
 1

SVM Approximation for Real-time Image Segmentation by
Using an Improved Hyperrectangles-based Method

J. Mitéran, S. Bouillant, E. Bourennane

Le2i - FRE CNRS 2309 Aile des Sciences de l’ingénieur
Université de Bourgogne

BP 47870
21078 Dijon - FRANCE
miteranj@u-bourgogne.fr

Summary

A real-time implementation of an approximation of the support vector machine decision rule is proposed. This method is

based on an improvement of a supervised classification method using hyperrectangles, which is useful for real-time image

segmentation. The final decision combines the accuracy of the SVM learning algorithm and the speed of a hyperrectangles-

based method. We review the principles of the classification methods and we evaluate the hardware implementation cost of

each method. We present the combination algorithm which consists of rejecting ambiguities in the learning set using SVM

decision, before using the learning step of the hyperrectangles-based method. We present results obtained using Gaussian

distribution and give an example of image segmentation from an industrial inspection problem. The results are evaluated

regarding hardware cost as well as classification performances.

Running headline: SVM approximation for image segmentation

Introduction

Real-time image segmentation is a well known problem

and can be solved using pixel-wise classification and

specific classifiers. This paper focuses on very high speed

decisions operators (approximately 10 ns per pixel)

which, for example, can be used to detect anomalies on

manufactured parts. The segmentation is usually the first

step of a pattern recognition process.

Mainly because of the time constraint of our industrial

application (10 images/s, size 1288x1080), only

segmentation methods based on context-free local

analysis of pixel neighbourhoods were considered.

Classification is a central problem of pattern recognition

[1] and many approaches to the problem have been

proposed, e.g. neural networks [2], Support Vector

Machines (SVM) [3], k-nearest neighbours (K-nn) and

kernel-based methods. The chosen classifier must either

be implemented in low-cost hardware or in optimised

software running in real-time.

It has been shown that the SVM method gives very good

results in many practical cases, [4], [5], [6], however, this

robust algorithm is not often used for pixel-wise

classification because of the decision rule complexity.

We previously developed a hyperrectangles-based

classifier [7]: this hyperrectangle method belongs to the

same family as the NGE (Nested Generalized Exemplars)

algorithm, described by Salzberg [8], [9].

In [10], we showed that this classifier can be implemented

as a parallel component in order to obtain the required

 2

speed, and in [11] we indicated that the performances are

sufficient for use in a face recognition algorithm.

However, the performance of the training step is

sometimes affected by ambiguities in the training set, and,

more generally, the basic hyperrectangles-based method

is outperformed by the SVM algorithm.

We propose in this paper an original combination of

classifiers allowing for fast and robust classification as

applied to image segmentation. The SVM is used during a

first step, pre-processing the training set and thus

rejecting any ambiguities. The hyperrectangles-based

learning algorithm is applied using the SVM classified

training set. We will show that the hyperrectangle method

imitates the SVM method in terms of performances, for a

lower implementation cost using reconfigurable

computing.

In the first part of this paper, we review the principles of

the two classifiers: the Hyperrectangles-based method and

the SVM. In the second part, we present our combination

method as applied on Gaussian distributions, which are

often used in literature for performance evaluation of

classifiers [12] [1]. Finally, we present practical results

obtained from the image segmentation of an industrial

part.

Classification algorithms

Hyperrectangles-based method

This method divides the attribute space into a set of

hyperrectangles for which simple comparators may easily

satisfy the membership condition. This hyperrectangle

method belongs to the same family as the NGE algorithm,

described by Salzberg [9], whose performance was

compared to the K-nn method by Wettschereck and

Dietterich [8]. The performance of our own

implementation was studied in [6].

The training step consists of collecting the set S of the

most representative samples from the various classes and

associating with each sample a local constraint

(hyperrectangle) H(xi).

