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Ontology is one of the oldest terminologies in physics and is used to describe the

origin and most essential attributes of all things in the world. With the development

of contemporary science, ontology was given a specific definition and then introduced

into the computer science as a conceptual model to describe the relationship between

objects. In the past decade, the algorithms and applications in the ontology-related

field have attracted the attention of many scholars. In this work, a support vector

machines based multi-dividing ontology learning algorithm is proposed. We pay attention

to the similarity of topological indices in chemical graph theory, and apply SVM-based

multi-dividing ontology learning algorithms to give some calculation results of similarity

between topological indices.

Keywords: ontology, restricted boltzmann machine, deep learning, back propagation, topological index

INTRODUCTION

The term “ontology” first appeared in philosophy and physics, and was used to describe the
most original appearance and most essential characteristics of things. In early 1990’s ontology
was introduced into the field of artificial intelligence. Being a model for conceptual semantic
storage, analysis and management, it has drawn great attention from the fields of computer
science and information technology. When it comes to twenty-first century, scholars from various
disciplines use ontology tools to deal with various engineering problems, making ontology popular
in multidisciplinary research, such as biology, pharmacy, education systems, psychology, medicine,
neuroscience, and nanotechnology.

Recently, ontology methods have been utilized to various ontology projects. In biology and
medicine, from the genetic and human protein chains of each gene to the probability and
symptoms of disease, it is widely used in the development of various gene ontology tools. Based
on the semantic similarity of disease, an ontology-based fixed genome sequencing and gene
sequencing algorithm was proposed by Cannataro et al. [1]. Duong et al. [2] respectively gave
two kinds of GO ontology conceptual similarity calculation methods under the condition of
GO tree and independent of GO tree. Wei et al. [3] developed NaviGO for the visualizations
and analysis of functional similarities and associations between GO terms and genes. Wan and
Freitas [4] used gene ontology to test four hierarchical feature selection algorithms. Yang and
Tang [5] proposed an approach to combine the faction-based prediction method and GO gene
ontology annotation to overcome the interference of false positive and false negative interactions

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.547963
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.547963&domain=pdf&date_stamp=2020-10-23
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ghua@cumt.edu.cn
https://doi.org/10.3389/fphy.2020.547963
https://www.frontiersin.org/articles/10.3389/fphy.2020.547963/full


Zhu et al. SVM Based Ontology Learning Algorithm

in PPI network to predict results and improve the prediction
accuracy. In terms of different GO correction rules, two
predicted interaction sets are generated to ensure the quality
and quantity of the predicted protein interactions. Cheng et
al. [6] studied the OAHG database, which deals with the
ontology of gene ontology (GO), disease ontology (DO) and
human phenotype ontology, and establishes comprehensive
functions for human protein-coding genes (PCG), miRNAs
and lncRNAs. Annotate resources. Now OAHG has 1,434,694
entries containing 16,929 PCGs, 637 miRNAs, 193 lncRNAs, and
24,894 ontology terms. Cozzetto et al. [7] proposed FFPred 3 to
map gene ontology terms to human protein chains, providing
help if homology to characteristic proteins. By predicting the
input sequence for the support vector machine array, each
support vector machine examines the protein function and
describes the biophysical properties of the secondary structure,
the relationship between the transmembrane helix, the inherently
disordered region, the signal peptide and other motifs. Saha et al.
[8] proposed to use gene ontology-based neighborhood analysis
and physicochemical features to predict protein function. Al-
Mubaid [9] proposed a method for calculating gene versatility
scores in terms of functional annotation of target genes from
gene ontology. The trick is on the basis of identification of
GO annotation pairs that state semantically various biological
functions. Any gene annotated with two annotations in a
pair is seen multifunctional. GO annotations can be used
for the identifications of multifunctional genes in the entire
human genome.

