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Abstract A system to characterize normal liver, cirrhot-
ic liver and hepatocellular carcinoma (HCC) evolved on
cirrhotic liver is proposed in this paper. The study is
performed with 56 real ultrasound images (15 normal,
16 cirrhotic and 25 HCC liver images) taken from 56
subjects. A total of 180 nonoverlapping regions of in-
terest (ROIs), i.e. 60 from each image class, are
extracted by an experienced participating radiologist.
The multiresolution wavelet packet texture descriptors,
i.e. mean, standard deviation and energy features, are
computed from all 180 ROIs by using various compact
support wavelet filters including Haar, Daubechies (db4
and db6), biorthogonal (bior3.1,bior3.3 and bior4.4),
symlets (sym3 and sym5) and coiflets (coif1 and coif2).
It is observed that a combined texture descriptor feature
vector of length 48 consisting of 16 mean, 16 standard
deviation and 16 energy features estimated from all 16
subband feature images (wavelet packets) obtained by
second-level decomposition with two-dimensional wave-
let packet transform by using Haar wavelet filter gives

the best characterization performance of 86.6 %. Feature
selection by genetic algorithm-support vector machine
method increased the classification accuracy to 88.8 %
with sensitivity of 90 % for detecting normal and cir-
rhotic cases and sensitivity of 86.6 % for HCC cases.
Considering limited sensitivity of B-mode ultrasound for
detecting HCCs evolved on cirrhotic liver, the sensitiv-
ity of 86.6 % for HCC lesions obtained by the proposed
computer-aided diagnostic system is quite promising and
suggests that the proposed system can be used in
a clinical environment to support radiologists in lesion
interpretation.
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Introduction

Although biopsy is the “gold standard” for diagnosing liver
diseases, ultrasonography is mostly preferred for screening,
due to its noninvasive, nonradioactive and inexpensive na-
ture. Echotexture of normal liver as it appears on ultrasound
(US) is homogeneous with medium echogenicity, and it
exhibits same or slightly increased echogenicity compared
to the right kidney. Cirrhosis is considered to be the end
stage of chronic hepatopathies which often leads to hepato-
cellular carcinoma (HCC). The diagnosis of cirrhosis is best
achieved by looking at the granular structure of the liver
parenchyma and the degree of nodularity present in the
heterogeneous echotexture. HCC is viewed as most proba-
ble solid primary malignant liver lesion occurring on cir-
rhotic liver. Most small HCCs are diagnosed with a follow-
up procedure for patients with cirrhosis. In few cases when
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HCC develops on normal liver parenchyma, it can be
easily diagnosed by its sonographic appearance as it
appears as a well-differentiated HCC or as fibrolamellar
HCC (commonly appears with calcified areas). A lesion
can be labeled as typical in appearance when its subjective
diagnosis can be made with a good confidence level by look-
ing at the US examination. The associated radiologists opined
that no sonographic appearance is typical for HCCs as they
exhibit a high degree of variability in terms of sonographic
appearances even with in small HCCs (SHCCs) and large
HCCs (LHCCs).

SHCCs frequently appear as hypoechoic nodule (solid
tumor nodule without necrosis) or as hyperechoic nodule
(solid tumor likely containing fat). In very few cases,
SHCCs can also be isoechoic (same echogenicity as sur-
rounding parenchyma). The HCC lesion may also exhibit
hyperechoic echotexture with a hypoechoic halo (rim-like
structure surrounding HCC lesion) or alternatively hypoe-
choic echotexture with hyperechoic halo sign. LHCCs ap-
pear much more complex and heterogeneous with mixed
echogenicity (coarse irregular internal echoes) as a result of
areas of necrosis, fibrosis as well as active growth areas [1].

There are few related researches in literature for character-
ization of liver tissue as normal, cirrhotic or HCC. The study
in [2] reports characterization between normal, cirrhotic and
HCC liver by using combination of roughness and granularity
texture descriptors computed at various resolutions along with
Fourier power spectrum-based features by using Bayes clas-
sifier. In another related research [3], multi-threshold dimen-
sion feature vector based on fractal geometry is proposed for
characterization of normal, cirrhotic and HCC liver. The study
in [4] used fractal dimensions of subimages obtained at vari-
ous resolutions with M-band wavelet transform as fractal
feature vector for characterization of normal, cirrhotic and
HCC liver. The study in [5] used the same fractal feature
vector and developed a system to characterize normal, cirrhot-
ic and HCC by fusion of classifiers. The study in [4, 5] have
used images scanned by high-resolution scanner with 32-
pixel/cm and 8-bit/pixel resolution. Their study reports the
use of region of interest (ROI) size of 64×64 pixels, i.e. 2 cm
by 2 cm for their image resolution; however, in small HCC
lesions (<2 cm), it is not possible to extract such a large ROI.
The data description reported in studies [2–5] does not de-
scribe if only HCCs developed on cirrhotic liver are consid-
ered and number of SHCCs and LHCCs considered.

