatic deletion models include only deletions (with length > 50 bp) that

are present in the cancer cohort and 1KG SV datasets. Similarly, our duplication

models are comprised of duplications that are present in the disease and corresponding

control/benign cohorts. Overall, the number of deletions was significantly higher than

duplications in our disease and corresponding benign datasets (Additional file 1: Table

S7). For instance, our somatic dataset included 7295 deletions on average (maximum

and minimum frequency of 11,917and 4514 in BRCA and STAD cohorts, respectively)

across all six cancer cohorts. In contrast, there were 5204 duplications on average (with

maximum and minimum of 6023 and 3675 for BRCA and SKCM cohorts, respectively).

Similarly, our germline dataset included, on average, 9094 deletions across multiple

cancer types and 9306 deletions in the CVD cohort [48].

As expected, we observed significant disparity in the length distribution for SVs in

our disease cohort and control datasets, especially in the somatic context (Additional

file 2: SI Fig. S1). These length differences are likely to influence implicitly various fea-

tures necessary to train our machine learning model. Thus, to avoid the effect of such

length bias on our models, we generated random SV coordinates for both disease and

benign datasets. For each original SV (deletion or duplication) in the disease and be-

nign set, we uniformly sampled one thousand randomized SV instances. Each of the

randomized SVs had the same length and occupied the same chromosome as the ori-

ginal SV. Along with length distribution disparity, differences in the number of SVs be-

tween the disease and benign cohorts could bias our models. To address this challenge

of data imbalance, we randomly subselected SVs from the 1KG SV and other control

datasets such that the number of SVs belonging to the benign/control dataset equaled
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the corresponding number of disease-associated SVs. We applied this data balancing

approach to both our somatic and germline models.

For each SV (identified solely by coordinates), a variety of features were calculated

and compiled into a feature matrix. Three categories of features were selected: tissue-

specific functional genomics data, various annotation metrics (Additional file 1: Table

S1), and conservation scores. For example, we obtained different tissue-specific histone

mark (H3K27ac, H3K4me1, H3K4me3, H3K36Me3) signals from the ENCODE [49],

IHEC [50], and Epigenome Roadmap project [19]. Similarly, we downloaded genome-

wide methylation, GC content, CTCF, and replication timing data from the ENCODE

project. For genomic annotations, we utilized Gencode v.19-based definitions of coding

regions, splice sites, promoters, and UTRs. Furthermore, we used the “collapsed ver-

sion” of the original genomic annotations to address complexities due to the presence

of multiple transcripts for a gene. These collapsed annotations were defined by taking

the union of a given genomic element for all individual transcripts. Moreover, we

employed additional annotations, including fragile site regions, SINE elements, TADs,

heterochromatin regions, and known cancer genes. Finally, we used multiple

conservation-related features to train our models. These features included 100-ways

cross-species PhyloP scores, annotations for ultra-conserved and sensitive regions

across the genome.

Annotation overlaps were calculated as the percentage of the variant that overlapped

with any region in a given annotation dataset. For example, given a 10,000-nucleotide

variant and a set of coordinates corresponding to TADs, if 5000 of the nucleotides in

the variant were within one of the TADs, then the overlap metric would be 0.5. For

tissue-specific epigenomic and functional genomics data-based features, we divided SVs

into windows of 10 bp length and computed the features over these windows. For in-

stance, given an SV [a, b] that starts at genomic position a and ends at position b, we

divided the interval into 10-bp bins, i.e., n ¼ b − a
10

bins. For the ith bin (n ≥ i ≥ 1), we

computed the total signal values for each functional genomics and epigenomic dataset

within the bin. Subsequently, we calculated the average of these values for each dataset

over all 10-bp bins that overlap with a given SV. We applied this 10-bp bin approach

to increase the efficiency of our computation. Furthermore, this method provides us

flexibility such that one could utilize the maximum or minimum of these bins as a fea-

ture instead of using the mean value applied in the current study. Combined, the total

set of features can be summarized as:

SV a; b½ �→ðFH3K27ac; FH3K4me3; FH3K36me3; FH3K27me3; FH3K4me1; F gcContent ;

F repTiming ; FCTCF ; FWGBS; FPhyloP; FAnnotation; FCosmicÞ

where s denotes the average signal over all the 10-bp bins within [a, b]. Overall, we

computed 22 features and used them to build the model. As discussed earlier, we used

these features because prior studies have shown strong correlation with a subset of

these features and distribution of SVs in the genome [23–27]. Additionally, our

annotation-based features are likely to capture properties of the coding and noncoding

functional elements in the genome.
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After extracting the relevant features for both disease-associated and benign SVs,

we normalized the original feature matrix. The feature normalization was essential

to avoid any implicit feature bias due to length distribution differences observed

between disease and benign SV datasets. For a given feature, we computed the fea-

ture value of each original SV and the corresponding values for the thousand ran-

domly shuffled SV instances of that particular SV. Subsequently, we applied a Z-

score transformation to perform the normalization for the disease-associated and

benign SV dataset. Moreover, we assigned class labels (1 for all variants from the

disease dataset, and 0 for 1KG/control SVs). While all disease SVs are not deleteri-

ous (in fact, only a minority were expected to be), our rationale behind the label-

ing method was that benign variants would mostly share characteristics with 1KG

SVs. Thus, our model would only predict a variant’s class to be 1 with high confi-

dence if the variant was very different from a benign variant. Finally, we appended

the length of SVs in Z-score-transformed feature matrices for training and testing

the machine learning models. The explicit inclusion of length feature is needed to

clearly distinguish large-size SVs in the somatic and germline context. We note

that a small set of features for a subset of SVs in our training and testing dataset

for various disease cohorts consist of missing value. For such features, we adopted

a simplistic approach by assuming that these features for a given SV manifest no

difference between disease and the corresponding healthy cohorts. Thus, for a

given SV, we assigned a value of zero for such features in the Z-score-normalized

feature matrix.