In particular, the GO ontology receives a lot of attention.
Ochs et al. [10] introduced a heuristic approach based on
the identification of anomalous groups of items with certain
classification definitions. If these potential problem areas are
automatically identified in the ontology, time and electronics will
be preserved in manual review of the gene ontology GO content.
Vitali et al. [11] developed the Nutrition Research Ontology
ONS by aligning the selected pre-existing facts with new health
and nutrition terminology, thereby facilitating the description
and specification of complex nutrition research. Pomaznoy et al.
[12] produced the open source GOnet web application (http://
tools.dice-database.org/GOnet/), which obtains a list of gene or
protein entries from human or mouse data to generate analyzable
data format, while achieving interactive visualization of GO
analysis results. The interactive results permit the exploration of
gene and GO ontology terms as a diagram which describes the
natural hierarchy of terms and preserves the relationship between
terms and genes/proteins. Hassan and Shanak [13] proposed a
tool GOTrapper which canmove up or down to the bottom of the
GO hierarchy. The tool acquires shared ontology terms through
a set of input genes required by Homo sapiens. Passi et al. [14]
proposed a gene ontology-based network involving 26,404 edges,
6,630 drugs, and 4,083 target nodes, while using network-based
reasoning (NBI) to analyze networks with molecular functional
ontology. The degree of functional diversity (DoFD), a gene
ontology-based quantitative index was put forward by Paul and
Maji [15] proposed to make the functional diversity of a set of
genes selected by any gene selection algorithm quantified. In
addition, a new gene selection algorithm was proposed, which

combines the advantages of DoFD and RSMRMS to select those
related and important genes with diverse functions. Peng et
al. [16] attempted to reconstruct a gene ontology (GO)-based
neural network to reduce the dimensionality of scRNA-seq
data. Connecting GO to unsupervised and supervised models,
two new methods were raised, called GOAE (Gene Ontology
AutoEncoder) and GONN (Gene Ontology Neural Network).
Lamurias et al. [17] raised up a novel model for detecting
and classifying the relation BO-LSTM in text, which uses a
domain-specific ontology describing every entity as an order of
its ancestors in ontology. BO-LSTM is carried on as a recurring
neural network with long and short-termmemory units, and uses
open biomedical ontology, especially biological interest chemical
entities (ChEBI), human phenotypes and gene ontology. When
domain-specific ontology other than word embedding and
WordNet is used, BO-LSTM improves the F1 score for drug-drug
interaction detection and classification, especially in document
sets with a limited number of annotations. The existing DDI
extractionmodel wasmodified using the ontology-basedmethod,
and a higher F1 score than the original model was obtained.
In addition, the authors developed and provided a corpus of
228 abstracts annotating the relationship between genes and
phenotypes and showing the process of BO-LSTM applications to
other types of relationships. Mortensen et al. [18] used the same
population-based approach and a panel of experts to validate a
subset of gene ontology GOs (200 relationships), pointing out
that the Google search results for the gene ontology concept
were significantly less than the SNOMED CT concept. This
difference can lead to performance differences - the fewer search
results indicates the harder the task of the staff will be. And the
number of Internet search results can be used to measure suitable
tasks for the population. Milano et al. [19] used Gene Ontology
(GO) for the storage and organization of information about
biomolecular function through a controlled vocabulary (GO
terminology), whose term refers to biological concepts through
an annotation process. The authors used a number of different
annotation processes to make every term with a distinguished
specificity which was formally assessed by information content
(IC). Kuznetsova et al. [20] proposed an open source CirGO
(cyclic gene ontology) software that visualizes non-redundant
two-level hierarchical ontology terms from gene expression data
in 2D space.

Lots of machine learning methods are also utilized for
ontology similarity calculation and ontology engineering
applications. Gao et al. [21] raised the ontology sparse vector
learning algorithm for ontology similarity measurement and
ontology mapping via ADAL trick. Gao et al. [22] confirmed the
strong and weak stability of k-partite ranking based ontology
learning algorithm. Considering eigenpair computation, Gao
et al. [23] borrowed the ranking based ontology scheming.
Based on singular value decomposition and applied it in
multidisciplinary, Gao et al. [24] put forward the novel
ontology algorithm. Gao et al. [25] put forward margin based
ontology sparse vector learning algorithm and took it in biology
application. Considering linear programming, Gao et al. [26]
deduced the distance learning techniques for ontology similarity
measurement and ontology mapping.
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This paper mainly raises new multi-dividing ontology
learning algorithm based on support vector machines. The
organizational structure of the rest paper is as follows:
initially, the specific SVM-based multi-dividing ontology
algorithms and detailed techniques are presented; then,
the feasibility of the SVM based algorithm is illustrated
by experiment on similarity measuring between chemical
topological index.

