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[1] Hydrological impacts of climate change are assessed by downscaling the General
CirculationModel (GCM) outputs of predictor variables to local or regional scale hydrologic
variables (predictand). Support Vector Machine (SVM) is a machine learning technique
which is capable of capturing highly nonlinear relationship between predictor and predictand
and thus performs better than conventional linear regression in transfer function‐based
downscaling modeling. SVM has certain parameters the values of which need to be fixed
appropriately for controlling undertraining and overtraining. In this study, an optimization
model is proposed to estimate the values of these parameters. As the optimization model,
for selection of parameters, contains SVM as one of its constraints, analytical solution
techniques are difficult to use in solving it. Probabilistic Global Search Algorithm (PGSL),
a probabilistic search technique, is used to compute the optimum parameters of SVM.
With these optimum parameters, training of SVM is performed for statistical downscaling.
The obtained relationship between large‐scale atmospheric variables and local‐scale
hydrologic variables (e.g., rainfall) is used to compute the hydrologic scenarios for multiple
GCMs. The uncertainty resulting from the use of multiple GCMs is further modeled
with a modified reliability ensemble averaging method. The proposed methodology is
demonstrated with the prediction of monsoon rainfall of Assam and Meghalaya
meteorological subdivision of northeastern India. The results obtained from the
proposed model are compared with earlier developed SVM‐based downscaling models,
and improved performance is observed.
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1. Introduction

[2] General Circulation Models (GCMs) are tools designed
to simulate time series of climate variables globally,
accounting for effects of greenhouse gases in the atmosphere.
They attempt to represent the physical processes in the
atmosphere, ocean, cryosphere, and land surface and provide
estimates of climate variables (e.g., air temperature, precipi-
tation, wind speed, pressure) on a global scale. GCMs dem-
onstrate a significant skill at the continental and hemispheric
spatial scales and incorporate a large proportion of the com-
plexity of the global system; they are, however, inherently
unable to represent local subgrid‐scale features and dynam-
ics, which is of interest to a hydrologist. Accuracy of GCMs,
in general, decreases from climate‐related variables such as
wind, temperature, humidity, and air pressure to hydrologic
variables such as precipitation, evapotranspiration, runoff,
and soil moisture, which are also simulated by GCMs. These
limitations of the GCMs restrict the direct use of their output
in hydrology [Hughes et al., 1993].

[3] Downscaling, in the context of hydrology, is a method
to project the hydrologic variables (e.g., rainfall and stream-
flow) at a smaller scale based on large‐scale climatological
variables (e.g., mean sea level pressure) simulated by a GCM.
Poor performances of GCMs at local and regional scales have
led to the development of Limited Area Models (LAMs) in
which a fine computational grid over a limited domain is
nested within the coarse grid of a GCM [Jones et al., 1995].
This procedure is also known as dynamic downscaling.
Another approach to downscaling is statistical downscaling
[Wilby et al., 2004], in which regional or local information
about a hydrologic variable is derived by first determining a
statistical model which relates large‐scale climate variables
(or predictors) to regional‐ or local‐scale hydrologic variables
(or predictands). Then the large‐scale output of a GCM
simulation is fed into this statistical model to estimate the
corresponding local or regional hydrologic characteristics
[Wilby et al., 2004]. Statistical downscaling methods are
data‐ driven models and do not consider the physics between
predictors and predictand. Statistical downscaling methods
can be further classified into weather generators [Hughes et al.,
1993; Wilks, 1999], weather typing, and transfer functions
based on the use of different statistical tools. Downscaling with
the prediction of finer gridded weather/meteorologic vari-
ables from large‐scale coarse‐gridded climate variables is
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also used for weather or hydrometeorological applications.
Details of such applications may be found in Venugopal
et al. [1999], Xue et al. [2007], and Tao and Barros [2010].
[4] The transfer function‐based downscaling method relies

on a direct quantitative relationship between the local‐scale
climate variable (predictand) and the variables containing
the large‐scale climate information (predictors). To date,
linear and nonlinear regression [Wilby and Dawson, 2004],
canonical correlation [Conway et al., 1996], and Artificial
Neural Network (ANN) [Hewitson and Crane, 1992, 1996;
Crane and Hewitson, 1998; Trigo and Palutikof, 1999;
Tripathi and Srinivas, 2005] have been used to derive the
predictor‐preditand relationship.
[5] Despite a number of advantages, the neural network

