
 Open access  Journal Article  DOI:10.1109/LGRS.2010.2047711

SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images
— Source link 

Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, Jon Atli Benediktsson

Institutions: Grenoble Institute of Technology, French Institute for Research in Computer Science and Automation,
University of Iceland

Published on: 18 May 2010 - IEEE Geoscience and Remote Sensing Letters (IEEE)

Topics: Contextual image classification, Hyperspectral imaging, Support vector machine and Markov random field

Related papers:

 Classification of hyperspectral remote sensing images with support vector machines

 Advances in Spectral-Spatial Classification of Hyperspectral Images

 Classification of hyperspectral data from urban areas based on extended morphological profiles

 Composite kernels for hyperspectral image classification

 
Spectral–Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov
Random Fields

Share this paper:    

View more about this paper here: https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-
11cfm13vmw

https://typeset.io/
https://www.doi.org/10.1109/LGRS.2010.2047711
https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-11cfm13vmw
https://typeset.io/authors/yuliya-tarabalka-41znivy16m
https://typeset.io/authors/mathieu-fauvel-5aezab5hjv
https://typeset.io/authors/jocelyn-chanussot-nk39gk0r98
https://typeset.io/authors/jon-atli-benediktsson-3xrbem3ny2
https://typeset.io/institutions/grenoble-institute-of-technology-1q6jcn53
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/university-of-iceland-1x6f2hqe
https://typeset.io/journals/ieee-geoscience-and-remote-sensing-letters-b5iw6iaz
https://typeset.io/topics/contextual-image-classification-3rb0mo2v
https://typeset.io/topics/hyperspectral-imaging-1ywf7oc8
https://typeset.io/topics/support-vector-machine-gc9ia0ms
https://typeset.io/topics/markov-random-field-3gt1nuv3
https://typeset.io/papers/classification-of-hyperspectral-remote-sensing-images-with-51xjutm0y6
https://typeset.io/papers/advances-in-spectral-spatial-classification-of-hyperspectral-vlt2ik4ef1
https://typeset.io/papers/classification-of-hyperspectral-data-from-urban-areas-based-5fhmcdwtol
https://typeset.io/papers/composite-kernels-for-hyperspectral-image-classification-wwb70k2xhy
https://typeset.io/papers/spectral-spatial-hyperspectral-image-segmentation-using-5fqolia4a6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-11cfm13vmw
https://twitter.com/intent/tweet?text=SVM-%20and%20MRF-Based%20Method%20for%20Accurate%20Classification%20of%20Hyperspectral%20Images&url=https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-11cfm13vmw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-11cfm13vmw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-11cfm13vmw
https://typeset.io/papers/svm-and-mrf-based-method-for-accurate-classification-of-11cfm13vmw


HAL Id: hal-00578864
https://hal.archives-ouvertes.fr/hal-00578864

Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SVM and MRF-Based Method for Accurate
Classification of Hyperspectral Images

Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, Jon Atli Benediktsson

To cite this version:
Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, Jon Atli Benediktsson. SVM and MRF-
Based Method for Accurate Classification of Hyperspectral Images. IEEE Geoscience and Remote
Sensing Letters, IEEE - Institute of Electrical and Electronics Engineers, 2010, 7 (4), pp.736-740.
฀10.1109/LGRS.2010.2047711฀. ฀hal-00578864฀

https://hal.archives-ouvertes.fr/hal-00578864
https://hal.archives-ouvertes.fr


736 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 7, NO. 4, OCTOBER 2010

SVM- and MRF-Based Method for Accurate
Classification of Hyperspectral Images

Yuliya Tarabalka, Student Member, IEEE, Mathieu Fauvel, Jocelyn Chanussot, Senior Member, IEEE, and
Jón Atli Benediktsson, Fellow, IEEE

Abstract—The high number of spectral bands acquired by hy-
perspectral sensors increases the capability to distinguish phys-
ical materials and objects, presenting new challenges to image
analysis and classification. This letter presents a novel method
for accurate spectral-spatial classification of hyperspectral images.
The proposed technique consists of two steps. In the first step,
a probabilistic support vector machine pixelwise classification of
the hyperspectral image is applied. In the second step, spatial
contextual information is used for refining the classification results
obtained in the first step. This is achieved by means of a Markov
random field regularization. Experimental results are presented
for three hyperspectral airborne images and compared with those
obtained by recently proposed advanced spectral-spatial classifi-
cation techniques. The proposed method improves classification
accuracies when compared to other classification approaches.