MULTI-DIVIDING ONTOLOGY ALGORITHM
BASED ON SUPPORT VECTOR MACHINES

Multi-dividing ontology learning algorithms have a wide range
of applications in the background of acyclic ontology graphs, as
most of the ontology graphs possess a tree structure. The primary
thought of the algorithm is using the structural features of the
ontology graph itself to determine the class of vertex division
according to the number of branches, and then the domain
experts determine the prior order relationships of various types.
Through the learning of ontology samples, the optimal ontology
function is finally obtained. The information of every ontology
vertex is sewn with a vector of fixed dimension p. Let k be the
number of classifications, f :Rp → R be the ontology function.
For each ontology sample (v, y), y ∈ {1, · · · , k} is used tomark the
rate of ontology vertex v. The ontology sample in multi-dividing
setting can be expressed by S = (S1, S2, · · · , Sk)∈ (X × Y)n1 ×
(X × Y)n2 × · · · × (X × Y)nk , where for any a ∈ {1, 2, · · · , k},
we have Sa = {(va1, a), (v

a
2, a), · · · , (v

a
na
, a)}. Let |Sa| = na,

n =
k

∑

a=1
na and Da = DV|Y=a be conditional distribution for

a ∈ {1, 2, · · · , k}. In the learning process of the ontology samples,
the multi-dividing algorithm follows the following rules: For 1 ≤

a < b ≤ k, under the action of the ontology function f, the value
which corresponds to the vertex in the rate α is bigger than that
corresponding to the vertex in the rate b, that is f (v) > f (v′), if
v ∈ Sa and v′ ∈ Sb. The entire learning process is to find the
optimal ontology function f that actually meets this rule as much
as possible.

The paper aims to give a multi-dividing ontology learning
algorithm based on Support Vector Machine (SVM).

Multi-Dividing Ontology Learning Model
Under Sparse Vector Expression Setting
The AUC [area under ROC (operating characteristic curve)]
ontology learning model under the multi-dividing framework
can be stated as:

AUC(f ) =

k − 1
∑

a = 1

k
∑

b = a + 1

1

nanb

na
∑

i = 1

nb
∑

j = 1

I(f (xai ) > f (xbj )),

where f is an ontology function, I(·) is the truth function: equal to
1 if f (xai ) > f (xbj ) and 0 else wise. The optimal ontology function

is obtained by maximizing AUC(f ).

Let S = (S1, S2, · · · , Sk)∈ (X × Y)n1 × (X × Y)n2 × · · · ×

(X × Y)nk be ontology sample. In the vector representation
frame, the ontology function can be denoted by

f (v) = βTv+ ε = 〈β ,v〉 + ε,

where β ∈ R
p is ontology vector, ε ∈ R is a offset. The AUC

maximization ontology optimization model under the multi-
dividing framework is expressed as

f = argmax
β∈Rp

k − 1
∑

a = 1

k
∑

b = a + 1

1

nanb

na
∑

i = 1

nb
∑

j = 1

I(f (xai )− f (xbj ) > 0).

The above ontology model can be improved from the following
two aspects:

(1) Under the background of big data, the information
contained in the ontology concept is huge, including not
only the information of the concept itself, but also the
structural characteristics of the concept and the entire ontology
graph, as well as information representing instances and
attributes. However, under a specific background in the
actual engineering field, we only focus on a small amount
of key information, and the information contained in most
of the components of the ontology vertex corresponding
vector will only play a role in other related application
backgrounds. That is, the same ontology has different
labeled ontology samples for different applications. Even
with the same ontology vertex, different label information will
appear in different application backgrounds. Furthermore,
due to different ontology sample information, even the
same supervised learning algorithm execution steps will get
completely different ontology functions. This is one of the
essential differences between ontology learning and general
learning algorithms.