models have several drawbacks, including the possibility of
getting trapped in local minima and subjectivity in the choice
of model architecture [Suykens, 2001]. However, with tech-
nical advancements, the limitations may be overcome.
Vapnik [1995, 1998] pioneered the development of a novel
machine learning algorithm called Support Vector Machine
(SVM), which provides an elegant solution to these problems.
Although recurrent ANNs perform better than feed forward
neural networks in many applications [e.g., Nagesh Kumar
et al., 2004], being a subset of neural networks, they involve
numerical algorithms (back propagation or conjugate gra-
dient) in training which sometimes do not result in global
optimum values of the parameters. On the other hand, as
SVM involves analytical methods such as quadratic program-
ming, it always results in global optima [Vapnik, 1998]. ANN
trains a model with the objective of empirical risk minimi-
zation which lacks in generalization of input‐output relation-
ship [Gunn et al., 1997]. SVM, on the other hand, performs
structural risk minimization which is more generalized and
results in more credible solutions. The SVM has been used
in a statistical downscaling model by Tripathi et al. [2006].
SVM has some drawbacks of rapid increase of basis func-
tions with the size of training data set [Govindaraju, 2005],
which may lead to overtraining (large difference between
the system performance measure of training and testing data
set). High overtraining suggests that a model is good for
training data set but may not perform well with a new data
set for present conditions (in a slightly different period) as
well as for the future. This can be overcome by selecting the
appropriate values of SVM parameters. In the present study,
an optimization model is developed for selection of SVM
parameter values where the objective is to maximize the cor-
relation coefficient (r) (considered as a system performance
measure for this study) between observed and predicted data
for testing data set, which is independent of training data set.
To control the difference between the r values of training
and testing (high difference signifies overtraining) data set,
a constraint is used in the optimization model for allow-
able difference. As the optimization model is nonlinear and
it is difficult to represent the objective function and con-
straints in a functionable form of decision variables, a search
algorithm is required to solve the optimization model. In the
present study, Probabilistic Global Search Laussane (PGSL),
a global search optimization model, is used for this purpose.
Tests on benchmark problems having multiparameter non-
linear objective functions have revealed that PGSL performs
better than Genetic Algorithm and advanced algorithms for
Simulated Annealing [Raphael and Smith, 2003]. The algo-

rithm is based on the assumption that better sets of points are
more likely to be found in the neighborhood of good sets of
points and therefore intensifying the search in the regions
that contain good solutions. After the computation of SVM
parameters and subsequent training, the model is applied to
the bias corrected standardized GCM output for prediction
of rainfall in the next century.
[6] To summarize the motivations and contributions of the

present analysis with respect to the earlier developed models:
the state of art methodology for downscaling with SVM
includes a grid search method [Tripathi et al., 2006] which
selects the best SVM from a number of trained model on the
basis of maximum performance for testing data set. However,
it is observed in the present study, that such selection is also
characterized by overtraining, as there is no control over the
difference between the performances of SVM for training and
testing. The present study develops an optimization model for
selection of best SVM, which not only uses the criteria of
highest performance in testing but also constrains the dif-
ference between training and testing performance to an
allowable value. This results in minimum overtraining and is
found to be significantly improved over the state of art
modeling of grid search method. This is a generalized
methodology which can be applied to any SVM model and,
more specifically, is useful for downscaling as overtraining is
an important factor in downscaling. The major assumption in
downscaling is that the statistical relationship between the
predictor and predictand will hold good in the future. High
overtraining denotes that the relationship may fail in a
changed condition for future, and for this specific reason the
developed methodology will be very useful for statistical
downscaling model applied to any case study.
[7] Modeling impacts of climate change is characterized by

