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Summary 

A real-time implementation of an approximation of the support vector machine decision rule is proposed. This method is 

based on an improvement of a supervised classification method using hyperrectangles, which is useful for real-time image 

segmentation. The final decision combines the accuracy of the SVM learning algorithm and the speed of a hyperrectangles-

based method. We review the principles of the classification methods and we evaluate the hardware implementation cost of 

each method. We present the combination algorithm which consists of rejecting ambiguities in the learning set using SVM 

decision, before using the learning step of the hyperrectangles-based method. We present results obtained using Gaussian 

distribution and give an example of image segmentation from an industrial inspection problem. The results are evaluated 

regarding hardware cost as well as classification performances.  

Running headline: SVM approximation for image segmentation 

 

Introduction 

Real-time image segmentation is a well known problem 

and can be solved using pixel-wise classification and 

specific classifiers. This paper focuses on very high speed 

decisions operators (approximately 10 ns per pixel) 

which, for example, can be used to detect anomalies on 

manufactured parts. The segmentation is usually the first 

step of a pattern recognition process. 

Mainly because of the time constraint of our industrial 

application (10 images/s, size 1288x1080), only 

segmentation methods based on context-free local 

analysis of pixel neighbourhoods were considered. 

Classification is a central problem of pattern recognition 

[1] and many approaches to the problem have been 

proposed, e.g. neural networks [2], Support Vector 

Machines (SVM) [3], k-nearest neighbours (K-nn) and 

kernel-based methods. The chosen classifier must either 

be implemented in low-cost hardware or in optimised 

software running in real-time.  

It has been shown that the SVM method gives very good 

results in many practical cases, [4], [5], [6], however, this 

robust algorithm is not often used for pixel-wise 

classification because of the decision rule complexity. 

We previously developed a hyperrectangles-based 

classifier [7]: this hyperrectangle method belongs to the 

same family as the NGE (Nested Generalized Exemplars) 

algorithm, described by Salzberg [8], [9]. 

In [10], we showed that this classifier can be implemented 

as a parallel component in order to obtain the required 
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speed, and in [11] we indicated that the performances are 

sufficient for use in a face recognition algorithm. 

However, the performance of the training step is 

sometimes affected by ambiguities in the training set, and, 

more generally, the basic hyperrectangles-based method 

is outperformed by the SVM algorithm. 

We propose in this paper an original combination of 

classifiers allowing for fast and robust classification as 

applied to image segmentation. The SVM is used during a 

first step, pre-processing the training set and thus 

rejecting any ambiguities. The hyperrectangles-based 

learning algorithm is applied using the SVM classified 

training set. We will show that the hyperrectangle method 

imitates the SVM method in terms of performances, for a 

lower implementation cost using reconfigurable 

computing. 

 

In the first part of this paper, we review the principles of 

the two classifiers: the Hyperrectangles-based method and 

the SVM. In the second part, we present our combination 

method as applied on Gaussian distributions, which are 

often used in literature for performance evaluation of 

classifiers [12] [1]. Finally, we present practical results 

obtained from the image segmentation of an industrial 

part.  

 

Classification algorithms 

Hyperrectangles-based method 

This method divides the attribute space into a set of 

hyperrectangles for which simple comparators may easily 

satisfy the membership condition. This hyperrectangle 

method belongs to the same family as the NGE algorithm, 

described by Salzberg [9], whose performance was 

compared to the K-nn method by Wettschereck and 

Dietterich [8]. The performance of our own 

implementation was studied in [6].  

The training step consists of collecting the set S of the 

most representative samples from the various classes and 

associating with each sample a local constraint 

(hyperrectangle) H(xi). 

( ) ( ) ( ){ }1 1 2 2S , , , ,..., ,p py y y= x x x  

Each sample is defined by a feature vector x in D 

dimensional space and its corresponding class or label 

C(x)=y: 

x=(x1, x2, ..., xD)T  

Hyperrectangle determination: 

During the first step, a hyperrectangle H(x) is built for 

each sample x as follows : 

Each part Θ p  (see Figure 1) defines the area where 

( ),∞ = −k l
k l p pd x xx x  with 

( )
1,...,

, max∞ =
= −k kk D

d x y x y  

We define δp as the nearest neighbour belonging to a 

different class in each quadrant Θ p . If dp is the distance 

between x and δp in a given Θ p , the limit of the 

hyperrectangle in the direction is computed as df = dp.Rp.  