Keeping in view the research perspective in literature, the
current study is different in the sense that only HCC lesions
evolved on cirrhotic liver are considered and the representa-
tive data set of HCC images consisting of both small HCC
images (SHCCIs) and large HCC images (LHCCIs) is used
for classifier design.

Although detection of HCC in early stages has important
clinical value, at the same time it is observed that in many

cases HCCs are detected in advanced stages; therefore, the
participating radiologists opined that isolation of a single
case series, i.e. HCC lesions into incipient (small) and ad-
vanced (large) HCC, for characterization is not adequate as a
ROI from HCC lesion representing primary malignancy of
liver should be predicted as HCC irrespective of the fact
whether the ROI belongs to SHCC or LHCC.

Given the fact that conventional gray scale B-mode US
offers limited sensitivity for detection of lesions developed
on cirrhotic liver, differentiating the texture patterns of
HCCs on top of cirrhosis from its preceding stage of cirrho-
sis presents a daunting challenge even for experienced radi-
ologists; therefore, a US tissue characterization system
capable of providing adequate discrimination between cir-
rhotic changes in the liver and HCC is highly desirable. The
work presented in this paper addresses this issue.

Materials and Methods

Data Collection and Description

Data Collection

For the present work, 56 B-mode liver US images compris-
ing of 15 normal, 16 cirrhotic and 25 HCC liver images
were collected from the Department of Radiodiagnosis and
Imaging, Post Graduate Institute of Medical Education and
Research (PGIMER), Chandigarh, India over the time peri-
od from March 2010 to May 2011. The consent of patients
for using these images for research was taken prior to
recording. The medical ethics committee of PGIMER,
Chandigarh, granted the ethical clearance to carry out this
study. The direct digital images recorded by using Philips
ATL HDI 5000 US machine equipped with multifrequency
transducer of 2–5 MHz range were used. The size of the
images is 800×564 pixels with gray scale consisting of 256
tones and horizontal as well as vertical resolution is 96 dpi.
The following protocols were followed for data collection:

(1) The judgment regarding the diagnostic quality (free
from artifacts) and representativeness of each image class
(normal liver, cirrhotic liver and HCC evolved on cirrhotic
liver) was made by two domain experts (co-authors of this
paper) with 13 and 23 years of experience in US imaging.
(2) In case of HCCs, further categorization into SHCC and
LHCC was made by observing the size of the lesion in
transverse and longitudinal views (The HCC lesions less
than 2 cm in size are considered as SHCCs). The acquired
dataset had 25 HCC images with 25 solitary HCC lesions
(14 SHCCs and 11 LHCCs). The distinction between
SHCCs and LHCCs was made during data collection solely
for the purpose of having representative data in training set
for designing the classifier. (3) Only those images in which
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HCC lesion developed on top of cirrhosis were considered.
(4) For cirrhosis, only those cases which have a clear indi-
cation of liver cirrhosis with no other hepatopathy were
included.

Selection of Regions of Interest

The following protocols were followed for cropping the
ROIs from the image database:

(1) The ROIs were cropped by an experienced participat-
ing radiologist by using a specially designed ROI manager
software developed in biomedical instrumentation laborato-
ry, Indian Institute of Technology, Roorkee, India. This ROI
manager software provided the radiologist the flexibility to
load the image, choose the ROI size and shape, move the
ROI to any desired location over the image, freeze the ROI
at any location and crop the ROIs together after the position
of all the ROIs for a particular image is frozen. (2). For
normal and cirrhotic liver images, ROIs were cropped from
right lobe of the liver such that it contains only liver paren-
chyma with no inhomogeneous structures like blood vessels
and hepatic ducts. (3) For HCC images, maximum non-
overlapping ROIs were cropped from well within the
boundary of the lesion. (4) Necrotic areas within the HCC
lesions were avoided.

Interpretation by Radiologists

Experienced participating radiologists confirmed the pres-
ence of cirrhosis and HCC lesions evolved on cirrhotic liver
by using liver image assessment criteria including: (1) visual
interpretation of sonographic features based on their knowl-
edge and expertise, (2) follow-up of clinical history of the
patient and other associated findings, and (3) imaging ap-
pearance on dynamic helical computed tomography/mag-
netic resonance imaging/pathological examinations and
biopsy, which is an invasive procedure.

Data Set Description

To design a robust classification system, it was ensured that
the constituent HCC images in the data set offered a high
degree of variability in terms of size and sonographic fea-
tures. The size of SHCC varied from 1.5 to 1.9 cm, and the
size of LHCC varied from 2.1 to 5.6 cm.