the uncertainty resulting from the use of multiple GCMs
[Wilby and Harris, 2006; Ghosh and Mujumdar, 2007;
Mujumdar and Ghosh, 2008]. During the past decade,
research on modeling uncertainty in assessment of climate
change impact has advanced on several fronts; some of them
are Raisanen and Palmer [2001];Giorgi and Mearns [2003];
Tebaldi et al. [2004, 2005];Wilby and Harris [2006]; Ghosh
and Mujumdar [2007]; and Mujumdar and Ghosh [2008].
The present study assigns weights to GCMs based on “model
performance” and “model convergence” with a modified
version of “Reliability Ensemble Averaging (REA)” [Giorgi
and Mearns, 2003]. With the weights derived from modified
REA, weighted mean CDFs are computed for Assam and
Meghalaya meteorological subdivision, India, during three
30‐year time slices: 2020s, 2050s, and 2080s. It should be
noted that downscaling literally means conversion of coarse
grid data to a finer grid data. However, in hydroclimatological
context, downscaling is used normally for two reasons: (1)
inability of GCMs in simulating rainfall accurately [Hughes
and Guttrop, 1994] and (2) simulations of GCMs at coarse
grid. Therefore, in the present context, downscaling refers to
the prediction of local‐scale hydrologic variable (rainfall)
from larger‐scale climatic pattern, which is simulated by
GCM. It should be noted that the meteorological subdivisions
in India have irregular shapes (as it is based on political
boundaries) and rainfall amount (which is computed from
rainfall at stations/points) in those subdivisions has huge
implications on water sharing, planning, and management
considering irregular borders. Regular grid points, on which
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GCMs work, cannot be used as a representation of such
subdivisions with irregular boundaries. Therefore, there is
a need to predict rainfall in a subdivision from large‐scale
climatic pattern, which is performed in the present study.
Applications of statistical downscaling for projection of
rainfall in Indian meteorological subdivisions may also be
found in Tripathi et al. [2006].
[8] It should be noted that until now, several statistical

methods have been used for downscaling in projecting regional
hydrologic variables; however, each method has its own limi-
tation. It is now the high time to use the combination of
models to overcome such limitations. For example, SVM is
used with conventional grid search method, but does not
overcome the problem of overtraining completely. The present
study couples PGSL with SVM, with the development of a
new optimization model for minimizing overtraining to the
extent possible. Uncertainty resulting from the use of mul-
tiple GCMs is then combined for more reliable projections.
None of the individual tools for downscaling are novel in
terms of the methodology; the overall combination becomes
new, at least in the context of the impacts and adaptation.
The next section presents the details of the data and case
study area.

2. Data and Case Study Area

[9] The Assam and Meghalaya meteorological subdivi-
sion, located in northeast India, extends from 90°E to 96°E
and 24°N to 28°N. The monthly area weighted precipitation
data of Assam and Meghalaya meteorological subdivision in
India, for monsoon period (June, July, August, and September)
from 1948 to 2002 is obtained from Indian Institute of
Tropical Meteorology, Pune (http://www.tropmet.res.in).
This data set is used in the downscaling as predictand. The
predictors used for downscaling [Wilby et al., 1999;Wetterhall
et al., 2005] should be (1) reliably simulated by GCMs,
(2) readily available from archives of GCM outputs, and
(3) strongly correlated with the surface variables of interest
(rainfall in the present case). Monsoon rainfall in northeast
India is caused by high temperature in the land area and
subsequent generation of low‐pressure zone. This results in
wind flow with moisture from the Bay of Bengal to the land
area. This is considered in selection of predictors for the
downscaling model. It has been reported in the literature
[Wilby et al., 1999; Wetterhall et al., 2005; Mujumdar and
Ghosh, 2008] that these variables can be simulated well at
a larger scale by a GCM and may be used for downscaling.
Considering this, the predictors preliminarily selected for the
present study are Mean Sea Level Pressure (MSLP), surface
specific humidity, near surface air temperature, zonal wind
speed, and meridional wind speed. Overview of the statis-
tical downscaling model is presented in Figure 1. Training
(calibration) of the statistical downscaling model requires
observed climate data. In the absence of adequate observed
climatological data, the data from the National Center for
Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) reanalysis project [Kalnay et al.,
1996] may be used. Reanalysis data are outputs from a
high‐resolution atmospheric model that has been run using
data assimilated from surface observation stations, upper‐
air stations, and satellite‐observing platforms. NCEP/NCAR
reanalysis data resemble the observed data, and therefore a