Once the feature matrix was compiled and normalized, the data was used to train ten

random forest models. Each model was trained on a disjoint 10% of the data. Then,

each model predicted a probability for the remaining 90% of the data for a class label

of 1 (i.e., that the variant was from the disease-associated SV dataset). The nine prob-

abilities for each variant were averaged to produce one final score, meant to reflect the

probability that the variant was a member of the disease-associated dataset. Thus, by

ordering variants by these scores, we could construct a ranking of variants. Variants

with very high probabilities, near the top of the ranking, had characteristics that were

very different from the set of “benign” 1KG/control dataset variants; by contrast, vari-

ants with low (around 0.5 and below) probabilities had features that were virtually in-

distinguishable from those of benign variants. We also performed hyper-parameter

tuning to optimize different somatic and germline models using 70% of each disease

and the corresponding healthy dataset. For hyper-parameter optimization, we systemat-

ically varied the maximum depth of each tree (value ranges between 2 and 10), the total

number of trees in the forest (in the range of 10 to 5000), and the minimum amount of

leaves required to split an internal node (in between 10 and 100). The primary consid-

erations behind our choices of these hyper-parameters were interpretability, tractability,

and model performance. Maximum depth and the number of trees in a forest are intui-

tive, necessary, and well-documented controls of model complexity in tree-based and

forest-based models. In particular, tuning these two parameters helps navigate the bias-

variance tradeoff for an ensemble-based tree model. Similarly, varying the minimum

number of leaves required to split an internal node influences the model performance.

We applied training datasets for each disease/benign cohort to build a comprehensive

set of models. Subsequently, we evaluated precision-recall values for each model to
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select the optimal one with the highest auROC and auPRC value. The source code for

the SVFX workflow is available on the project’s Github page (https://github.com/ger-

steinlab/SVFX). The SVFX workflow is implemented in python3 and utilizes various

python-based packages including pybigwig, scikit learn, and matplotlib.

Downstream analyses

In order to perform orthogonal validation, we modified the original feature matrix to

generate two modified models. In one such model, we removed the average cross-

species conservation (PhyloP) score and the overlap fraction of SVs with ultra-

conserved and sensitive regions in the human genome. Similarly, in a different model,

we removed features capturing the overlap fraction of SVs with known cancer genes as

defined in the cancer gene census database. For both of these modified models, we

followed the same procedure of Z-score-based feature normalization, training, and test-

ing. For the model without conservation score, we defined highly pathogenic SVs based

on a pathogenicity score threshold above 0.9 and benign SVs with a pathogenicity score

below 0.2. For pathogenic and benign classes of SVs, we then computed the average

conservation score by taking the mean value of nucleotide-level PhyloP score for re-

gions overlapping with a given SV.

Similarly, for the model without cancer gene annotation, we applied the same SV

impact thresholds to classify SVs into benign and pathogenic groups. For each

group of SVs, we computed the fraction of overlap between known cancer genes

and member SVs for different cancer types. For enrichment calculation, members

of the pathogenic and benign SV groups were permuted one thousand times across

the genome. For each cancer gene, we computed the fraction of nucleotides over-

lapping with the original and permuted SVs to calculate a Z-score-based enrich-

ment score. Subsequently, we compared these Z-score enrichment scores to

measure differences between pathogenic and benign SVs. Finally, we calculated the

gene ontologies and pathway enrichments of genes that partially or completely

overlapped with highly pathogenic SVs. Pathway enrichment was done for KEGG

as well as the reactome database.

Finally, we compared SVFX with the previously reported SVScore method that as-

signs functional impact score to SVs by leveraging genome-wide per-base score (devel-

oped initially for point mutations) [14]. We used the SVScore assigned based on the

mean of per-base scores for nucleotides that overlap with a given SV region. SVFX as-

signs a normalized score to a given deletion or duplication. Thus, to compare SVFX

and SVScore, we transformed the original SVScore value on a normalized scale. We

note that, by default, SVScore assigns a score of 100 to SVs with a length higher than 1

mb. On this normalized scale, we assigned these SVs an SVScore value of one. We

applied both SVFX and SVScore for independent testing of somatic deletion datasets

for multiple cancer cohorts and 1KG SVs. Moreover, we compared the performance of

the SVFX and SVScore methods on holdout testing datasets for germline ClinVar

pathogenic and benign variants. This comparison evaluated the performance of both

approaches for correctly identifying disease-associated deletions. Finally, we also report

pathogenicity scores for deletions and duplications in the ClinVar database (Additional

file 1: Table S8-9).
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Source code and data availability

All cancer-associated SV datasets analyzed in this manuscript are available to the com-

munity via International Cancer Genome Consortium- and The Cancer Genome Atlas-

associated PCAWG data portals (https://dcc.icgc.org/releases/PCAWG/consensus_sv)

using controlled data access [51]. The 1000 Genomes Phase 3 SV datasets [45] were

downloaded from the 1000 Genomes Project data portal. Tissue-specific epigenomics

and functional genomics data were downloaded from iHEC [52, 53], Epigenome Road-

map [54], and ENCODE project data portal [55]. SVs belonging to CVD [48] and IBD

[56] cohorts were generated by the NHGRI centers for common disease genomics con-

sortium. Finally, we also utilized SVs belonging to the ClinVar database [47]. The

source code for SVFX workflow is available on the project’s Github page [57] (https://

github.com/gersteinlab/SVFX) under MIT License. Finally, we also provide pre-trained

somatic and germline models through the SVFX Github page. We note that these pre-

trained models disallow the extraction of training SV coordinates to avoid any potential

variant leakage.
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