The parameter Rp must be less than or equal to 0.5. This 

constraint ensures that the hyperrectangle cannot contain 

any samples of opposite classes. 
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Figure 1: Hyperrectangle computation 

During the second step, hyperrectangles of a given class 

are merged together in order to optimise the final number 

of hyperrectangles [7] (Figure 2). 

The decision phase consists of allocating a class to a new 

attribute vector. The membership of a new feature value 

xk to a given interval Iik (ith hyperrectangle and kth feature) 

is easily verified by controlling the two following 

conditions : (xk > aik) and (xk < bik), where aik and bik are 

respectively the lower and upper limits of each polytope 

or hyperrectangle. Therefore, the verification of the 

membership of an unknown vector x to a class y results in 

a set of comparisons done simultaneously on each feature 

for every hyperrectangle of class y. The resulting decision 

rule is: 

( ) ( )( )
1 1

( ) .
yi m k d

k ik k ik
i k

C y x a x b
= =

= =

= ⇔ > <∑∏x  is true    (1) 

where my equal to the number of hyperrectangles of class 

y after a merging phase. Sum and product are logical 

operators. This method is easy to use, and can be 

implemented for real-time classification using hardware 

[13] or software optimisation. 

x1

x2

0 255

255

 

Figure 2: Hyperrectangles obtained in a two 

dimensional features space. 

We developed an algorithm allowing evaluation of the 

implementation cost of this method in Field 

Programmable Gate Array (FPGA). In recent years 

FPGAs have become increasingly important and have 

found their way into system design. FPGAs are used 

during development, prototyping, and initial production 

and are replaced by hardwired gate arrays or application 

specific ICs (ASICs) for highvolume production [14]. The 

advantage of these components is mainly their 

reconfigurability [15]. 

It is possible to integrate the constant values (the limits of 

hyperrectangles) in the architecture of the decision 

function. We have coded a tool which automatically 

generates a VHDL description of a decision function 

given the result of a training step (i.e. given the 

hyperrectangles limits). We then used a standard 

synthesizer tool for the final implementation in FPGA. 

We verified that a single comparator between a variable 

(feature value) and a constant (hyperrectangle limit) only 

uses on average 0.5 slices (using bytes). The slice is the 

elementary structure of the FPGA of the Virtex family 

(Figure 3), and one component can contain a few 
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thousand of these blocks. This estimation is possible since 

the binary result LB of the comparison of the variable byte 

A and the constant byte B is a function FB of the bits of A:  

LB=FB(A7,A6,...,A0) 

Let us consider for example B=151, 10010111 in binary, 

then, where "*" is the logic operator AND, "+" is the logic 

operator OR: 

L151=A7*(A6+(A5+(A4*A3))). 

L151 is true if A is greater than 151, and false otherwise. 

More generally, we can write LB as follows (for any byte 

B such that 0<B<255): 

LB=A7@(A6@(A5@(A4@(A3@(A2@(A1@(A0@0))))))) 

The @ operator denotes either the AND operator or the 

OR operator, depending on the position of @ and the 

value of B. In the worst case, the particular structure of LB 

can be stored in two cascaded Look Up Tables (LUT) of 

16 bits each (one slice). On average we obtain 0.5 slices 

per comparison. 

 Since the decision rule requires 2 comparators per 

hyperrectangle and per dimension, we evaluate λH, the 

hardware cost of hyperrectangles implementation 

(number of slices) with: 

1

y z

H y
y

d mλ
=

=

= ∑         (2) 

where z is the number of classes. In the particular case of 

a 2-class problem, the summation can be computed only 

to y=z-1, since only one set of hyperrectangles defines the 

boundary. 