Index Terms—Classification, hyperspectral images, Markov
random field (MRF), support vector machine (SVM).

I. INTRODUCTION

HYPERSPECTRAL imaging sensors measure the energy

of the received light in tens or hundreds of narrow spec-

tral bands in each spatial position in the image [1]. Thus, every

pixel can be represented as a high-dimensional vector across the

wavelength dimension, called the spectrum of the material in

this pixel. Since different substances exhibit different spectral

signatures, hyperspectral imagery is a well-suited technology

for accurate image classification, which is an important task in

many application domains (monitoring and management of the

environment, precision agriculture, etc.).

Most classification methods process each pixel indepen-

dently without considering the correlations between spatially

adjacent pixels (so-called pixelwise classifiers) [2], [3]. In
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particular, support vector machines (SVMs) have shown good

performances for classifying high-dimensional data when a

limited number of training samples are available [3], [4]. Fur-

thermore, spatial contextual information should help for an

accurate scene interpretation. Therefore, it is very important

to develop spectral-spatial classification techniques that are

capable to consider spatial dependences between pixels [5]–[8].

In general, two categories of spectral-spatial classification

methods can be distinguished. First, spatial contextual informa-

tion is exploited in the classification stage. For instance, spectral

and spatial information can be combined within a feature vector

of each pixel, and then, a pixelwise classification technique can

be applied to the obtained set of vectors [6], [9]. Another group

of methods from this category first defines the objects within

the image scene and then classifies each object [2], [5]. Second,

spatial dependences are considered in the decision rule [10].

An example is a pixelwise classification followed by spatial

regularization of the classification map.

Markov random fields (MRFs) are probabilistic models that

are commonly used to integrate spatial context into image

classification problems [7], [10], [11]. In the MRF framework,

the maximum a posteriori (MAP) decision rule is typically

formulated as the minimization of a suitable energy function

[12]. An extensive literature is available on MRF-based image

classification techniques. In particular, the research groups of

Farag [7], Bruzzone [10], and Gong [11] have investigated the

integration of the SVM technique within an MRF framework

for accurate spectral-spatial classification of remote sensing

images. All of them use SVMs to estimate class conditional

probability density functions and MRFs to estimate context-

based class priors. Farag et al. [7] have applied the mean field-

based SVM regression algorithm for density estimation, with

the purpose of hyperspectral image classification. Good classi-

fication results are reported, although no comparison with other

advanced spectral-spatial classification techniques is published.

This letter presents a novel SVM- and MRF-based

(SVMMRF) method for spectral-spatial classification of hy-

perspectral images. In the first step of the proposed method, a

probabilistic SVM pixelwise classification of the hyperspectral

image is applied. In the second step, spatial contextual informa-

tion is used for refining the classification results obtained in the

first step. This is achieved by means of the MRF regularization.

An important difference from previously proposed methods

[7], [10], [11] consists in defining and integrating the “fuzzy

no-edge/edge” function into the spatial energy function in-

volved in MRFs, aiming at preserving edges while performing

spatial regularization.

1545-598X/$26.00 © 2010 IEEE
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Fig. 1. Flowchart of the proposed SVMMRF classification scheme.

The second contribution of this letter consists in the

experimental comparison of the presented approach with

other recently proposed advanced spectral-spatial classifica-

tion techniques. Experimental results are demonstrated on

three hyperspectral airborne images recorded by the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) and the Re-

flective Optics System Imaging Spectrometer (ROSIS).

The outline of this letter is as follows. In the next section,

an SVMMRF classification scheme for hyperspectral images

is presented. Experimental results are discussed in Section III.

Finally, conclusions are drawn in Section IV.

II. SVMMRF CLASSIFICATION SCHEME

The flowchart of the proposed SVMMRF classification

method is shown in Fig. 1. At the input, a B-band hyper-

spectral image is given, which can be considered as a set

of n pixel vectors X = {xj ∈ R
B , j = 1, 2, . . . , n}. Let Ω =

{ω1, ω2, . . . , ωK} be a set of information classes in the scene.

Classification consists in assigning each pixel to one of the K
classes of interest.