The reason why ontology learning algorithms have such
characteristics is determined by the characteristics of the
ontology itself: ontology is used as a tool in various fields.
Compared with the single use of other data, ontology data
has the characteristics of multi-purpose. For example, the
genetic “GO” ontology and the botanical “PO” ontology can
be regarded as dictionaries or query databases, which belong
to public resources. Scholars in different fields use these
ontology as a tool to assist them from different perspectives
to achieve their own research goals. This is why there are
thousands of research papers related to these two ontology
every year.

Back to the framework of multi-dividing ontology learning
algorithms. In this setting, in addition to the fixed p-dimensional
vector corresponding to each ontology vertex (this vector has
already contained all the information of the corresponding
concept of the ontology vertex and the information of the
ontology vertex in the ontology graph), there is only one
special attachment. Mark to indicate the rate of the vertex
of the ontology. Therefore, compared with other ontology
learning algorithms, the label information is a real number and
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changes with the application background. In the multi-dividing
ontology learning algorithm, the value of the additional label
of the vector band corresponding to the ontology vertex is
only in the range of the set {1, · · · , k}, which only represents
the ontology vertex subordinate class. On the other hand,
once the ontology graph structure is fixed, the value of k
will be determined immediately, and the specific class of
a vertex will be determined according to the structure of
the ontology graph itself. From this perspective, the multi-
dividing ontology learning algorithm is relatively less affected by
specific engineering applications. It is closer to the classification
algorithm of k classes than the regression algorithm, although
the ontology function maps the vertex of the ontology to real
number. Essentially, there is a huge difference between the
multi-dividing ontology learning algorithm and the traditional
regression algorithm, which lies between the classification and
clustering algorithms with k classes. From the perspective of
geometric structure, it requires that the entire real number
axis is divided into disjoint k segments, and these k segments
are sequentially assigned to the vertices of k branches on the
ontology graph in a certain order of the k classes. Hence,
the ontology vertices in the same branch of is finally mapped
into the same interval segment in the real number axis by the
ontology function.

While, due to the needs of the ontology learning algorithm
itself, we still hope that the ontology vector β is sparse, that is,
most of the components have a value of 0, or they can be small
or negligible. In order to achieve this goal, our method is to add
an additional term to represent sparsity of β , which is usually a
1-norm or a 2-norm term.

(2) Since the multi-dividing ontology learning algorithm
involves k classes and the vertices of two of them are taken each
time for a pairwise comparison, thus in the actual comparison
process, it is difficult to satisfy every pair (a, b) with 1 ≤ a < b ≤

k, and all i ∈ {1, · · · , na} and j ∈ {1, · · · , nb} have f (x
a
i ) > f (xbj ).

Therefore, in the learning model, we need to soften this hard
condition to allow a certain degree of error. The commonly used
method is to set the parameter as a range that allows errors.

Combining the above two points, we give a modified multi-
dividing ontology learning model as follows:

min
β∈Rp

1

2
‖β‖22 + C

k−1
∑

a=1

k
∑

b=a+1

na
∑

i=1

nb
∑

j=1

ζ
a,b
ij , (1)

s.t. f (vai ) ≥ f (vbj ) + ρa,b − ζ
a,b
ij , ∀1 ≤ a < b ≤ k, i ∈

{1, · · · , na}, j ∈ {1, · · · , nb}

ζ
a,b
ij ≥ 0 ∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na}, j ∈ {1, · · · , nb},

where ρa,b > 0 is the softening parameter, and C > 0 is the
equilibrium parameter.