Figure 1a–e represents five SHCCI variants from the
acquired image database. Figure 2a–e represents five
LHCCI variants from the acquired image database.

The highly experienced participating radiologists were of
the view that the HCC image data set used in this study is a
complete representative data offering a high degree of var-
iability encountered during subjective analysis of these
lesions in routine practice. Figure 3a–c represents samples

of normal, cirrhotic and HCC liver images from the acquired
image database.

Selection of ROI Size

As the texture measurements are sensitive to the selection of
ROI size, it should be chosen so as to provide a good
statistical population. In other studies, it has been demon-
strated that ROI size must be at least 800 pixels to provide
good sampling distribution for estimating reliable statistics
[6–8], whereas in few other related researches, a sample size
of at least 1,000 pixels is suggested to estimate reliable
statistics [9–11]. However, different ROI sizes ranging from
10×10 [12–15], 25×25 [16], 30×30 [3], 32×32 [2, 17–19],
40×40 [20–22], 50×50 [1, 17, 23, 24], 60×60 [6] and 64×
64 pixels [1, 4, 5, 25] have been used for classification of
liver diseases. After interaction with the participating radi-
ologists, ROI size of 32×32 pixels was considered appro-
priate for the present study to estimate reliable statistics as
well as to extract maximum ROIs from the acquired image
database. The final data set consisting of total 180 ROIs
with 60 normal ROIs (from 15 normal liver images), 60
cirrhotic ROIs (from 16 cirrhotic liver images) and 60 HCC
ROIs (from 25 HCC liver images) was stored in a PC
(Pentium Core-2-Duo, 2.67 GHz with 1.97 GB RAM).
The distribution of acquired database among various liver
image categories and its bifurcation into training and test set
are summarized in Fig. 4.

Proposed Computer-Aided Diagnostic System

The block diagram of the proposed CAD system is shown in
Fig. 5. For implementation of the proposed CAD system,
database of 180 nonoverlapping ROIs was created from 56
clinically acquired US images. The CAD system consisted
of three modules: (1) feature extraction module, (2) feature
selection module and (3) classification module. In feature
extraction module, each ROI in the database was decom-
posed up to second level of decomposition by two-
dimensional WPT (2D-WPT), resulting in 16 subband fea-
ture images for each ROI. The texture descriptor feature
vectors (TDFVs) of length 48 were extracted by estimating
mean, standard deviation and energy features from all the 16
subband feature images for each ROI. In feature selection
module, genetic algorithm–support vector machine (GA-
SVM) feature selection method was used to find the optimal
reduced TDFV which can significantly account for the
textural variations exhibited by normal, cirrhotic and HCC
liver. The instances of optimal reduced TDFV outputted by
the feature selection module were passed to the classifica-
tion module. In classification module, a multiclass SVM
classifier is implemented using LibSVM library [26].
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Feature Extraction Module

Multiresolution Analysis Feature extraction can be carried
on a single scale by considering the spatial interactions
which exist over small neighbourhoods for example by
using gray-level co-occurrence matrix, gray level run length
matrix, gray level difference statistics, neighbourhood gray
tone dependence matrix, statistical feature matrix, etc. Fea-
ture extraction in transform domain is carried out over
various scales by using multiresolution schemes such as
discrete wavelet transform (DWT), stationary wavelet trans-
form (SWT) and wavelet packet transform (WPT). Comput-
ing texture descriptors in transform domain is much more
logical in the sense that human visual system processes
images in a multiscale way and scale is a dominant aspect
for analysis of texture [27]. In case of two-dimensional
discrete wavelet transform (2D-DWT) as only the low-
frequency subimage is recursively decomposed; it may not
be efficient for texture characterization as most significant
texture information usually appears in the middle- and high-
frequency channels [28].

A speckled image of liver tissue is produced on US. It is a
well-known fact that speckle in US images carries useful

information and therefore cannot be treated as a typical
random noise [29, 30]. As speckle represents high-
frequency components of the US image, the 2D-WPTwhich
is considered as richer space-frequency multiresolution
analysis scheme may offer appropriate texture descriptors
with reduced or no effect of speckle noise. Other researches
where multiresolution wavelet packet texture descriptors
have shown remarkable performances are [25, 31].

Wavelet Packet Transform As a result of 2D-WPT decom-
position, the complete frequency plane is subdivided into
equal size bands. The 2D-WPT tree up to second level of
decomposition results in 16 subband feature images (wave-
let packets) each representing a band in the frequency plane
as depicted in Fig. 6. Mean, standard deviation and energy
features estimated from all 16 subband feature images result
in a TDFV of length 48. Eight subband feature images
(wavelet packets) are shaded and indicated in bold in
Fig. 6. Ten texture descriptors (three mean features, five
standard deviation features and two energy features) esti-
mated from these eight subband feature images are selected
by GA-SVM feature selection method shown as shaded and
indicated in bold in Fig. 7.