usual practice in hydroclimatology is to use reanalysis data
when observed data are not available. It should be noted that
reanalysis data need further improvements as they do not
match accurately the observed data for some cases reported
in the literature [Aihong et al., 2007; Ma et al., 2009].
However, the present case study belongs to Himalayan
region and northeast part of India, where the density of
weather stations is much less. Owing to the shortage of
observed data, reanalysis data are used as a proxy to the
observed data. Use of reanalysis data for Indian subdivisions
has also been reported in Tripathi et al. [2006]. In the
present study, NCEP/NCAR reanalysis data are used for
calibration of the downscaling model. Monthly (for mon-
soon period) average climate variables for 1951 to 2000 are
obtained for a region spanning 5°N–40°N in latitude and
60°E–110°E in longitude. The third criterion is tested by
plotting the contour plot of the correlation coefficient
between the predictor variables at NCEP gridpoints and the
predictand, monsoon rainfall in Assam and Meghalaya
meteorological subdivision. Figure 2 shows the contour
plots of correlation coefficient with monsoon rainfall for the
predictor variables listed above. It shows that the monsoon
rainfall in Assam and Meghalaya meteorological subdivi-
sion is correlated with the local predictor variables, selected
preliminarily, except the surface temperature. The correla-
tion between the rainfall in Assam and Meghalaya meteo-
rological subdivision and local temperature is very low.
However, correlation is high with the temperature at distant
areas (northern and northwestern India), which is difficult to
explain with geophysics. Such correlation may be spurious
correlation and such unexplained relationship may not be
valid for future under altered climatic condition. Therefore,
the surface temperature is not used as a predictor, and for
other predictor variables, the data are extracted for the
region spanning 20°N–35°N in latitude and 85°E–105°E in
longitude (constituting 63 grid points) that encapsulates the
study region (Figure 3). The correlation between the climate
variables and rainfall is observed to be around 0.2–0.4,
which is relatively low. Therefore, a single climate variable
alone cannot be considered a predictor for downscaling, and
it is required to use a combination of multiple climate
variables in downscaling, which results in simulating better
the rainfall pattern. It should be noted that the correlation
coefficient is based on a linear relationship, whereas the
relationship between the predictors and predictand is non-
linear. Kendalls’ Tau, which is capable of capturing a
nonlinear relationship, is also used and similar results are
obtained. The outputs (MSLP, surface specific humidity,
zonal wind speed, and meridional wind speed) of GCMs are
downloaded from IPCC data distribution center for AR4
[IPCC, 2007]. The GCMs considered, based on the avail-
ability of the output in IPCC data, are given in Table 1.
[10] Due to incomplete knowledge about the geophysical

processes, assumptions are made in the development of a
GCM in terms of parameterizations and empirical formulae.
Because of these assumptions, a GCM may not simulate
climate variables accurately, and there is a difference between
the observed and simulated climate variable for almost all the
GCMs. This difference is known as bias. It is important to
remove the bias from the GCM output for projecting the
future hydrologic and climatic scenario correctly. Standard-
ization [Wilby et al., 2004] is used prior to statistical down-
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scaling to reduce systematic bias in the mean and variance of
GCM predictors relative to the observations or NCEP/NCAR
data. The procedure typically involves subtraction of mean
and division by standard deviation of the predictor variable
for a predefined baseline period for both NCEP/NCAR and
GCM output. The period 1961–1990 is used as a baseline
period because it is of sufficient duration to establish a reli-
able climatology, yet not too long nor too contemporary to
include a strong global change signal. Four climate variables
at 63 grid points are used as predictors, and hence the
dimension of the predictors is 252. Furthermore, predictors at
a grid point are expected to be highly correlated with those of
neighboring grid points. Therefore, direct use of the predictor
variables, in statistical regression, may lead to multicollinearity
and may be computationally expensive. Principal Component
Analysis (PCA) is performed to reduce the dimensionality of
the predictor variables. The principal components are selected
on the basis of the percentage of variance of original data
explained by them. Statistical downscaling model maps the
variability of climate variables to the variability of rainfall
using regression. Therefore, the principal components are
selected on the basis of the variability of original climate
variables explained by individual principal components. This
criterion is also used by Hughes and Guttrop [1994] and

Tripathi et al. [2006]. There are some other tests such as the
weight method used by Zorita et al. [1995] and Wetterhall
et al. [2005], which may also be used. It is observed that
first 36 principal components represent 98% variability of
the original data set and hence are used in the study.
[11] Bias‐free principal components are used as regressors

to predict the monthly monsoon rainfall of Assam and Me-
ghalaya meteorological subdivision in the proposed SVM
regression model. The first two thirds of the data set is used in
training, and the rest of the data set is used in testing of the
model. It should be noted that the downscaling model will be
useful and valid if the statistical relationship between climate
and hydrologic variable holds good in changed climatic
condition. In the last one third data of 1950–1999, the signals
of climate forcing are more visible compared to the first two
thirds of data and therefore to test whether the model is valid
for changed climatic condition, the last one third of the data is
used for testing. The next section presents the mathematical
background of support vector machine regression method.