The above multi-division ontology optimization
model can be solved using the traditional Lagrangian
multiplier method. The corresponding Lagrangian function

of the original ontology optimization problem can be
expressed as

L(β , ζ a,b
ij ) =

1

2
‖β‖22 + C

k − 1
∑

a = 1

k
∑

b = a + 1

na
∑

i = 1

nb
∑

j = 1

ζ
a,b
ij

−

k − 1
∑

a = 1

k
∑

b = a + 1

na
∑

i = 1

nb
∑

j = 1

αi,j(
〈

β , vai − vbj

〉

− ρa,b + ζ
a,b
ij )

−

k−1
∑

a = 1

k
∑

b = a + 1

na
∑

i = 1

nb
∑

j = 1

γ
a,b
ij ζ

a,b
ij .

The calculation shows that the Lagrangian partial derivative of
the primal variable is

∂L

∂β
= β −

k − 1
∑

a = 1

k
∑

b = a + 1

na
∑

i = 1

nb
∑

j = 1

α
a,b
ij (vai − vbj ),

and for any (a, b) with 1 ≤ a < b ≤ k, and any i ∈ {1, · · · , na}
and j ∈ {1, · · · , nb}, we have

∂L

∂ζ
a,b
ij

= C − α
a,b
ij − γ

a,b
ij .

It can be seen that the dual problem of the primal ontology
optimization problem (1) can be stated as

max
α

−
1

2

k − 1
∑

a = 1

k
∑

b = a + 1

na
∑

i = 1

nb
∑

j = 1

na
∑

u = 1

nb
∑

ν=1

α
a,b
ij αa,b

uν

〈

vai − vbj , v
a
u − vbν

〉

+

k − 1
∑

a = 1

k
∑

b = a + 1

ρa,b
na
∑

i = 1

nb
∑

j = 1

α
a,b
ij ,

s.t.C ≥ α
a,b
ij ≥ 0∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na}, (2)

j ∈ {1, · · · , nb}.

From the perspective of operational research, this is a secondary
optimization problem that can be solved using classic algorithms
(such as interior points or active constraint methods). Similar to
the classical support vectormachine, the expression of β indicates
that the ontology function depends only on the ontology data.
In this particular case, the multi-dividing ontology function
depends on the difference between the ontology vertices of each
class. Thus, it can be stated as

f (v) =

k − 1
∑

a = 1

k
∑

b = a + 1

na
∑

i = 1

nb
∑

j = 1

(αa,b
ij )

∗
〈

vai − vbj , v
〉

+ ε,

where (αa,b
ij )

∗
is the solution obtained by maximizing the

ontology dual optimization problem (2).
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The value of Lagrangian multiplier α
a,b
ij represents to some

extent the difficulty of meeting the constraints of the constraint
optimization problem. Therefore, as long as these variables are
analyzed well, the above ontology optimization problem can be
better understood. Through simple derivation, we can know that
the above-mentioned multi-dividing ontology algorithm has the
characteristics below.

Property 1. For every pair (a, b) satisfying 1 ≤ a <

b ≤ k, f :Rp → R is the ontology function. By the
ontology original problem and the dual problem under themulti-
dividing framework described in (1) and (2), all ontology vertex
pairs (vai , v

b
j ), where i ∈ {1, · · · , na}, j ∈ {1, · · · , nb}, the

ontology optimization constraints on Lagrange multipliers can
be expressed as follows:











f (vai ) ≥ f (vbj )+ ρa,b If αa,b
ij = 0

f (vai ) ≤ f (vbj )+ ρa,b If αa,b
ij = C

f (vai ) = f (vbj )+ ρa,b If 0 < α
a,b
ij < C

Let’s briefly explain Property 1. For any (a, b) satisfy 1 ≤ a <

b ≤ k, according to the ontology optimization model (1), we
know that:

α
a,b
ij (f (vai )− f (vbj )− ρa,b + ζ

a,b
ij ) = 0 ∀1 ≤ a < b ≤ k,

i ∈ {1, · · · , na}, j ∈ {1, · · · , nb},

γ
a,b
ij ζ

a,b
ij = 0 ∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na}, j ∈ {1, · · · , nb},

C − α
a,b
ij − γ

a,b
ij = 0 ∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na},

j ∈ {1, · · · , nb},

α
a,b
ij ≥ 0 ∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na}, j ∈ {1, · · · , nb},

γ
a,b
ij ≥ 0 ∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na}, j ∈ {1, · · · , nb}.