Fig. 1 a Hypoechoic SHCCI. b Hypoechoic SHCCI. c Hyperechoic SHCCI with hypoechoic halo. d Homogeneously hyperechoic SHCCI without
halo. e Variant of SHCCI with mixed echogenicity (coexistence of hyperechoic and isoechoic areas)
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Selection of Wavelet Filter The review of literature for tex-
ture characterization in transform domain using multireso-
lution features indicates that the choice of wavelet filter is
important as the properties of these decomposition filters
play a significant role in description of texture; specifically
with 2D-DWT and 2D-WPT schemes, the choice of an

appropriate wavelet filter affects the characterization perfor-
mance. Studies in literature [25, 31–34] have shown empir-
ical success by using different wavelet filters on specific
classification tasks. The criteria like support width, shift
invariance, orthogonality or biorthogonality and symmetry
are important and must be considered for selecting an

Fig. 2 a–e Heterogeneous echotexture represents complex and chaotic
structure exhibited by LHCCI due to coexistence of areas of necrosis,
fibrosis and active growth areas. Note: hypoechoic halo formation is

visible in (d) and (e). Necrotic area is visible in the centre of LHHCI
shown in (e)

Fig. 3 a Normal liver image. b Cirrhotic liver image. c HCC liver image
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appropriate wavelet filter. Usually compact support wavelet
filters are desired for ease of implementation. Orthogonality
is another important property for conservation of energy at
each decomposition level. Symmetry is required to avoid
dephasing in processing images. For information on guide-
lines for selecting an appropriate wavelet filter, the readers
may also look [32, 35]. In the present work, ten compact
support wavelet filters including Haar, Daubechies (db 4
and db6), biorthogonal (bior3.1, bior3.3 and bior4.4), sym-
lets (sym3 and sym5) and coiflets (coif1 and coif2) are
considered for analysis with 2D-WPT. Comparison of im-
portant properties of wavelet filters used in this work is
summarized in Table 1.

Selection of Wavelet Packet Texture Descriptors Extensive
literature survey on texture classification in transform domain
using multiresolution approaches like DWT, SWT and WPT
reveals that mean, standard deviation and energy features are
frequently used not only for classification of natural texture
(i.e. Brodatz image database) [28, 33, 35, 36] but also for
medical images [25, 31, 32]. For the present study, mean,
standard deviation and energy features are computed for each
subband feature image using the Eqs. (1), (2) and (3).

Meanj ¼ 1

M � N

XM

X¼1

XN

Y¼1

SIj X ;Yð Þ�� �� ð1Þ

Stdj ¼ 1

M � N

XM

X¼1

XN

Y¼1

SIj X ;Yð Þ �Meanj
�� ��2

 !1=2

ð2Þ

Energyj ¼
1

M � N

XM

X¼1

XN

Y¼1

SIj X ;Yð Þ�� ��2 ð3Þ

Here, SIj are subimages of size M×N at level j01, 2…5. As
the size of the ROI is 32 by 32 pixels, decomposition up to
fifth level is possible.

The study in [32] determined the best level of decompo-
sition for 2D-WPT with entropy criterion-based best level
algorithm according to which decomposition is carried out
until the entropy of the subband is less than the sum of
entropy of all its child subbands. However, in another study
[37], it is reported that such a criterion for obtaining the best
level of decomposition may not be suitable for texture
classification tasks as small entropy value obtained from a
particular subband may not necessarily indicate that the
subband will separate the texture classes effectively. By
second-level decomposition of a ROI with 2D-WPT, 16
subimages are obtained; computing mean, standard devia-
tion and energy features from these 16 subimages yields a
TDFV of length 48 (16×3). By subsequent third-, fourth-
and fifth-level decomposition of ROI with 2D-WPT 64, 256
and 1,024 subimages are obtained; computing mean, stan-
dard deviation and energy features from these subimages
results in large TDFVs of lengths 192 (64×3), 768 (256×3)
and 3,072 (1,024×3), respectively. These large TDFVs were
not considered for analysis due to computational efficiency
constraints.

Wavelet packet decomposition tree up to second level of
decomposition yields 16 subimages (wavelet packets) as
shown in Fig. 6. Only mean feature estimated from these

Fig. 4 Data set description
(LHCCIs large HCC images,
SHCCIs small HCC images,
LHCC large HCC, SHCC small
HCC)
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16 subimages results in mean TDFVof length 16; similarly,
the standard deviation TDFVand energy TDFVof length 16
are obtained. The combined TDFVs like mean Std TDFV
consisting of mean and standard deviation features are of
length 32; similarly, mean energy TDFV and Std energy
TDFV of length 32 are obtained. The mean Std energy
TDFV consisting of mean, standard deviation and energy
features is of length 48.