 

Figure 3: Slice structure 

We evaluated the performance of this method in various 

cases, using theoretical distributions [6] as well as real 

sampling [11]. We compared the performance with neural 

networks, the K-nn method, and a Parzen’s kernel based 

method [1]. It is clear that the algorithm performs poorly 

when the inter-class distances are too small. The overlap 

between classes is arbitrarily classified and introduces a 

classification error. 
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Multimodal Gaussian distributions 

 

 
Hyperrectangle set 

C0 
C1 

 

Figure 4: Gaussian Distributions 

 

This is shown in Figure 4, where we present two 

distributions in a two-dimensional feature space. The C0 

class is multimodal. The error is not symmetric, due to the 

priority given to the first class, and is rate is 18.88% for 

the C0 class, and 24.34% for the C1 class. Moreover, an 

important number of hyperrectangles are created in the 

overlap area, slowing down the decision or increasing the 

implementation cost. 

 

Many classification methods, such as neural networks, 

density evaluation-based method, and the SVM described 

above are less sensitive to this overlap. It has been proven 

that a particular advantage of SVM over other learning 

algorithms is that it can be analyzed theoretically using 

concepts from computational learning theory and at the 

same time can achieve good performance when applied to 

real-world problems [16]. We chose this method as a pre-

processing step and show that it is possible to 

approximate the result of the SVM using a combination of 

training steps. 

 

SVM classification 

A Support Vector Machine (SVM) is a universal learning 

machine developed by Vladimir Vapnik [3] in 1979. A 

review of the basic principles follows, considering a 2-

class problem (whatever the number of classes, it can be 

reduced, by a “one-against-others” method, to a 2-class 

problem). 

The SVM performs a mapping of the input vectors 

(objects) from the input space (initial feature space) Rd 

into a high dimensional feature space Q; the mapping is 

determined by a kernel function K. It finds a linear (or 

non-linear) decision rule in the feature space Q in the 

form of an optimal separating boundary, which leaves the 

widest margin between the decision boundary and the 

input vector mapped into Q. This boundary is found by 

solving the following constrained quadratic programming 

problem:  

Maximize 

( ) ( )i j
1 1 1

1W . . . . ,
2

n n n

i i j i j
i i j

y y K x xα α α α
= = =

= −∑ ∑∑   (3) 

Under the constraints  

0.
1

=∑
=

n

i
ii yα  
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and 0 i Tα≤ ≤  for i=1, 2, …, n where xi ∈ Rd are the 

training sample set vectors, and yi ∈{-1,+1} the 

corresponding class label. T is a constant needed for 

nonseparable classes. K(u,v) is an inner product in the 

feature space Q which may be defined as a kernel 

function in the input space. The condition required is that 

the kernel K(u,v) be a symmetric function which satisfies 

the following general positive constraint:  

( ) ( ) ( ) 0ddgg, >∫∫ vuvuvu
dR

K      (4) 

which is valid for all g≠0 for which  

( )2  dg < ∞∫ u u  (Mercer’s theorem). 

The choice of the kernel K(u, v) determines the structure 

of the feature space Q. A kernel that satisfies (3) may be 

presented in the form: 

( ) ( ) ( )∑ ΦΦ=
k

kkkaK vuvu,       (5) 

where ak are positive scalars and the functions Φk 

represent a basis in the space Q. Vapnik considered three 

types of SVMs [3]:  

 Polynomial SVM:  

( ) ( )p1K += yxyx .,        (6) 

Radial Basis Function SVM (RBF):  

( )
2

22,K e σ

 − − 
 
 =

x y

x y        (7) 

Two-layer neural network SVM:  

( ) ( ){ }Θ−= yxyx .., kTanhK       (8) 

The kernel should be chosen a priori. Other parameters of 

the decision rule (8) are determined by calculating (3), i.e. 

the set of numerical parameters { }n
i 1α  which determines 

the support vectors and the scalar b. 

The separating plane is constructed from those input 

vectors, for which αi≠0. These vectors are called support 

vectors and reside on the boundary margin. The number 

Ns of support vectors determines the accuracy and the 

speed of the SVM. Mapping the separating plane back 

into the input space Rd, gives a separating surface which 

forms the following nonlinear decision rules:  

( ) ( )
1

C Sgn ,
Ns

i i i
i

y K bα
=

 = ⋅ + 
 
∑x s x   (9) 

where si belongs to the set of Ns support vectors defined 

in the training step.  