() () (){ }1 1 2 2S , , , ,..., ,p py y y= x x x

Each sample is defined by a feature vector x in D

dimensional space and its corresponding class or label

C(x)=y:

x=(x1, x2, ..., xD)T

Hyperrectangle determination:

During the first step, a hyperrectangle H(x) is built for

each sample x as follows :

Each part Θ p (see Figure 1) defines the area where

(),∞ = −k l
k l p pd x xx x with

()
1,...,

, max∞ =
= −k kk D

d x y x y

We define δp as the nearest neighbour belonging to a

different class in each quadrant Θ p . If dp is the distance

between x and δp in a given Θ p , the limit of the

hyperrectangle in the direction is computed as df = dp.Rp.

The parameter Rp must be less than or equal to 0.5. This

constraint ensures that the hyperrectangle cannot contain

any samples of opposite classes.

 3

xj

xi

x +Θi−Θi

+Θ j

−Θ j

dp

df

H(x)
δi

Figure 1: Hyperrectangle computation

During the second step, hyperrectangles of a given class

are merged together in order to optimise the final number

of hyperrectangles [7] (Figure 2).

The decision phase consists of allocating a class to a new

attribute vector. The membership of a new feature value

xk to a given interval Iik (ith hyperrectangle and kth feature)

is easily verified by controlling the two following

conditions : (xk > aik) and (xk < bik), where aik and bik are

respectively the lower and upper limits of each polytope

or hyperrectangle. Therefore, the verification of the

membership of an unknown vector x to a class y results in

a set of comparisons done simultaneously on each feature

for every hyperrectangle of class y. The resulting decision

rule is:

() ()()
1 1

() .
yi m k d

k ik k ik
i k

C y x a x b
= =

= =

= ⇔ > <∑∏x is true (1)

where my equal to the number of hyperrectangles of class

y after a merging phase. Sum and product are logical

operators. This method is easy to use, and can be

implemented for real-time classification using hardware

[13] or software optimisation.

x1

x2

0 255

255

Figure 2: Hyperrectangles obtained in a two

dimensional features space.

We developed an algorithm allowing evaluation of the

implementation cost of this method in Field

Programmable Gate Array (FPGA). In recent years

FPGAs have become increasingly important and have

found their way into system design. FPGAs are used

during development, prototyping, and initial production

and are replaced by hardwired gate arrays or application

specific ICs (ASICs) for highvolume production [14]. The

advantage of these components is mainly their

reconfigurability [15].

It is possible to integrate the constant values (the limits of

hyperrectangles) in the architecture of the decision

function. We have coded a tool which automatically

generates a VHDL description of a decision function

given the result of a training step (i.e. given the

hyperrectangles limits). We then used a standard

synthesizer tool for the final implementation in FPGA.

We verified that a single comparator between a variable

(feature value) and a constant (hyperrectangle limit) only

uses on average 0.5 slices (using bytes). The slice is the

elementary structure of the FPGA of the Virtex family

(Figure 3), and one component can contain a few

 4

thousand of these blocks. This estimation is possible since

the binary result LB of the comparison of the variable byte

A and the constant byte B is a function FB of the bits of A:

LB=FB(A7,A6,...,A0)

Let us consider for example B=151, 10010111 in binary,

then, where "*" is the logic operator AND, "+" is the logic

operator OR:

L151=A7*(A6+(A5+(A4*A3))).

L151 is true if A is greater than 151, and false otherwise.

More generally, we can write LB as follows (for any byte

B such that 0<B<255):

LB=A7@(A6@(A5@(A4@(A3@(A2@(A1@(A0@0)))))))

The @ operator denotes either the AND operator or the

OR operator, depending on the position of @ and the

value of B. In the worst case, the particular structure of LB

can be stored in two cascaded Look Up Tables (LUT) of

16 bits each (one slice). On average we obtain 0.5 slices

per comparison.

 Since the decision rule requires 2 comparators per

hyperrectangle and per dimension, we evaluate λH, the

hardware cost of hyperrectangles implementation

(number of slices) with:

1

y z

H y
y

d mλ
=

=

= ∑ (2)

where z is the number of classes. In the particular case of

a 2-class problem, the summation can be computed only

to y=z-1, since only one set of hyperrectangles defines the

boundary.