A. Probabilistic SVM Classification

The first step of the proposed procedure consists in per-

forming a probabilistic SVM pixelwise classification of the

hyperspectral image [4], [13]. Other probabilistic classifiers

could be used. However, SVMs are extremely well suited to

classify hyperspectral data [3]. The standard SVMs do not

provide probability estimates for the individual classes. In order

to get these estimates, pairwise coupling of binary probabilistic

estimates is applied [13], [14].

B. Computation of the Gradient

Independent of the previous step, a one-band gradient of

the hyperspectral image is computed, which is further used

for defining the fuzzy no-edge/edge function. Approaches for

defining a one-band gradient from the B-band image are ana-

lyzed in [15]. Here, we first compute horizontal, vertical, and

two diagonal gradients (corresponding to the directions 0◦, 90◦,

45◦, and 135◦, respectively), using Sobel masks [16], where

each of the gradients is computed as the sum of the gradients

of every spectral channel. The resulting one-band gradient

∇(X) = {ρj ∈ R, j = 1, 2, . . . , n} is found as the average of

the four obtained directional gradients.

C. MRF-Based Regularization

In the final step, the regularization of the SVM classifi-

cation map is performed, using the MAP-MRF framework.

This framework is based on the interpixel class dependence

assumption, which means that a pixel belonging to a class ωi is

likely to have neighboring pixels belonging to the same class.

In our work, an eight-neighborhood is assumed (let Ni be the

set of neighbors for a given pixel xi).

We adopt the Metropolis algorithm, based on stochastic

relaxation and annealing, for computing the MAP estimate of

the true classification map given the initial (pixelwise) classifi-

cation map [17], [18]. The considered method is based on the

Bayesian approach and aims at minimizing the global energy in

the image, by iterative minimization of local energies (defined

hereafter) associated with randomly chosen image sites, i.e.,

pixels.

Let L = {Lj , j = 1, 2, . . . , n} be a generic set of informa-

tion class labels for the image X. We propose to compute the

local energy of a given site associated with a pixel xi as

U(xi) = Uspectral(xi) + Uspatial(xi) (1)

where Uspectral(xi) is the spectral energy function from the ob-

served data and Uspatial(xi) is the spatial energy term computed

over the local neighborhood Ni. We define the spectral energy

term as

Uspectral(xi) = − ln{P (xi|Li)} (2)

where P (xi|Li) is estimated by pairwise coupling of probabil-

ity estimates from “one-versus-one” SVM outputs [11], [14].

For the spatial energy term, two different expressions are

investigated. We first consider the standard spatial energy ex-

pression, used, for instance, in [10], which is computed as

UNE
spatial(xi) =

∑

xj∈Ni

β(1 − δ(Li, Lj)) (3)

where δ(·, ·) is the Kronecker delta function (δ(a, b) = 1 if a =
b, and δ(a, b) = 0 otherwise) and β is a parameter that controls

the importance of the spatial versus spectral energy terms. The

superscript “NE” means that no edge information is taken into

account. The term UNE
spatial(xi) is proportional to the number of

neighboring pixels of xi assigned to one of the classes different

from Li. This spatial energy term is particularly suitable for

the images with large spatial structures. However, if a small

one-pixel object is present in the image, this model will favor

assigning this pixel to the class of the surrounding objects.

In order to mitigate this drawback of the previous spatial term

and to preserve small structures and edges in the classification

map, we propose to integrate the edge information into the spa-

tial energy function. The computation of an accurate edge map

for hyperspectral images is a challenging task. For instance,

it can be obtained by thresholding the gradient image {ρj ∈
R, j = 1, 2, . . . , n}. For this purpose, an appropriate threshold
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must be chosen. Instead of computing the edge map, we pro-

pose to define the following “fuzzy no-edge/edge function”:

ε (xj) = 1 −
ρj

α + ρj

(4)

where α is a parameter controlling the approximate edge

threshold. From here, the following spatial energy function is

proposed:

UE
spatial(xi) =

∑

xj∈Ni

βε(xj)(1 − δ(Li, Lj)). (5)

The superscript “E” means that the edge information is taken

into account. In the following, we thus refer to two different

methods, namely, SVMMRF-NE and SVMMRF-E, when (3)

and (5) are used for computing the spatial energy, respectively.