One can see that the decision rule is easy to compute, but 

the cost of parallel implementation in ASIC or FPGA is 

clearly more important than in the case of the 

hyperrectangles based method. Even if the exponential 

function can be stored in a particular LUT in order to 

avoid computation, the scalar product K requires some 

multiplication and addition; the final decision function 

requires at least one multiplication and one addition per 

support vector. For a given model (set of support vectors), 

operators can be implemented using constant values 

(KCM [17]) as we did in the hyperrectangles-based 

method. However, the cost of multiplication is 

significantly more important than the comparator. 

Chapman, [3], [17], proposes a structure using 20 slices 

per 8 bit multiplier. An 8 bit adder uses 4 slices. The 

hardware cost of a possible SVM parallel implementation 

and total number of necessary slices is summarized in 

Table 1. We estimated the number of adders and 
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multipliers needed by a fully parallel computation of K 

and the final sum of products, in the case of a simplified 

RBF kernel and a polynomial kernel. Given the number of 

slices needed by the computation of each elementary 

operator, we deduced λsvm, the hardware cost of each 

implementation:  

 

Table 1:  SVM hardware cost estimation 

  RBF (distance 
L1) 

Polynomial 
degree p 

  Number of 
operators 

Number of 
operators 

16-bit 
adders (8 
slices) 

- d 

8-bit 
adders (4 
slices) 

3d-1 - 

Multiplier 
Kx8-bit 
(20 slices) 

- d 

K
 (p

er
 su

pp
or

t v
ec

to
r)

 

Multiplier 
8x8-bit (73 
slices) 

- p-1 

Multiplier 
Kx16-bit 
(72 slices) 

Ns Ns 

Su
m

 
of

 
pr

od
uc

ts
 

16 bits 
adders 

1 1 

  Number of 
slices 

Number of 
slices 

To
ta

l 
Sl

ic
es

 

 

72(3 1) 8

svm

d Ns

λ =

− +
 (28

73( 1)

80) 8

svm d

p

Ns

λ =

+ −

+ +

 

 

 

Combination 

Method 

Combining decision classifiers is a classical way to 

increase performance of the general pattern recognition 

problem [18]. Three main methods are commonly used: 

sequential, parallel, and sequential-parallel combination 

(Figure 5). These approaches allow increased 

performance, but the cost of hardware implementation is 

high since all the decision functions have to be computed 

in order to obtain the final classification. 

 

Classifier 1 

Classifier 2 

Classifier 1

Classifier 2

U

Classifier 2 

 x

x 

U

x

x U

Combination 

x
Classifier 1 

x 

Combination 

Sequential combination 

Parallel combination 

Sequential-parallel combination 

C(x) 

C(x) 

C(x) 

 

Figure 5: Combining decision 

More generally, it is possible to combine classification 

methods during the training step [19]. We propose here 

such a combination, allowing an approximation of SVM 

decision boundaries using hyperrectangles (Figure 6).  

Here SVM method is mainly used in order to reject 

ambiguities in the learning set. The algorithm 

combination is as follows: 

- From a training set  S 

( ) ( ) ( ){ }1 1 2 2S , , , ,..., ,p py y y= x x x , build a 

model M containing support vectors using SVM 

algorithm:  

( ) ( ) ( ){ }1 1 2 2, , , , ,..., , ,Ns NsM K y y y b= s s s  

- build S’, the new training set, classifying each 

sample of S using M and according to eq. (8). : 



 8

( ) ( ) ( ){ }1 1 2 2S' , ' , , ' ,..., , 'p py y y= x x x , 

- build H, set of hyperrectangles using S’ and the 

algorithm described in paragraph 0. 

  

During the decision phase, a new test vector x is classified 

regarding H and the decision rule (1). 

 

Classifier 1 
training -SVM 

training 
set S’ 

Model M 
 

Classifier 1 
Decision- SVM 

Classifier 2 
training - 
Hyperrectangle 

Classifier 2 
Decision - 
Hyperrectangle 

Set of hyperrectangles H 

 
x 

C(x’)

training 
set S 

Test vector x’ 

 

Figure 6: Combination of training steps 

 

 

Application of Gaussian distributions 

We validate the principle of the described method using 

Gaussian distributions. The first test configuration 

contains 2 classes, and the second configuration contains 

3 classes. Results are summarized at the end of this 

section. In each case, we use cross-validation with 

p=1000 samples per class for the training set, and 

p=10000 samples per class for the test set. 

 

Multimodal case 

This learning set S is described in the previous paragraph. 