Figure 3: Slice structure

We evaluated the performance of this method in various

cases, using theoretical distributions [6] as well as real

sampling [11]. We compared the performance with neural

networks, the K-nn method, and a Parzen’s kernel based

method [1]. It is clear that the algorithm performs poorly

when the inter-class distances are too small. The overlap

between classes is arbitrarily classified and introduces a

classification error.

 5

Multimodal Gaussian distributions

Hyperrectangle set

C0
C1

Figure 4: Gaussian Distributions

This is shown in Figure 4, where we present two

distributions in a two-dimensional feature space. The C0

class is multimodal. The error is not symmetric, due to the

priority given to the first class, and is rate is 18.88% for

the C0 class, and 24.34% for the C1 class. Moreover, an

important number of hyperrectangles are created in the

overlap area, slowing down the decision or increasing the

implementation cost.

Many classification methods, such as neural networks,

density evaluation-based method, and the SVM described

above are less sensitive to this overlap. It has been proven

that a particular advantage of SVM over other learning

algorithms is that it can be analyzed theoretically using

concepts from computational learning theory and at the

same time can achieve good performance when applied to

real-world problems [16]. We chose this method as a pre-

processing step and show that it is possible to

approximate the result of the SVM using a combination of

training steps.

SVM classification

A Support Vector Machine (SVM) is a universal learning

machine developed by Vladimir Vapnik [3] in 1979. A

review of the basic principles follows, considering a 2-

class problem (whatever the number of classes, it can be

reduced, by a “one-against-others” method, to a 2-class

problem).

The SVM performs a mapping of the input vectors

(objects) from the input space (initial feature space) Rd

into a high dimensional feature space Q; the mapping is

determined by a kernel function K. It finds a linear (or

non-linear) decision rule in the feature space Q in the

form of an optimal separating boundary, which leaves the

widest margin between the decision boundary and the

input vector mapped into Q. This boundary is found by

solving the following constrained quadratic programming

problem:

Maximize

() ()i j
1 1 1

1W ,
2

n n n

i i j i j
i i j

y y K x xα α α α
= = =

= −∑ ∑∑ (3)

Under the constraints

0.
1

=∑
=

n

i
ii yα

 6

and 0 i Tα≤ ≤ for i=1, 2, …, n where xi ∈ Rd are the

training sample set vectors, and yi ∈{-1,+1} the

corresponding class label. T is a constant needed for

nonseparable classes. K(u,v) is an inner product in the

feature space Q which may be defined as a kernel

function in the input space. The condition required is that

the kernel K(u,v) be a symmetric function which satisfies

the following general positive constraint:

() () () 0ddgg, >∫∫ vuvuvu
dR

K (4)

which is valid for all g≠0 for which

()2 dg < ∞∫ u u (Mercer’s theorem).

The choice of the kernel K(u, v) determines the structure

of the feature space Q. A kernel that satisfies (3) may be

presented in the form:

() () ()∑ ΦΦ=
k

kkkaK vuvu, (5)

where ak are positive scalars and the functions Φk

represent a basis in the space Q. Vapnik considered three

types of SVMs [3]:

 Polynomial SVM:

() ()p1K += yxyx ., (6)

Radial Basis Function SVM (RBF):

()
2

22,K e σ

 − −

 =

x y

x y (7)

Two-layer neural network SVM:

() (){ }Θ−= yxyx .., kTanhK (8)

The kernel should be chosen a priori. Other parameters of

the decision rule (8) are determined by calculating (3), i.e.

the set of numerical parameters { }n
i 1α which determines

the support vectors and the scalar b.

The separating plane is constructed from those input

vectors, for which αi≠0. These vectors are called support

vectors and reside on the boundary margin. The number

Ns of support vectors determines the accuracy and the

speed of the SVM. Mapping the separating plane back

into the input space Rd, gives a separating surface which

forms the following nonlinear decision rules:

() ()
1

C Sgn ,
Ns

i i i
i

y K bα
=

 = ⋅ +

∑x s x (9)

where si belongs to the set of Ns support vectors defined

in the training step.