• If α
a,b
ij = 0, then γ

a,b
ij > 0, and thus ζ

a,b
ij = 0. By bringing

it into the constraints of the original ontology optimization
problem (1), we know that f (vai ) ≥ f (vbj )+ ρa,b hold;

• If α
a,b
ij = C, then γ

a,b
ij = 0, and thus ζ

a,b
ij ≥ 0. By bringing

it into the constraints of the original ontology optimization
problem (1), we know that f (vai ) ≤ f (vbj )+ ρa,b hold;

• Finally, if 0 < α
a,b
ij < C, then f (vai ) − f (vbj ) = ρa,b − ζ

a,b
ij .

On the other hand, ζ
a,b
ij = 0 also hold, thus we get f (vai ) =

ρ a,b + f (vbj ).

In the following, we will explain that the above-mentioned
sparse vector multi-dividing ontology learning algorithm can be
transformed into a multi-dividing ontology learning algorithm
based on support vector machine, and then it is essentially an
ontology learning algorithm based on support vector machine.

Multi-Dividing Ontology Learning
Algorithm Based on Support Vector
Machine
It can be said that support vector machine is one of the earliest
machine learning algorithms. It originated from the generalized

portrait algorithm in pattern recognition. The earliest work
was completed by former Soviet scientists and published in
1963. In the 1970’s and 1980’s, with the introduction of the VC
dimension (Vapnik-Chervonenkis dimension), the breakthrough
of the solution method for the relaxation variable programming
problem, and the deepening of the research on the maximum
boundary theory, the support vector machine was theoreticalized
and became a classic algorithm in statistical learning theory.
Since the 1990’s, various methods based on support vector
machines have emerged, such as kernel-based support vector
machines, non-linear support vector machines, and so on. The
successful application of support vector machines to handwritten
symbol recognition systems has allowed scholars to see the huge
potential of support vector machines.

Below we explain that the multi-dividing ontology learning
algorithm given in the previous subsection is essentially
an ontology learning algorithm on the basis of support
vector machines.

Support Vector Machine Based Multi-Dividing

Ontology Learning Algorithm
Formally, the sparse vector multi-dividing ontology learning
framework in the previous subsection is very similar to
the traditional support vector machine based optimization
algorithm. In fact, the ontology algorithms (1) and (2) can be
regarded as a transformation of the classical support vector
machine algorithm. Although there are huge differences in
the feasible region, the final solutions are consistent in a
certain sense.

According to the support vector machine model, the ontology
optimization framework can be expressed as

min
β ,ε

1

2
‖β‖22 ,

s.t. f (vai ) ≥ f (vbj )+ ρa,b,∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na},

j ∈ {1, · · · , nb}.

For every pair (a, b) satisfies 1 ≤ a < b ≤ k. In
classic support vector machine classification algorithms, linearly
separable means

f (vai ) ≥ m−
a , ∀i ∈ {1, · · · , na}

f (vbj ) ≤ m+
b
, ∀j ∈ {1, · · · , nb}.

That is, for each class a (here a ∈ {1, · · · , k}), under the action
of the ontology function f, the real numbers corresponding to
the vertices of the ontology of this class are within the interval
[m−

a ,m
+
a ]. When k = 2, m−

a = 1 and m+
b

= −1, then the
boundary returned to the case of the binary problem. Let βSVM

be the ontology vector obtained by the multi-dividing learning
algorithm based on support vector machine, we verify

〈

βSVM, vai
〉

−

〈

βSVM, vbj

〉

≥ m−
a −m+

b
, ∀1 ≤ a < b ≤ k,

i ∈ {1, · · · , na}, j ∈ {1, · · · , nb}.
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Thus,

〈

ρa,b

m−
a −m+

b

βSVM, vai

〉

−

〈

ρa,b

m−
a −m+

b

βSVM, vbj

〉

≥ ρa,b

holds for ∀1 ≤ a < b ≤ k, i ∈ {1, · · · , na}, j ∈ {1, · · · , nb}.
Now let’s return to the multi-segmenting ontology learning

algorithm under the condition of sparse vectors in the previous
section. Let βSparse be the ontology sparse vector obtained in the
previous section. For each pair (a, b) with 1 ≤ a < b ≤ k, we set

〈

βSparse, v
a
i

〉

−

〈

βSparse, v
b
j

〉

≥ ρa,b, ∀i ∈ {1, · · · , na}, j ∈ {1, · · · , nb}.