We use a RBF kernel (eq. (6)). The SVM classified set S’ 

and the final set of hyperrectangles are depicted in Figure 

7. 

Training set S’ 
 

Final set of Hyperrectangles 
 

Figure 7: SVM and Hyperrectangle boundaries 

The results show that the hyperrectangles-based method 

imitates the SVM decision algorithm, giving a good 

approximation of boundaries. The error rate of SVM is 

17.27% for the C0 class and 13.74% for the C1 class 

while the errors obtained using final hyperrectangles 

(learning combination) are 17.16% and 13.96% 

respectively. 

One can see that performances are very close, and more 

symmetric than when using the initial learning set. 

Moreover, the number of hyperrectangles decreased, since 

the initial numbers were 748 (C0) and 762 (C1) before 
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SVM classification and only 104 (C0) and 101 (C1) after 

SVM classification. This allows the optimization of the 

hardware resources in the case of implementation. The 

cost of a direct implementation of SVM decision step is 

not comparable here, since the number of support vectors 

is 1190: the estimated hardware cost of SVM is 

λsvm=428408 slices, whereas λH (hyperrectangles cost) 

equals only 205. 

 

Case of 3 classes, monomodal distributions 

The same method has been applied using three classes, in 

a two-dimensional space. The training set and the results 

of learning combination are represented in Figure 8. 

 

 
Training set S (3 classes) 

 

 
Hyperrectangle set 

 

 
SVM classified learning set S’ 

 

 
Final Hyperrectangle set 

C0 

C1 
C2 

 

Figure 8 Training set S (3 classes) 
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Error rates and numbers of hyperrectangles are reported in 

Table 2. The same improvement of performances is 

obtained in both cases, illustrating the good choice of the 

combination of training steps. 

 

Table 2: Results using Gaussian distributions 

  Direct learning using 
Hyperrectangle 

Learning using 
SVM 

Combination 

  c0 c1 c2 c0 c1 c2 c0 c1 c2 
2 classes, D2 Error (%) 18.88 24.34 x 17.27 13.74 x 17.16 13.96 x 

 nh 748 762 x x x x 104 101 x 
3 classes, D2 Error (%) 15.02 15.44 14.36 11.66 11.84 8.28 11.60 11.70 8.62

 nh 389 343 343 x x x 92 86 71

  

 

Real-time image segmentation for detection 

of anomalies 

 

We applied our method to a preprocessing step of 

industrial project of quality control by artificial vision. 

The part we must control is a wire made up of a spiral 

part, body and a non-spiral part, legs. 

 

 Legs Body (spiraled part)  

Figure 9: Part to be controlled. 

All anomalies existing over the whole part can be grouped 

into 3 categories:  

- Dimensional anomalies: diameter of the wire composing 

the part, length of the part, length of the body, length of 

the non-spiraled part. 

- Visual anomalies discoloration, stripes, cracks, flaws of 

surface. 

- Various anomalies of the spiral not comprising a 

deterioration of the wire composing the body. 

We have to distinguish between thirty anomalies at the 

end of the project. During this preliminary work, we need 

to obtain a segmented image allowing extraction of high 

level classification features, such as distance between 

turns, surfaces and orientation of the turns, etc. Some of 

these features are depicted in Figure 10, where the part is 

modeled using whorls orientations and distances. 

Note that the wire is textured: a single threshold could not 

be a robust operator. We extracted some simple texture 

features, keeping in mind real-time constraints. 

The image size is 1288x1080, and the acquisition rate is 

10 images/s. 

 

Figure 10: Part modeling 

 

A preliminary study of segmentation features led us to 

choose a four-dimensional features space: 

x0 is the mean of luminance in 8x8 windows, 

x1 is the new pixel value after local histogram 

equalisation, 
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x2 is the mean of a Sobel filter in 8x8 windows, 

x3 is the mean of the local contrast in 8x8 windows. 

An example of these features is depicted in Figure 11. 