Feature Selection

Designing CAD systems with smallest number of features is
always desired as interference of irrelevant features can lead to
reduced learning performance of the classifier which further

increases the time taken to perform classification task and
reduces the classification accuracy. GA-SVM feature selec-
tion method is used in this work to remove irrelevant features.
For applying genetic algorithm (GA) to any problem, two
steps are extremely important, adequate representation and
appropriate fitness function. In the present work, binary rep-
resentation is used for representing all possible feature sub-
spaces of a given feature set, and the training accuracy
obtained by the SVM classifier is used as fitness function.
The main steps of GA-SVM feature selection method are:

1. Initialization: an initial population of possible candidate
solutions (individuals or chromosomes) is created
randomly.

Fig. 5 Proposed CAD system
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2. Representation: each chromosome is a 48-bit binary mask
where each bit corresponds to a single feature; 0 at any
location in the bit string indicates that the corresponding
feature is excluded and 1 indicates that it is included.

3. Fitness evaluation: the performance of each individual
or chromosome is gauged by appropriate fitness
function.

4. Selection: roulette wheel selection—the individuals or
chromosomes which are deemed fit have high probabil-
ity to enter the mating pool than those deemed unfit.

5. Crossover: the selected individuals in the mating pool
are recombined with the probability Pc using crossover
operator to produce next-generation offspring.

6. Mutation: a mutation operator is applied to these off-
spring with a low probability Pm to ensure that there is a
always a variability added to the pool of solutions.

7. Fitness check: the offspring are then again evaluated
using the fitness function, and those which have higher

fitness values than the earlier individuals are considered
for forming a new population.

At the end of one iteration, the new population formed
after selection, crossover, mutation and fitness check con-
tains old individuals which are fitter than the new individ-
uals and those which are comparatively fitter amongst the
new individuals. In this way, in subsequent generations, the
chromosomes which are fittest mate more often and propa-
gate their genetic material to the offspring which form
potential candidate solutions, thus biasing the search space
towards promising candidate subspaces. The GA search
procedure terminates when either there is no improvement
in the fitness value after a fixed number of successive
iterations or after a predefined number of generations. In
this study, single-point crossover was used, and the other
GA run parameters are set as crossover rate equal to 0.6,
mutation rate equal to 0.033, population size equal to 20 by
manual optimization after a series of trails.

Fig. 6 2D-WPT tree up to second level of decomposition [from (2,0) to (2,15)] represents 16 subband feature images (wavelet packets). A
approximate subband, H horizontal subband, D diagonal subband and V vertical subband

Fig. 7 Features extracted from 2D-WPT tree at second level of decom-
position (M mean, S standard deviation and E energy features). Ten
features (three mean features, five standard deviation features and two

energy features) estimated from eight subbands [(2,0), (2,1), (2,2), (2,4),
(2,5), (2,7), (2,8) and (2,13)] feature images selected by GA-SVM feature
selection method are shaded and indicated in bold
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Classification

A generalization capability of the classifier is tested with
instances of the feature vector which are not used in classi-
fier design. The data set used in the present work consists of
total 180 ROIs (60 normal ROIs taken from 15 normal
images, 60 cirrhotic ROIs taken from 16 cirrhotic images
and 60 HCC ROIs taken from 25 HCC images). The train-
ing set and testing set consist of 90 ROIs (30 ROIs from
each image class). A complete description of dataset used in
this study is summarized in Fig. 4.

SVM Classifier It has been argued in [38, 39] that classifier
designs which use regularization like support vector machines
are less prone to overfitting and obtain good generalization
performance to a certain extent even without feature space
dimensionality reduction. For the present work, SVM classifier
is chosen for the classification task. The SVM classifier
attempts to construct an optimum hyper plane in the higher
dimensional feature space to separate the training data with
minimum expected risk. Kernel functions that satisfy Mercer’s
theorem are used for nonlinear mapping of the training data
from input space to higher dimensional feature space. In the
present work, the performance of Gaussian radial basis func-
tion kernel is investigated. To avoid the bias caused by unbal-
anced feature values, all the extracted features were normalized
in the range of [0, 1] by using min–max normalization

procedure. For a detailed description of SVM approach, addi-
tional information can be found in [38, 39].

For multiclass classification, LibSVM library [26] uses one-
against-one technique by constructing M(M−1)/2 binary sub-
classifiers where M is the number of classes. Each binary
sub-classifier is trained to separate a pair of classes, and predic-
tion is made bymajority voting technique. In present three-class
problem, the prediction of the class for an instance of TDFVof
the test data set is made by majority voting mechanism on the
predictions of three binary sub-classifiers, i.e. SVM (normal/
cirrhosis), SVM (normal/HCC) and SVM (cirrhosis/HCC).