We briefly summarize the considered Metropolis algorithm

for optimizing the energy function. In each iteration, an image

site (i.e., a pixel xi) is randomly chosen. The local energy of

the given site U(xi) is computed by (1). Then, a new class

label Lnew
i is randomly selected for the site xi, and a new

local energy Unew(xi) is computed. If the variation of the

energy ∆U = Unew(xi) − U(xi) < 0, the new class label is

assigned to xi: Li = Lnew
i . Otherwise, the new class assign-

ment is accepted with the probability p = exp(−∆U/T ). Here,

T is a global control parameter called “temperature” [18]. The

optimization begins at a high temperature, which is gradually

lowered as the relaxation procedure proceeds. This procedure

avoids converging to local minima.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed SVMMRF-NE and SVMMRF-E

classification approaches to three hyperspectral airborne images

described in the following:

1) The Indian Pines image is of a vegetation area that was

recorded by the AVIRIS sensor. The image is of 145 by

145 pixels, with a spatial resolution of 20 m/pixel and

200 spectral channels. A three-band false color image and

the reference data are shown in Fig. 2. Sixteen classes

of interest are considered, which are detailed in Table II,

with a number of training and test samples for each class.

Training samples have been randomly chosen from the

reference data.

2) The Center of Pavia image was recorded by the ROSIS

sensor over the urban area of Pavia, Italy. It is of 900

by 300 pixels, with a spatial resolution of 1.3 m/pixel

and 102 spectral channels. The reference data contain

nine thematic classes and 56 070 labeled pixels. Thirty

samples for each class were randomly chosen from the

reference data as training samples.

3) The University of Pavia image is of an urban area, ac-

quired by the ROSIS sensor. It is of 610 by 340 pixels,

with 103 spectral channels. The reference data contain

nine classes of interest. The training and test sets are

composed of 3921 and 40 002 pixels, respectively.

More information about the images can be found in [8].

Fig. 2. Indian Pines image. (a) Three-band color composite. (b) Reference
data. (c) SVM pixelwise classification map. (d) SVMMSF + MV classification
map. (e) SVMMRF-NE classification map. (f) SVMMRF-E classification map.

In all experiments, the probabilistic one-versus-one SVM

classification with the Gaussian radial basis function (RBF)

kernel was applied. The optimal parameters C (parameter that

controls the amount of penalty during the SVM optimization

[4]) and γ (spread of the RBF kernel) were chosen by fivefold

cross validation. The temperature T was varied during the

Metropolis relaxation procedure [18]: The initial temperature

was set to T 1 = 2 (a relatively low value of the initial temper-

ature results in a faster execution of the algorithm). After every

106 (order of the number of pixels in an image) iterations, the

temperature for the next iteration (k + 1) was recomputed as

T k+1 = 0.98T k. The optimal value of the parameter α = 30
was experimentally derived (the same optimal value of α was

obtained for the three considered data sets).

Furthermore, we have investigated the performances of the

SVMMRF-NE and SVMMRF-E algorithms for different val-

ues of the context weight parameter β. Table I reports the

SVMMRF-NE and SVMMRF-E overall (percentage of cor-

rectly classified pixels) and average (mean of the percentage

of correctly classified pixels for each class) classification accu-

racies for the three considered data sets. It can be concluded

that the optimal parameter is β ∈ [1, 2] for the SVMMRF-NE

approach and β ∈ [2, 4] for the SVMMRF-E approach (for both

methods, the corresponding overall accuracies are nonsignifi-

cantly different over the given range of values). Moreover, the
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TABLE I
SVMMRF-NE AND SVMMRF-E CLASSIFICATION ACCURACIES FOR DIFFERENT VALUES OF THE PARAMETER β

TABLE II
NUMBER OF LABELED SAMPLES (NUMBER OF SAMPLES) AND CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE INDIAN PINES IMAGE

methods are robust to the choice of β, and quite a wide range

of values of β leads to high classification accuracies.1

Table II summarizes the global (overall average accuracies

and kappa coefficient [8]) and class-specific classification ac-

curacies for the Indian Pines image. In order to compare

the performances of the proposed method with other recently

proposed advanced classification techniques, we have included

results of the pixelwise SVM classifiers, the well-known ECHO

(Extraction and Classification of Homogeneous Object) spatial

classifier [5], classification using majority vote within the adap-

tive neighborhoods defined by watershed segmentation (WH +
MV) [19], as well as the results obtained using the construction

of a minimum spanning forest from the probabilistic SVM-

derived markers followed by majority voting within connected

regions (SVMMSF + MV) [8]. Fig. 2 shows some of the

corresponding classification maps. As can be seen from the

table, all the spectral-spatial approaches yield higher classifi-

cation accuracies when compared to the pixelwise method. The

proposed SVMMRF-NE and SVMMRF-E techniques give the

highest global and most of the best class-specific accuracies.