Mean of luminance 8x8 
 

Local Histogram equalization 8x8 
 

Mean of Sobel gradient 8x8 
 

Mean of local constrast 8x8 

 

Figure 11 Features used for segmentation 

 

The local contrast V(i,j) in an [n x m] neighbourhood of 

A(i,j) pixel can be expressed as follows: 

max min

max min

( , ) A AV i j
A A

−=
+

      (9) 

with 

max

1
,

22

1
2 2

( , ),
max

n nk

m ml

A i k j l
A

−
− ≤ ≤

−− ≤ ≤

    + +     =  
    
    

,

min

1 ,
2 2

1
2 2

( , ),
min

n nk

m ml

A i k j l
A

−− ≤ ≤

−− ≤ ≤

    + +     =  
        

   (10) 

and x refers to the integer part of x (floor operator). 

 

The local mean of the Sobel gradient norm G(i,j) and the 

local mean of luminance S(i,j) in a [n x m] neighbourhood 

of A(i,j) pixels can be written as follows: 

( ) ( )

( ) ( )

1( , ) ( , )
q n q m

k p n l p m
S i j A i k j l

mn = =
= + +∑ ∑    (11) 

and  

( ) ( )

( ) ( )

1( , ) ( , )
q n q m

k p n l p m
G i j g i k j l

mn = =
= + +∑ ∑    (12) 

 

with  

1( )
2

np n − = −   
, ( )

2
nq n  =   

, and g(i,j) is the Sobel 

gradient norm of the pixel A(i,j). 

 

We have chosen this set of features using the SFS, [20], 

[21], algorithm from a superset of 30 features (including 

variations of window size and other operators such as 

morphological operators, local entropy, etc).  
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Training image 
 

C0 class pixels 
 

C1 class pixels 
  

Figure 12: Training image and areas 

We defined the labels of the training set S manually, 

using two binary images which define respectively class 0 

and class 1 pixels (white pixels in Figure 12). For each 

class, 5000 pixels or samples were randomly chosen from 

the white areas of these pictures. 

We have depicted two projections of the training set in 

Figure 13. 

We applied our combination method, as described in the 

previous section, using 10 test images. An example test 

image is shown in Figure 14.  

The SVM kernel used in this application is polynomial, 

degree 2. 

The segmentation results are depicted in Figure 15. In 

order to quantify the results, we manually segmented the 

test images and computed the classification error of each 

class for the different segmented images. The obtained 

results are summarized in Table 3. 

 

 
 

x0 and x1 projections 
 

 
x2 and x3 projections 

x0

x1

C0

C1

x2

x3

 

Figure 13: Training set 

 

Table 3: Performance improvement 

 C0 (black) C1 (white) Global
hyperrectangle error (%) 0.13 14.54 1.88
initial m 299 207 506
SVM error (%) 0.93 4.1 1.32
Combination error (%) 1.19 2.84 1.39
m after combination 54 64 118

 
 

This example illustrates that it is possible to obtain a 

decision combining the accuracy of the SVM algorithm 

and the speed of the hyperrectangles-based method. The 

final classification error of the hyperrectangles-based 
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method is very close to the SVM result (1.32% for SVM 

and 1.39% for hyperrectangle). The final hardware cost 

for this process is λH=236 slices, whereas the cost of 

implementation for SVM is very high, since a total of 

2500 support vectors were found during the training step. 

In this case, the hardware cost of a full parallel decision 

step is λsvm=662508 ! 

 

Figure 14: Test image 

Segmented image using initial learning set and 
hyperrectangles 

 

Segmented image using SVM 
 

Segmented image using SVM classified learning set and 
hyperrectangles 

 

Figure 15: Segmented images  

 

Conclusion 

 

We have shown that it is possible to imitate the 

performance of the SVM classifier for a lower cost of 

implementation and increased the accuracy of a particular 

hyperrectangles-based classifier. 

The performance improvement of the basic method is 

valid in terms of classification as well as integration cost 

(i.e. speed), since the final number of hyperrectangles is 

minimised. 

We demonstrated the improvement both on Gaussian 

distributions and in a practical case of textured image 

segmentation. We developed the whole implementation 

process, from the learning set definition to FPGA 

implementation using automatic VHDL generation. 

Note that this combination models well our behaviour 

before an artificial vision quality control problem: the 

very first decision given by the expert is often modified 

for limit cases after observation of the results. This can be 

seen also as a particular application of ambiguities reject 

method used in many classification algorithms. 

Our future work will be the whole implementation of the 

anomalies detection process on the part presented here in 

order to illustrate the advantage of the learning steps 

combination. 