3. Support Vector Machine Regression

[12] The Support Vector Machine (SVM) was developed
by Vapnik [1995] and is gaining popularity due to many

Figure 1. Flowchart of SVM‐based statistical downscaling model.
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attractive features and its promising empirical performance.
The formulation of SVM embodies Structural Risk Minimi-
zation (SRM) principle, which has been proved to be superior
[Gunn et al., 1997] to the traditional Empirical Risk Mini-
mization (ERM) principle employed by conventional neural
networks. SRM minimizes an upper bound on the expected
risk, as opposed to ERM, which minimizes the error on the
training data. This feature equips SVM with a greater ability
to generalize, which is the goal of statistical learning. A brief
introduction to statistical learning with the concept of SRM
may be found in Smola [1996], Vapnik [1998], and Dibike
et al. [2001].
[13] SVM‐based regression method actually selects some

points from the training vector and fixes the relationship
between the predictands and predictor. When a new data
point is fitted to the relationship, it is coupled with the
selected point by kernel function and predicts the predictand.
[14] Given training data {(x1, y1), …, (xl, yl),X 2 <n, Y 2

<}, the Support Vector (SV) regression equation may be
given by the following [Smola, 1996]:

f xð Þ ¼
X

l

i¼1

wi � K xi; xð Þ þ b; ð1Þ

where, K(xi, x) and wi are the kernel functions and the cor-
responding weights used in the SV regression. b is a constant
known as bias. The ith input xi for training is called support

vector if wi ≠ 0 for that particular i. x is the input variable of
the SVM. The training process selects optimum number of
points from the training data set which fix the relationship
between predictors and predictand. These points are known

Figure 3. NCEP gridpoints superposed on the map of
Assam and Meghalaya meteorological subdivision.

Figure 2. Contour plots of correlation between monthly climate variables and monthly monsoon (June,
July, August, and September) rainfall of Assam and Meghalaya.
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as support vectors. The points in training data set, other than
support vectors, are not required in the regression equation
given in equation (1). Structural risk minimization in SVM
computes the weights corresponding to the support vectors
and bias, as given in equation (1). For the downscaling model
developed in this chapter, x denotes a set of principal com-
ponents, whereas f(x) denotes the predicted values of mon-
soon rainfall. Details of SVM are presented in Appendix A.
[15] Tripathi et al. [2006] has pointed out that the perfor-

mance of SVM depends on the selection of the values of C
and s (Appendix A). They have performed a grid search
method to compute the best estimates of these two param-
eters. Performance of SVM also depends on the selection of
the values of kernel parameter b (Appendix A) and loss
function parameter " (Appendix A), and therefore selection of
the values of these parameters is equally important but has not
gotten attention in the literature. Handling decision variables
of dimension 4 is also difficult by a grid search method, and
therefore a sophisticated search algorithm is required to use
for evaluation of the values of these four parameters with
proper development of optimization model. An effort is made
in this regard in the present study, which is described in the
next section.

4. SVM‐PGSL Coupled Approach

[16] To compute the best estimates of the four parameters
of SVM, viz.,C, s, b and ", the following optimization model
is developed:

Maximize r testingð Þ ð2Þ

subject to

r trainingð Þ � r testingð Þj j � d ð3Þ

r trainingð Þ ¼ Correlation Coefficient ytrain; f xð Þtrain
� �

ð4Þ

r testingð Þ ¼ Correlation Coefficient ytest; f xð Þtest
� �

ð5Þ

f xð Þ ¼ g C; �; b; "ð Þ; ð6Þ

where, r(training) and r(testing) equations (4) and (5) are the
correlation coefficients of observed (y) and predicted values
(f(x)) for training (two thirds of the data set) and testing (one
third of the data set) data set. The objective function
equation (2) of the optimization model is to maximize r
(testing), which is independent of training. Therefore, the
objective function will select the model which fits best to a
new data set independent of training, and thus it will perform
well in altered climatic conditions. High difference between

the r values for training and testing denotes overtraining, and
therefore it is kept less than an allowable value (d) to control
overtraining equation (3). The predicted values f(x) are
computed from the SVM model and therefore can be con-
sidered to be the function of decision variables C, s, b, and "
equation (6). As the objective function and the constraints
used in the optimization model equations (2)–(6) are non-
linear and cannot be expressed in a functional form of deci-
sion variables, it is difficult to obtain an analytical solution. A
search algorithm, Probabilistic Global Search Laussane
(PGSL) is proposed to use for this purpose which will gen-
erate the values of decision variables from their domain and
select the best solution leading to the best estimate of the
objective function. As the problem is a constrained optimi-
zation problem, it is converted into an unconstrained problem
by penalty function method. In the present analysis, bracket
operator penalty term is used.