Set

ρa
+ = min

i∈{1,··· ,na}
f (vai ),

ρb
− = max

j∈{1,··· ,nb}
f (vbj ).

We can easily check that

〈

βSparse, v
a
i

〉

≥ ρa
+,

〈

βSparse, v
b
j

〉

≤ ρb
−,

and

ρa
+ − ρb

− ≥ ρa,b.

Therefore, for each 1 ≤ a < b ≤ k, we yield

m−
a −m+

b

ρa
+ − ρb

−

〈

βSparse, v
a
i

〉

−
ρa
++ρb

−

ρa
+ − ρb

−

≥ m−
a , ∀i ∈ {1, · · · , na}

m−
a −m+

b

ρa
+ − ρb

−

〈

βSparse, v
b
j

〉

−
ρa
++ρb

−

ρa
+ − ρb

−

≤ m+
b
, ∀j ∈ {1, · · · , nb}.

It implies that we can get the appropriate ε such that βSVM =

ρβSparse, where the parameter ρ is a complex parameter related

to ρ1
+, ρ

1
−, · · · , ρ

k
+, ρ

k
−, and its value depends on the structural

characteristics of the ontology itself and the ontology sample.
Finally, for non-linear situations, the kernel function method

can be used to obtain the ontology learning model under the
multi-dividing framework. Let K(·, ·) be a kernel function and
the corresponding feature space is F, then the ontology function
is expressed as

f (v) =

k−1
∑

a=1

k
∑

b=a+1

na
∑

i=1

nb
∑

j=1

(αa,b
ij )

∗
(K(vai , v)− K(vbj , v))+ ε,

where (αa,b
ij )

∗
is the optimal solution for the following ontology

optimization problem

max
α

−
1

2

k−1
∑

a=1

k
∑

b=a+1

na
∑

i=1

nb
∑

j=1

na
∑

u=1

nb
∑

ν=1

α
a,b
ij αa,b

uν

[K(vai , v
a
u)− K(vai , v

b
ν)− K(vau, v

b
j )+ K(vbj , v

b
ν)]

+

k−1
∑

a=1

k
∑

b=a+1

ρa,b
na
∑

i=1

nb
∑

j=1

α
a,b
ij ,

s.t.C ≥ α
a,b
ij ≥ 0 ∀1 ≤ a < b ≤ k,

i ∈ {1, · · · , na}, j ∈ {1, · · · , nb}.

EXPERIMENTS

In this section, our main aim is to measure the similarity of
chemical topological indices in terms of SVM based multi-
dividing ontology learning algorithm which is stated in section
multi-dividing ontology algorithm based on support vector
machines. First, we introduce chemical graph theory and
topological indices. Then, we present the similarity computing
results by means of multi-dividing ontology learning algorithm.

Introduce of Chemical Graph Theory and
Topological Index
In the chemical experiments in 1960’s and 1970’s, scientists
realized that there was an inevitable connection between the
physico-chemical properties of a compound and its molecular
structure. That is, what kind of molecular structure possesses
what kind of chemical properties. This discovery was gradually
confirmed in later experimental science, and a new field was born
from this point of view, which uses chemical structure to infer
the properties of compounds. According to this idea, scientists
use graphs to represent molecular structures: vertices represent
atoms, and edges between vertices represent chemical bonds
between atoms. The graph is regarded a molecular graph, and the
properties of chemicals are studied by defining the topological
index on the graph. Early topological indexes include Wiener
index, PI index, Szeged index, etc., which can well reflect simple
physical properties such as the melting point and boiling point
of compounds.