 

Acknowledgements 

The authors wish to thank F. Meriaudeau for his help with 

the English translation of this paper. 

 



 14

References 

 

[1] R. O. Duda and P.E. Hart (1973) Pattern classification 

and scene analysis, Wiley, New York, pp. 230-243. 

[2] C. M. Bishop (1995) Neural networks for Pattern 

Recognition, Oxford University Press, pp 110-230. 

[3] V. Vapnik (1995) The nature of statistical learning 

theory , Springer-Verlag, New York. 

[4] P. Niyogi, C. Burges, P. Ramesh (1999) Distinctive 

Feature Detection Using Support Vector Machines, 

ICASSP 99, 1: 425-428. 

[5] B. Schölkopf, A. Smola, K.-R. Müller, C. J. C. 

Burges and V. Vapnik (1998) Support Vector 

methods in learning and feature extraction, 

Australian Journal of Intelligent Information 

Processing Systems, 1: 3-9. 

[6] K. Jonsson, J. Kittler, Y. P. Li, and J. Matas (1999) 

Support Vector Machines for Face Authentication. In 

T. Pridmore and D. Elliman, editors, British Machine 

Vision Conference, pp 543-553. 

[7] J. Mitéran, P. Gorria and M. Robert (1994) 

Classification géométrique par polytopes de 

contraintes. Performances et intégration , Traitement 

du Signal, Vol 11 : 393-408. 

[8] D. Wettschereck and T. Dietterich (1995) An 

Experimental Comparison of the Nearest-Neighbor 

and Nearest-Hyperrectangle Algorithms, Machine 

Learning, Vol 19, 1: 5-27. 

[9] S. Salzberg (1991) A nearest hyperrectangle learning 

method. Machine Learning, 6: 251-276. 

[10] M. Robert, P. Gorria, J. Mitéran, S. Turgis (1994) 

Architectures for real-time classification processor, 

Custom Integrated Circuit Conference, San Diego 

CA, pp 197-200. 

[11] J. Mitéran, J. P. Zimmer, F. Yang, M. Paindavoine 

(2001) Access control : adaptation and real-time 

implantation of a face recognition method, Optical 

Engineering, 40(4): 586-593. 

[12] B. Dubuisson Diagnostic et reconnaissance des 

formes, HERMES, Paris, 1990. 

[13] J. Mitéran, P. Geveaux, R. Bailly and P. Gorria, Real-

time defect detection using image segmentation 

(1997) Proceedings of IEEE-ISIE 97, Guimares, 

Portugal, pp. 713-716. 

[14] R. Enzler, T. Jeger, D. Cottet, and G. Tröster (2000) 

High-Level Area and Performance Estimation of 

Hardware Building Blocks on FPGAs, In Field-

Programmable Logic and Applications (Proc. FPL 

00), Lecture Notes in Computer Science, Vol. 1896, 

Springer, pp. 525-534 

[15] S. Hauck (1998) The Roles of FPGAs in 

Reprogrammable Systems, Proceedings of the IEEE, 

86(4): 615-638. 

[16] M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, 

and J. Platt (1998) Trends and Controversies - 

Support Vector Machines. IEEE Intelligent Systems, 

13(4) : 18-28. 

[17] K. Chapman (1996) Constant coefficient multipliers 

for the XC4000E. Xilinx Application, Note 

XAPP054, Xilinx, Inc. 

[18] J. Kittler, M. Hatef, R. P. W. Duin, J. Matas (1998) 

On combining classifiers in IEEE transactions on 



 15

Pattern Analysis and Machine Intelligence, 20(3): 

226-239. 

[19] B. Moobed (1996) Combinaison de classifieurs, une 

nouvelle approche, PhD. thesis, Laboratoire 

d’informatique de polytechnique d’Orsay ; France. 

[20] J. Kittler (1978) Feature set search algorithms, 

Pattern Recognition and Signal Processing, Sijthoff 

and Noordhoff, Alphen aan den Rijn, Netherlands, pp 

41-60. 

[21] P. Somol, P. Pudil, J. Novovocova, P. Paclik (1999) 

Adaptative floating search methods in feature 

selection, Pattern Recognition Letters, 20: 1157-

1163. 

 

 