F ¼ obj xð Þ þ �
X

k

j¼1

�j �
2
j ð7Þ

where, F = modified objective function value,
obj(x) = objective function value, here test r value
k = total number of constraints,
z = −1 (for maximization problem),
dj = penalty coefficient (a large value) for jth constraint,
vj = amount of violation in jth constraint.
Whenever there is a constraint violation the penalty function
value is added to the objective function value to make the
solution inferior. The algorithm is presented in Figure 4. It
should be noted that the optimization model equations (2)–(5)
are not the structural risk minimization (similar to least square
optimization of conventional regression) of SVM regression;
rather, this is the optimization model which selects the best
SVMwithminimum overtraining, out of several trained SVM
models. The next subsection presents a brief overview of
PGSL.

4.1. Probabilistic Global Search Laussane

[17] Probabilistic Global Search Laussane (PGSL), a
global search algorithm for the solution of nonlinear opti-
mization, was developed starting from the observation that
optimally directed solutions can be obtained efficiently
through sampling the search space without using special
operators. The principal assumption is that better points are
likely to be found in the neighborhood of families of good
points. PGSL has been developed at IMAC (informatique et
de mecanique appliques la construction) [Raphael and Smith,
2000]. It has already been applied to several tasks in the field
of structural engineering, such as optimization problem in
timber structures [Svanerudh et al., 2002]. Tests on bench-
mark problems having multiparameter nonlinear objective

Table 1. GCMs Used in the Study

GCM Institute Spatial Resolution

BCCR Bjerknes Centre for Climate Research, Norway 2.80° × 2.80°
CNRM Centre National de Recherches Meteorologiques, France 2.80° × 2.80°
CM4 Institut Pierre Simon Laplace, France 2.50° × 3.75°
MIROC3.2 medres National Institute for Environmental Studies, Japan 2.80° × 2.80°
CGCM2.3.2 Meteorological Research Institute, Japan 2.80° × 2.80°
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functions revealed that PGSL performs better than genetic
algorithms and advanced algorithms for simulated annealing
[Raphael and Smith, 2003].
[18] PGSL is basically a direct method which depends on

the objective function only through ranking a countable set of
function values. PGSL uses the assumption that better sets
of points are more likely to be found in the neighborhood
of good sets of points, therefore intensifying the search in
regions that contain good solutions [Domer et al., 2003].
PGSL algorithm consists of four nested cycles: sampling
cycle, probability updating cycle, focusing cycle, and sub-
domain cycle [Raphael and Smith, 2003]. Initially uniform
Probability Density Function (PDF) is assumed for all the
decision variables of the optimization model to start the
searching. In the sampling cycle number of points (say NS) is
generated randomly by generating a value for each variable
according to the PDF. Among them, the best sample is
selected. In a probability updating cycle, the sampling cycle
is invoked for a number of times (say NPUC). After each
iteration, the PDF of each variable is modified. The interval
containing the best solution is first selected, and then the
probability of that interval is multiplied by a factor greater
than 1. The PDF thus generated is then modified to make the
area under the density function equal to unity. This ensures
that the sampling frequencies in regions containing good
points are increased. In a focusing cycle, probability updating
cycle is repeated for NFC times. After each iteration, the
search is increasingly focused on the interval containing the
current best point. The interval containing the best point
is divided into uniform subintervals. A 50% probability is
assigned to this interval. The remaining probability is then
distributed to the region outside this interval in such a way
that the PDF decays exponentially from the best interval. In
subdomain cycle, the focusing cycle is repeated NSDC times
and at the end of each iteration, the current search space is
modified. In the beginning, the entire space is searched, but in
subsequent iterations a subdomain is selected for search. The
size of the subdomain decreases gradually and the solution
converges to a point. The flowchart for PGSL is presented in
Figure 5. Details of the algorithms are available in Raphael
and Smith [2003]. SVM coupled with global search algo-
rithm PGSL is used to solve the statistical downscaling

problem with the best possible values of SVM parameters.
The next section presents details of the results obtained.