Experimental Design and Results
We analyzed in detail the existing topological indexes and
polynomials and divided them into two classes: (1) degree-based
topological index and polynomial (for example: Zagreb index,
Sum connectivity index, Katayama index, ect.), and the other is
a distance-based topological index (for example: Wiener index,
PI index, Ediz eccentric connectivity index, ect.). We take 430
degree-based topological indexes and polynomials, 380 distance-
based topological indexes and polynomials frommore than 2,000
existing topological indexes and polynomials, and thus construct
the first and second classes corresponding to two branches of
ontology graph respectively. In order to form a tree structure,
we specially construct 30 virtual vertices as a connecting bracket
for connecting vertices. Thus, our new ontology graph has totally
840 vertices and two branches. Using SVM based multi-dividing
ontology learning algorithm, take k= 2.

For a given ontology vertex (except the virtual vertices),
we utilize a multi-dimensional vector to represent all the
information for its corresponding topological index or
polynomial. This vector not only contains the concept, structure,
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TABLE 1 | The experiment results on new ontology for N = 3, 5, 10, and 20.

Acc3 (G) Acc5 (G) Acc10 (G) Acc20 (G)

Our ontology algorithm 0.40 0.49 0.77 0.94

Ontology algorithm in [23] 0.30 0.36 0.55 0.73

Ontology algorithm in [24] 0.39 0.45 0.60 0.79

Ontology algorithm in [25] 0.28 0.37 0.54 0.78

attributes, instance information. We also numerically extract the
formula of the topological index or polynomial integrate into
the vector.

We use P@N criterion to research the equality of the
experiment result. The specific implementation process is as
follows: first, for each ontology vertex v, the domain expert
gives the N vertices which are most similar to v, and denote

it as S
expert
N (v); second, N vertices which are most similar

to each vertex v are obtained in light of our multi-dividing

ontology learning algorithm and marked as S
Algorithm
N (v); third,

the accuracy of each vertex v is calculated by AccN(v) =
∣

∣

∣
S
expert
N (v)∩S

Algorithm
N (v)

∣

∣

∣

N ; finally the average accuracy of the vertices

in entire ontology graph is calculated by AccN(G) =

∑

v∈V(G)

AccN (v)

|V(G)|
.

In the learning process, we take 200 vertices respectively from
the first and second class as ontology samples, i.e., S = (S1, S2),
|S1| = |S2| = n1 = n2 = 200 and n = n1 + n2 = 400. Moreover,
we claim the followings facts:

(1) The 30 virtual vertices are not considered into ontology
sample data;

(2) We didn’t compute Acc(v) for virtual vertices, and these
vertices corresponding to fake ontology concepts (topological
indices or polynomials) are not computed into Acc(G) as well,
which implies

∣

∣V(G)
∣

∣ = 810.

For the purpose of comparison of the result data, ontology
learning tricks borrowed in Gao et al. [23–25] are carried out on
our new ontology, and the precision ratios deduced from these
ontology learning frameworks are manifested in Table 1.

By means of compared data depicted in Table 1, it’s verified
that our SVM based multi-dividing ontology algorithm is
much more efficient than ontology learning tricks introduced
in Gao et al. [23–25] especially as N becoming large. The
purpose of the topological index collation is to eliminate those
topological indices which have no practical value to chemical
science introduced by only formula transformation or parameter

replacement. However, the high similarity does not mean that
some of the topological indexes are redundant and useless. Our
calculation results will give chemists some data references, but
cannot work as direct evidence that judging a chemical index
is useless.

CONCLUSIONS

Our main ontology learning algorithm is designed in the multi-
dividing setting based on support vector machines trick. We
focus on the chemical topological data and the experiment result
shows the effective of our introduced algorithm.

Constructing an ontology for more than 2,000 topological
indices is a heavy task, and we need to give specific vectors for
each index or polynomial. So far, this work has been completed
in less than half. At the same time, we note that new topological
indexes are constantly being artificially defined, that is, the total
number of indexes is still increasing. We hope in the future, we
can show an ontology with more than 2,000 indices, which can
promote further the development of chemical experiments and
theoretical chemical science.
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