One can see that the decision rule is easy to compute, but

the cost of parallel implementation in ASIC or FPGA is

clearly more important than in the case of the

hyperrectangles based method. Even if the exponential

function can be stored in a particular LUT in order to

avoid computation, the scalar product K requires some

multiplication and addition; the final decision function

requires at least one multiplication and one addition per

support vector. For a given model (set of support vectors),

operators can be implemented using constant values

(KCM [17]) as we did in the hyperrectangles-based

method. However, the cost of multiplication is

significantly more important than the comparator.

Chapman, [3], [17], proposes a structure using 20 slices

per 8 bit multiplier. An 8 bit adder uses 4 slices. The

hardware cost of a possible SVM parallel implementation

and total number of necessary slices is summarized in

Table 1. We estimated the number of adders and

 7

multipliers needed by a fully parallel computation of K

and the final sum of products, in the case of a simplified

RBF kernel and a polynomial kernel. Given the number of

slices needed by the computation of each elementary

operator, we deduced λsvm, the hardware cost of each

implementation:

Table 1: SVM hardware cost estimation

 RBF (distance
L1)

Polynomial
degree p

 Number of
operators

Number of
operators

16-bit
adders (8
slices)

- d

8-bit
adders (4
slices)

3d-1 -

Multiplier
Kx8-bit
(20 slices)

- d

K
 (p

er
 su

pp
or

t v
ec

to
r)

Multiplier
8x8-bit (73
slices)

- p-1

Multiplier
Kx16-bit
(72 slices)

Ns Ns

Su
m

of

pr

od
uc

ts

16 bits
adders

1 1

 Number of
slices

Number of
slices

To
ta

l
Sl

ic
es

72(3 1) 8

svm

d Ns

λ =

− +
 (28

73(1)

80) 8

svm d

p

Ns

λ =

+ −

+ +

Combination

Method

Combining decision classifiers is a classical way to

increase performance of the general pattern recognition

problem [18]. Three main methods are commonly used:

sequential, parallel, and sequential-parallel combination

(Figure 5). These approaches allow increased

performance, but the cost of hardware implementation is

high since all the decision functions have to be computed

in order to obtain the final classification.

Classifier 1

Classifier 2

Classifier 1

Classifier 2

U

Classifier 2

 x

x

U

x

x U

Combination

x
Classifier 1

x

Combination

Sequential combination

Parallel combination

Sequential-parallel combination

C(x)

C(x)

C(x)

Figure 5: Combining decision

More generally, it is possible to combine classification

methods during the training step [19]. We propose here

such a combination, allowing an approximation of SVM

decision boundaries using hyperrectangles (Figure 6).

Here SVM method is mainly used in order to reject

ambiguities in the learning set. The algorithm

combination is as follows:

- From a training set S

() () (){ }1 1 2 2S , , , ,..., ,p py y y= x x x , build a

model M containing support vectors using SVM

algorithm:

() () (){ }1 1 2 2, , , , ,..., , ,Ns NsM K y y y b= s s s

- build S’, the new training set, classifying each

sample of S using M and according to eq. (8). :

 8

() () (){ }1 1 2 2S' , ' , , ' ,..., , 'p py y y= x x x ,

- build H, set of hyperrectangles using S’ and the

algorithm described in paragraph 0.

During the decision phase, a new test vector x is classified

regarding H and the decision rule (1).

Classifier 1
training -SVM

training
set S’

Model M

Classifier 1
Decision- SVM

Classifier 2
training -
Hyperrectangle

Classifier 2
Decision -
Hyperrectangle

Set of hyperrectangles H

x

C(x’)

training
set S

Test vector x’

Figure 6: Combination of training steps

Application of Gaussian distributions

We validate the principle of the described method using

Gaussian distributions. The first test configuration

contains 2 classes, and the second configuration contains

3 classes. Results are summarized at the end of this

section. In each case, we use cross-validation with

p=1000 samples per class for the training set, and

p=10000 samples per class for the test set.