A crucial step for obtaining good generalization perfor-
mance with SVM classifier is the correct choice of the
regularization parameter C and kernel parameter γ. The
regularization parameter C attempts to maximize the margin
while keeping low value for training error. In the present
work, extensive search is carried out in the parameter space
for the values of C є {2−4, 2−3,……., 215} and γ є {2−12,
2−11,……., 25} using tenfold cross-validation to obtain op-
timal values of C and γ for training the SVM model.

Classification Performance In addition to the classification
accuracy, the sensitivity, i.e. true positive rate, for each class
is also estimated. Sensitivity for a particular class say for
HCC ROIs abbreviated as sensitivityH is the ratio of the
number of correctly classified HCC ROIs over the total
number of actual HCC ROIs.

Table 1 Comparison of proper-
ties of wavelet filters used Wavelet Biorthogonal Orthogonal Symmetry Asymmetry Near symmetry Compact support

Db No Yes No Yes No Yes

Haar No Yes Yes No No Yes

Bior Yes No Yes No No Yes

Coif No Yes No No Yes Yes

Sym No Yes No No Yes Yes

Table 2 Comparison of maximum and minimum accuracy obtained by all seven TDFVs with the corresponding wavelet filter

Classification performance SVM

TDFVs L Max. acc. Wavelet filter Min. acc. Wavelet filter

Mean 16 84.4 Haar 73.3 sym3

Std 16 84.4 Haar 70.0 sym5

Energy 16 81.1 Haar 72.2 coif2, db6

Mean Std 32 84.4 Haar 76.6 bior3.3

Mean energy 32 85.5 Haar 71.1 sym3

Std energy 32 84.4 Haar 74.4 coif1

Mean Std energy 48 86.6 Haar 74.4 bior3.1

Note that for all seven TDFVs maximum accuracy is obtained by using Haar wavelet filter. However, the highest accuracy of 86.6 % (indicated in
bold) is obtained by using Haar wavelet filter with Mean Std energy TDFV of length 48.

Accuracy values are expressed in percentage

TDFVs texture descriptor feature vectors, L length of TDFV
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Results

Initially, all the seven TDFVs, i.e. mean TDFV, standard
deviation TDFV, energy TDFV, mean Std TDFV, mean
energy TDFV, Std energy TDFV and mean Std energy
TDFV estimated from all 16 subband feature images
obtained from second-level decomposition of a ROI with
2D-WPT by using ten compact support wavelet filters in-
cluding Haar, Daubechies (db 4 and db6), biorthogonal
(bior3.1, bior3.3 and bior4.4), symlets (sym3 and sym5)
and coiflets (coif1 and coif2) were used for classification
with SVM classifier to compare the capability of different
wavelet filters to characterize textural variations for normal,
cirrhotic and HCC liver. The maximum and minimum clas-
sification accuracies obtained by all the seven TDFVs with
the corresponding wavelet filters are reported in Table 2.

From Table 2, it is interesting to note that for all seven
TDFVs, maximum classification accuracy is obtained by
using Haar wavelet filter. The highest accuracy of 86.6 %

is obtained by using Haar wavelet filter with mean Std
energy TDFV (seventh row of Table 2).

The classification results (overall accuracy and sensitivity
of each image class) obtained by all seven TDFVs using
Haar wavelet filter are reported in Table 3. From Table 3, it
can be visualized that the second highest accuracy of 85.5 %
is obtained by using mean energy TDFV (5th row of
Table 3). By including standard deviation features with
mean and energy features, the sensitivity for cirrhosis has
increased from 80.0 to 83.3 % (compare fifth and seventh
rows of Table 3). It can be concluded that mean, standard
deviation and energy features all contribute to capture the
textural variations of normal, cirrhotic and HCC ROIs with
highest accuracy of 86.6 % obtained by mean Std energy
TDFV.

The classification results (overall accuracy and sensitivity
of each image class) obtained by using mean Std energy
TDFVs with all ten wavelet filters are reported in Table 4. It
can be observed that the highest classification accuracy of

Table 3 The classification results (overall accuracy and sensitivity of each image class) obtained by all seven TDFVs using Haar wavelet filter

Classification performance SVM

TDFVs L Accuracy SensitivityN SensitivityC SensitivityH

Mean 16 84.4 93.3 76.6 83.3

Std 16 84.4 90.0 83.3 80.0

Energy 16 81.1 86.6 70.0 76.6

Mean Std 32 84.4 93.3 80.0 80.0

Mean energy 32 85.5 93.3 80.0 83.3

Std energy 32 84.4 90.0 80.0 83.3

Mean Std energy 48 86.6 93.3 83.3 83.3

Accuracy and sensitivity values are expressed in percentage

TDFVs texture descriptor feature vectors, L length of TDFV, SensitivityN sensitivity for normal, SensitivityC sensitivity for cirrhosis, SensitivityH
sensitivity for HCC