Following the results of the McNemar’s test, the SVMMRF-

NE, SVMMRF-E, and SVMMSF + MV accuracies are not sig-

nificantly different, using 5% level of significance. From Fig. 2,

it can be seen that the corresponding three classification maps

are comparable and contain more homogeneous regions, when

compared to the SVM classification map. Since the considered

1A similar study has shown robustness of the SVMMRF-E method to the
choice of the parameter α.

TABLE III
GLOBAL CLASSIFICATION ACCURACIES IN PERCENTAGE

FOR THE CENTER OF PAVIA IMAGE

image contains large spatial structures and reference data do

not comprise region edges, the advantage of the SVMMRF-E

method versus the SVMMRF-NE method is not obvious here.

Table III gives the global classification accuracies for the

Center of Pavia data, where the same techniques are used for

comparison. The proposed SVMMRF-E method yields the best

classification accuracies. This image of an urban area contains

small spatial structures, such as shadows and trees. Therefore,

the inclusion of the edge information in the context-based

regularization improves the classification performances.

Table IV reports the global classification accuracies for the

University of Pavia image. For this data set, the SVMMSF +
MV classifier gives the best accuracies, and the SVMMRF-E

method outperforms the SVMMRF-NE technique in terms of

accuracies. According to the results of the McNemar’s test,

all the corresponding classification maps are significantly dif-

ferent, using 5% level of significance. From these results, the

following conclusions can be derived: 1) the advantage of the
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TABLE IV
GLOBAL CLASSIFICATION ACCURACIES IN PERCENTAGE

FOR THE UNIVERSITY OF PAVIA IMAGE

edge-based SVMMRF-E method for the classification of urban

images is confirmed, and 2) the MRF-based regularization

includes the spatial context information from only the closest

neighborhoods (in our case, eight neighborhoods) when clas-

sifying an image. Therefore, the proposed method is efficient

only in the case if there is no large misclassified region in

the initial pixelwise classification map (this assumption often

holds). If such a region exists, the MRF-based method cannot

reconstitute its true class label. This happens in the case of

classification of the University of Pavia image, where some

relatively large regions remain misclassified. The SVMMSF +
MV method works differently: If there is a suspicion that a pixel

might be misclassified, this pixel remains unclassified, and the

classification decision is further taken by the region growing

step. This appears to be a robust procedure for classifying large

regions with uncertain spectral properties.

Furthermore, the proposed SVMMRF-E method was applied

and has shown the best classification (overall and average)

accuracies at the Third HYPER-I-NET summer school on hy-

perspectral imaging student contest “Evaluation of an unknown

hyperspectral data set and information extraction.” The contest

was organized by P. Gamba on September 10, 2009, in Pavia,

Italy, where the students in teams were supposed to provide a

classification map of the rural area acquired by the Compact

Airborne Spectrographic Imager sensor.

When comparing the results of several classifiers, an impor-

tant issue is the computational cost of each classifier. Here, we

compare the computational times for classification of the Uni-

versity of Pavia image using different methods. We conducted

experiments on an Intel Core 2 Duo 2.40-GHz processor with

3.5-GB RAM. The processing times in seconds were 3339 for

the SVM method, 3353 for the WH + MV method, 3351 for the

SVMMSF + MV method, 3444 for the SVMMRF-NE method,

and 3450 for the SVMMRF-E method. None of the algorithms

has been implemented in parallel (which would further speed

up computational times). While the SVM classifier is a com-

putationally demanding algorithm, other considered methods

require at maximum 3% more time to be executed. In terms

of duration, the proposed SVMMRF-NE method takes 93 s

longer for the classification of the data than the SVMMSF +
MV approach, and the SVMMRF-E method takes 6 s longer

than the SVMMRF-NE method.

IV. CONCLUSION

A novel accurate SVMMRF method for spectral-spatial clas-

sification of hyperspectral images has been presented in this

letter. The method consists in performing a probabilistic SVM

pixelwise classification, followed by MRF-based regularization

for incorporating spatial and edge information into classifica-

tion. Experimental results have demonstrated that the proposed

method yields accurate classification maps within a short time

interval and is sufficiently robust for classifying different kinds

of images.
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