Multimodal case

This learning set S is described in the previous paragraph.

We use a RBF kernel (eq. (6)). The SVM classified set S’

and the final set of hyperrectangles are depicted in Figure

7.

Training set S’

Final set of Hyperrectangles

Figure 7: SVM and Hyperrectangle boundaries

The results show that the hyperrectangles-based method

imitates the SVM decision algorithm, giving a good

approximation of boundaries. The error rate of SVM is

17.27% for the C0 class and 13.74% for the C1 class

while the errors obtained using final hyperrectangles

(learning combination) are 17.16% and 13.96%

respectively.

One can see that performances are very close, and more

symmetric than when using the initial learning set.

Moreover, the number of hyperrectangles decreased, since

the initial numbers were 748 (C0) and 762 (C1) before

 9

SVM classification and only 104 (C0) and 101 (C1) after

SVM classification. This allows the optimization of the

hardware resources in the case of implementation. The

cost of a direct implementation of SVM decision step is

not comparable here, since the number of support vectors

is 1190: the estimated hardware cost of SVM is

λsvm=428408 slices, whereas λH (hyperrectangles cost)

equals only 205.

Case of 3 classes, monomodal distributions

The same method has been applied using three classes, in

a two-dimensional space. The training set and the results

of learning combination are represented in Figure 8.

Training set S (3 classes)

Hyperrectangle set

SVM classified learning set S’

Final Hyperrectangle set

C0

C1
C2

Figure 8 Training set S (3 classes)

 10

Error rates and numbers of hyperrectangles are reported in

Table 2. The same improvement of performances is

obtained in both cases, illustrating the good choice of the

combination of training steps.

Table 2: Results using Gaussian distributions

 Direct learning using
Hyperrectangle

Learning using
SVM

Combination

 c0 c1 c2 c0 c1 c2 c0 c1 c2
2 classes, D2 Error (%) 18.88 24.34 x 17.27 13.74 x 17.16 13.96 x

 nh 748 762 x x x x 104 101 x
3 classes, D2 Error (%) 15.02 15.44 14.36 11.66 11.84 8.28 11.60 11.70 8.62

 nh 389 343 343 x x x 92 86 71

Real-time image segmentation for detection

of anomalies

We applied our method to a preprocessing step of

industrial project of quality control by artificial vision.

The part we must control is a wire made up of a spiral

part, body and a non-spiral part, legs.

 Legs Body (spiraled part)

Figure 9: Part to be controlled.

All anomalies existing over the whole part can be grouped

into 3 categories:

- Dimensional anomalies: diameter of the wire composing

the part, length of the part, length of the body, length of

the non-spiraled part.

- Visual anomalies discoloration, stripes, cracks, flaws of

surface.

- Various anomalies of the spiral not comprising a

deterioration of the wire composing the body.

We have to distinguish between thirty anomalies at the

end of the project. During this preliminary work, we need

to obtain a segmented image allowing extraction of high

level classification features, such as distance between

turns, surfaces and orientation of the turns, etc. Some of

these features are depicted in Figure 10, where the part is

modeled using whorls orientations and distances.

Note that the wire is textured: a single threshold could not

be a robust operator. We extracted some simple texture

features, keeping in mind real-time constraints.

The image size is 1288x1080, and the acquisition rate is

10 images/s.

Figure 10: Part modeling

A preliminary study of segmentation features led us to

choose a four-dimensional features space:

x0 is the mean of luminance in 8x8 windows,

x1 is the new pixel value after local histogram

equalisation,

 11

x2 is the mean of a Sobel filter in 8x8 windows,

x3 is the mean of the local contrast in 8x8 windows.

An example of these features is depicted in Figure 11.