Table 4 The classification
results (overall accuracy and
sensitivity of each image class)
obtained by using mean Std en-
ergy TDFVs with all ten com-
pact support wavelet filters

Accuracy and sensitivity values
are expressed in percentage

SensitivityN sensitivity for nor-
mal, SensitivityC sensitivity for
cirrhosis, SensitivityH sensitivity
for HCC

Classification performance SVM

Wavelet filter Accuracy SensitivityN SensitivityC SensitivityH

bior3.1 74.4 93.3 73.3 56.6

bior3.3 77.7 100.0 66.6 66.6

bior4.4 76.6 83.3 70.0 76.6

Haar 86.6 93.3 83.3 83.3

db4 80.0 86.6 80.0 73.3

db6 80.0 93.3 76.6 70.0

sym3 78.8 90.0 73.3 73.3

sym5 76.6 83.3 73.3 73.3

coif1 81.1 90.0 83.3 70.0

coif2 78.8 86.6 73.3 76.6
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86.6 % is obtained by mean Std energy TDFV with Haar
wavelet filter (fourth row of Table 4). It can also be noted
that the highest sensitivity of 83.3 % for cirrhosis and HCC
cases is obtained in this case.

It can be concluded that compactly supported, orthogonal
and symmetric Haar wavelet filter is suitable for use with
2D-WPT multiresolution scheme along with SVM classifier
for characterizing the normal, cirrhotic and HCC liver.
However, since the length of mean Std energy TDFV (16
mean, 16 standard deviation and 16 energy features) is 48
and the total number of training instances is 90, feature
selection with GA as search procedure and classification
accuracy of the SVM classifier as fitness function is used
for removing noisy, non-informative and redundant features.
The GA-SVM feature selection method selected a subset of
10 features, i.e. 3 mean, 5 standard deviation and 2 energy
features (highlighted in Fig. 7) out of total 48 features, i.e.

16 mean, 16 standard deviation and 16 energy features
(shown in Fig. 7). It can also be noted that the ten features
of optimal reduced TDFV (highlighted in Fig. 7) are esti-
mated from eight subband feature images (highlighted in
Fig. 6).

The classification results obtained by using mean Std
energy TDFV with Haar wavelet filter and optimal reduced
TDFV selected by GA-SVM method by using SVM classi-
fier are reported in Table 5. It can be observed that optimal
reduced TDFV of length 10 selected by GA-SVM feature
selection method gives the overall accuracy of 88.8 %;
however, the accuracy achieved by using mean Std energy
TDFV of length 48 is 86.6 %. The other interesting fact is
that by use of optimal reduced TDFV, the sensitivity for
detecting abnormal cases, i.e. cirrhotic as well as HCC
cases, has increased. The sensitivity for HCC cases has
increased from 83.3 to 86.6 %, and sensitivity for cirrhosis

Table 5 The classification results obtained by using mean Std energy TDFV with Haar wavelet filter and optimal reduced TDFV selected by GA-
SVM method

Classification performance SVM

TDFVs L Confusion matrix Sensitivity Accuracy

Mean Std energy TDFV 48 N C H 86.6
N 28 0 2 93.3

C 0 25 5 83.3

H 1 4 25 83.3

Optimal reduced TDFV 10 N C H 88.8
N 27 0 3 90.0

C 0 27 3 90.0

H 2 2 26 86.6

Mean Std energy features, 16 mean features, 16 standard deviation features and 16 energy features; optimal reduced TDFV, three mean, five
standard deviation and two energy features selected by GA-SVM method. Accuracy and sensitivity values are expressed in percentage

TDFVs texture descriptor feature vectors, L length of TDFV, N normal, C cirrhosis, H HCC

Table 6 Brief details of CAD systems proposed in literature for characterization of normal, cirrhotic and HCC liver

Dataset description Classification performance SVM

Authors Patients Images per class No. of ROIs ROI Size SensitivityN SensitivityC SensitivityH Accuracy