Mean of luminance 8x8

Local Histogram equalization 8x8

Mean of Sobel gradient 8x8

Mean of local constrast 8x8

Figure 11 Features used for segmentation

The local contrast V(i,j) in an [n x m] neighbourhood of

A(i,j) pixel can be expressed as follows:

max min

max min

(,) A AV i j
A A

−=
+

 (9)

with

max

1
,

22

1
2 2

(,),
max

n nk

m ml

A i k j l
A

−
− ≤ ≤

−− ≤ ≤

 + + =

,

min

1 ,
2 2

1
2 2

(,),
min

n nk

m ml

A i k j l
A

−− ≤ ≤

−− ≤ ≤

 + + =

 (10)

and x refers to the integer part of x (floor operator).

The local mean of the Sobel gradient norm G(i,j) and the

local mean of luminance S(i,j) in a [n x m] neighbourhood

of A(i,j) pixels can be written as follows:

() ()

() ()

1(,) (,)
q n q m

k p n l p m
S i j A i k j l

mn = =
= + +∑ ∑ (11)

and

() ()

() ()

1(,) (,)
q n q m

k p n l p m
G i j g i k j l

mn = =
= + +∑ ∑ (12)

with

1()
2

np n − = −
, ()

2
nq n =

, and g(i,j) is the Sobel

gradient norm of the pixel A(i,j).

We have chosen this set of features using the SFS, [20],

[21], algorithm from a superset of 30 features (including

variations of window size and other operators such as

morphological operators, local entropy, etc).

 12

Training image

C0 class pixels

C1 class pixels

Figure 12: Training image and areas

We defined the labels of the training set S manually,

using two binary images which define respectively class 0

and class 1 pixels (white pixels in Figure 12). For each

class, 5000 pixels or samples were randomly chosen from

the white areas of these pictures.

We have depicted two projections of the training set in

Figure 13.

We applied our combination method, as described in the

previous section, using 10 test images. An example test

image is shown in Figure 14.

The SVM kernel used in this application is polynomial,

degree 2.

The segmentation results are depicted in Figure 15. In

order to quantify the results, we manually segmented the

test images and computed the classification error of each

class for the different segmented images. The obtained

results are summarized in Table 3.

x0 and x1 projections

x2 and x3 projections

x0

x1

C0

C1

x2

x3

Figure 13: Training set

Table 3: Performance improvement

 C0 (black) C1 (white) Global
hyperrectangle error (%) 0.13 14.54 1.88
initial m 299 207 506
SVM error (%) 0.93 4.1 1.32
Combination error (%) 1.19 2.84 1.39
m after combination 54 64 118

This example illustrates that it is possible to obtain a

decision combining the accuracy of the SVM algorithm

and the speed of the hyperrectangles-based method. The

final classification error of the hyperrectangles-based

 13

method is very close to the SVM result (1.32% for SVM

and 1.39% for hyperrectangle). The final hardware cost

for this process is λH=236 slices, whereas the cost of

implementation for SVM is very high, since a total of

2500 support vectors were found during the training step.

In this case, the hardware cost of a full parallel decision

step is λsvm=662508 !

Figure 14: Test image

Segmented image using initial learning set and
hyperrectangles

Segmented image using SVM

Segmented image using SVM classified learning set and
hyperrectangles

Figure 15: Segmented images

Conclusion

We have shown that it is possible to imitate the

performance of the SVM classifier for a lower cost of

implementation and increased the accuracy of a particular

hyperrectangles-based classifier.

The performance improvement of the basic method is

valid in terms of classification as well as integration cost

(i.e. speed), since the final number of hyperrectangles is

minimised.

We demonstrated the improvement both on Gaussian

distributions and in a practical case of textured image

segmentation. We developed the whole implementation

process, from the learning set definition to FPGA

implementation using automatic VHDL generation.

Note that this combination models well our behaviour

before an artificial vision quality control problem: the

very first decision given by the expert is often modified

for limit cases after observation of the results. This can be

seen also as a particular application of ambiguities reject

method used in many classification algorithms.

Our future work will be the whole implementation of the

anomalies detection process on the part presented here in

order to illustrate the advantage of the learning steps

combination.

Acknowledgements

The authors wish to thank F. Meriaudeau for his help with

the English translation of this paper.

 14

References

[1] R. O. Duda and P.E. Hart (1973) Pattern classification

and scene analysis, Wiley, New York, pp. 230-243.

[2] C. M. Bishop (1995) Neural networks for Pattern

Recognition, Oxford University Press, pp 110-230.

[3] V. Vapnik (1995) The nature of statistical learning

theory , Springer-Verlag, New York.

[4] P. Niyogi, C. Burges, P. Ramesh (1999) Distinctive

Feature Detection Using Support Vector Machines,

ICASSP 99, 1: 425-428.

[5] B. Schölkopf, A. Smola, K.-R. Müller, C. J. C.

Burges and V. Vapnik (1998) Support Vector

methods in learning and feature extraction,

Australian Journal of Intelligent Information

Processing Systems, 1: 3-9.

[6] K. Jonsson, J. Kittler, Y. P. Li, and J. Matas (1999)

Support Vector Machines for Face Authentication. In

T. Pridmore and D. Elliman, editors, British Machine

Vision Conference, pp 543-553.

[7] J. Mitéran, P. Gorria and M. Robert (1994)

Classification géométrique par polytopes de

contraintes. Performances et intégration , Traitement

du Signal, Vol 11 : 393-408.

[8] D. Wettschereck and T. Dietterich (1995) An

Experimental Comparison of the Nearest-Neighbor

and Nearest-Hyperrectangle Algorithms, Machine

Learning, Vol 19, 1: 5-27.

[9] S. Salzberg (1991) A nearest hyperrectangle learning

method. Machine Learning, 6: 251-276.

[10] M. Robert, P. Gorria, J. Mitéran, S. Turgis (1994)

Architectures for real-time classification processor,

Custom Integrated Circuit Conference, San Diego

CA, pp 197-200.

[11] J. Mitéran, J. P. Zimmer, F. Yang, M. Paindavoine

(2001) Access control : adaptation and real-time

implantation of a face recognition method, Optical

Engineering, 40(4): 586-593.

[12] B. Dubuisson Diagnostic et reconnaissance des

formes, HERMES, Paris, 1990.

[13] J. Mitéran, P. Geveaux, R. Bailly and P. Gorria, Real-

time defect detection using image segmentation

(1997) Proceedings of IEEE-ISIE 97, Guimares,

Portugal, pp. 713-716.

[14] R. Enzler, T. Jeger, D. Cottet, and G. Tröster (2000)

High-Level Area and Performance Estimation of

Hardware Building Blocks on FPGAs, In Field-

Programmable Logic and Applications (Proc. FPL

00), Lecture Notes in Computer Science, Vol. 1896,

Springer, pp. 525-534

[15] S. Hauck (1998) The Roles of FPGAs in

Reprogrammable Systems, Proceedings of the IEEE,

86(4): 615-638.

[16] M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna,

and J. Platt (1998) Trends and Controversies -

Support Vector Machines. IEEE Intelligent Systems,

13(4) : 18-28.

[17] K. Chapman (1996) Constant coefficient multipliers

for the XC4000E. Xilinx Application, Note

XAPP054, Xilinx, Inc.

[18] J. Kittler, M. Hatef, R. P. W. Duin, J. Matas (1998)

On combining classifiers in IEEE transactions on

 15

Pattern Analysis and Machine Intelligence, 20(3):

226-239.

[19] B. Moobed (1996) Combinaison de classifieurs, une

nouvelle approche, PhD. thesis, Laboratoire

d’informatique de polytechnique d’Orsay ; France.

[20] J. Kittler (1978) Feature set search algorithms,

Pattern Recognition and Signal Processing, Sijthoff

and Noordhoff, Alphen aan den Rijn, Netherlands, pp

41-60.

[21] P. Somol, P. Pudil, J. Novovocova, P. Paclik (1999)

Adaptative floating search methods in feature

selection, Pattern Recognition Letters, 20: 1157-

1163.