Wu et al. [2](1992) 45 Normal–15 90 32×32 86.6 100 83.3 90
Cirrhotic–15

HCC–15

Wu et al. [3](1993) – – 90 30×30 80 90 93.3 87.8

Le et al. [4](2004) – – 150 64×64 92 100 96 96

Le et al. [5](2007) – – 432 64×64 100 91.5 94.5 95.3

Present study (2012) 56 Normal–15 180 32×32 90 90 86.7 88.8
Cirrhotic–16

HCC–25

Twenty-five HCC images consisting of 25 solitary HCC lesions (14 small HCC lesions and 11 large HCC lesions) developed on top of cirrhotic
liver are used in this study. Accuracy and sensitivity values are expressed in percentage
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cases has increased from 83.3 to 90.0 %. The results
obtained are promising as the sensitivity of conventional
gray scale B-mode US for detecting HCC lesions evolved
on cirrhotic liver is limited, and it is reported that contrast
enhanced US improves the sensitivity to around 85 % [40].
The sensitivity of the proposed CAD system for detecting
HCCs is 86.6 % with conventional B-mode US images. The
results of the study indicate that optimal reduced TDFV
consisting of ten features (three mean and five standard
deviation and two energy features) estimated from eight
subband feature images (wavelet packets) obtained by 2D-
WPT using Haar wavelet filter can significantly account for
textural variations exhibited by a variety of HCCs evolved
on cirrhotic liver as well as cirrhotic and normal liver.

Discussion

Brief details of CAD systems proposed in literature for
characterization of normal, cirrhotic and HCC liver from
B-mode US images are given in Table 6. The study in [4]
and [5] has used images scanned by a high-resolution scan-
ner with 32-pixel/cm and 8-bit/pixel resolution. They have
used the ROI size of 64×64 pixels, i.e. 2×2 cm for their
images; however, in small HCC lesions (<2 cm), it is not
possible to extract such a large ROI. The data description
reported in studies [2–5] does not describe if only HCCs
developed on cirrhotic liver are considered and the number
of SHCCs and LHCCs considered. The direct comparison of
the present study with other related researches is not possi-
ble because image databases and image acquisition methods

are different. However, it can be stated that the proposed
approach for characterization between normal, cirrhotic and
HCC liver yields comparable results with use of compre-
hensive and representative training data for classifier design.

Misclassification Analysis

The 12 HCC images of the test data were reviewed by an
experienced participating radiologist, and the remarks are
summarized in Table 7. From Table 7, it can be observed
that HCC ROIs predicted as normal belong to two different
LHCC images (image nos. 3 and 12 in Table 7) and the
remaining two misclassified HCC ROIs predicted as cirrhot-
ic belong to a single SHCC image (image no. 7 in Table 7).
Experienced participating radiologists opined that ROI with
identification number 3* might have been misclassified due
to close proximity with the halo, although it was confirmed
that the ROIs with identification numbers 3, 10, 11 and 29
are actual misclassifications of the proposed CAD system.
ROIs with identification numbers 3 and 29 are patches
inside HCC lesion which are predicted as normal by the
proposed CAD system. As US is commonly used to facili-
tate liver lesion biopsy, the participating radiologist were of
the view that any ROI inside the HCC lesion if predicted as
normal should be avoided for taking the sample for biopsy.

Conclusion

In the present work, a CAD system for characterizing nor-
mal, cirrhotic and HCC liver has been developed by

Table 7 Review remarks from
experienced radiologists for 12
HCC images of the test set

ROIs misclassified by the
proposed CAD system are
indicated in bold.
aMisclassified as normal and
remarked as incorrect

Image no. in test
data

LHCCI/
SHCCI

ROI identification no. Prediction of proposed CAD Remarks

1 SHCCI 1 Predicted as HCC Correct

2 SHCCI 2 Predicted as HCC Correct

3 LHCCI 3a, 4, 5, 6 3 misclassified as normal Incorrect

Remaining 4, 5, 6 Predicted as
HCC

Correct

4 SHCCI 7 Predicted as HCC Correct

5 SHCCI 8 Predicted as HCC Correct

6 SHCCI 9 Predicted as HCC Correct

7 SHCCI 10, 11 10, 11 both misclassified as
cirrhotic

Incorrect

8 LHCCI 12,13,14 All predicted as HCC Correct

9 LHCCI 15,16,17 All predicted as HCC Correct

10 LHCCI 18,19,20 All predicted as HCC Correct

11 LHCCI 21, 22, 23, 24, 25, 26,
27, 28

All predicted as HCC Correct

12 LHCCI 29, 30 29 misclassified as normal Incorrect

30 predicted as HCC Correct
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multiresolution texture analysis of B-mode liver US images.
The proposed CAD system achieved overall classification
accuracy of 88.8 % with the sensitivity of 90.0 % for normal
and cirrhotic liver and 86.6 % for HCC liver with optimal
reduced TDFV obtained by GA-SVM feature selection
method and SVM classifier. Considering limited sensitivity
of conventional B-mode gray scale US for detecting HCCs
evolved on cirrhotic liver, the sensitivity of 86.6 % for HCC
lesions obtained by the proposed CAD system is quite
promising and suggests that the proposed system can be
used in a clinical environment to support radiologists in
lesion interpretation thereby improving diagnostic accuracy
which can avoid unnecessary biopsies.
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