5. Results and Discussion

[19] The SVM‐PGSL coupled approach is applied in the
regression‐based statistical downscaling model for fore-
casting of rainfall in Assam and Meghalaya meteorological
subdivision. The principal components of standardized
NCEP/NCAR reanalysis data are used as predictors, and the
monsoon rainfall in Assam and Megahlaya meteorological
subdivision is used as predictand (of duration 1950–1999).
The first two thirds of the data set is used for training and the
rest is used for testing of model. Conventional regression‐
based approaches consider three sets, training, and testing
validation. However, for the present case, the same size is
very small (200), and therefore it is split into only training and
testing sets. The model is applied with the allowed difference
of r values between training and testing as 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, 0.35, and 0.40. The plots of r values (for
training and testing) with the allowed difference are presented
in Figure 6. It is observed that initially until 0.25, with the
increase of allowed difference between the r values of train-
ing and testing, both the r values are increasing. This suggests
that the improvement of model is possible in terms of testing r
till the difference in r values is 0.25. When the allowed dif-
ference is made more than 0.25, no improvement is observed
and therefore allowed difference between r values of training
and testing more than 0.25 is not recommended. Linear
regression model is also applied to the statistical downscaling
model and the training and testing r values are obtained as
0.82 and 0.62. The results obtained from linear regression are
observed to be inferior to SVM in terms of training and testing
r when the allowable difference between them in SVM is
greater than or equal to 0.2. Considering the allowable dif-
ference more than 0.2 leads to a model inferior to linear
regression on the basis of the criterion “allowable difference.”
As an SVM model inferior to linear regression on any crite-
rion is not desired, the allowable difference of r values from
training and testing is recommended as 0.2. The SVM
parameters, viz, C, s, b, and " are obtained as, 462.4774,
3.7145, 1.9995, and 0.1223, respectively, with around 500

Figure 4. Search algorithms for selection of hyper‐parameters used in SVM.
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iterations to converge. All the parameters are unitless, as
by standardization, the predictand has been made unitless.
With these parameters, the training and testing r values are
obtained as 0.87 and 0.67, which are slightly better than those
of linear regression. Although the performance based on
correlation coefficient for this case study does not show
much improvement with respect to the linear regression, the
Mean Square Error (MSE) of predicted value from observed
values shows a significant improvement. The MSE for linear
regression is obtained as 5.820 × 103mm2 and that for SVM is
3.450 × 103mm2.With respect to linear regression, the results
of SVM show 11% improvement. For comparison purpose,
Artificial Neural Network (ANN) is also used for down-
scaling. Several ANN structures (one and two hidden layers)
with multiple transfer functions are tried, and for the best trial
in terms of test errors, the training and testing r values are
obtained as 0.86 and 0.64, which are slightly inferior to the
results of SVM‐PGSL coupled approach. Grid search method
is also applied for comparison purpose, where the hyper-
parameters are selected based on the criterion minimum error
for the test set. The correlation coefficients r for training and
testing are obtained as 0.97 and 0.68. The performance
measure for testing is slightly higher than that of SVM‐PGSL

coupled approach, but the difference is significantly larger for
the methodology using test set. The huge difference between
training and testing r signifies the possibility of overfitting.
Such a method does not guarantee good performance in a
changed climatic condition, and therefore the criterion of
“allowable difference” plays an important role in the present
study and shows the importance of the proposed approach.
Furthermore, grid search algorithm for solving the present
problem requires huge number of grids (five grids for each of
the four variables, leading to 625 function evaluations) with a
high computational effort in searching and therefore a logical
search approach like PGSL is preferred in the present study.
Cherkassky and Ma [2004] have provided an analytical
approach based on empirical equation to solve C and " with
the fixed values of s and b (which have significant impact
on the performance of SVM). The present method does not
consider any empirical equations and used logical search to
solve for all the four parameters. For validation, s and b are
fixed to the values determined from SVM‐PGSL coupled
approach and the empirical equations from Cherkassky and
Ma [2004] are applied. The training and testing r are obtained
as 0.82 and 0.61. This inferiority of results is maybe because
of the use of empirical equations which may not be valid for

Figure 5. PGSL algorithm used for solving optimization model.
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this case study. It should be noted that improvement in
terms of r values by using SVM is not significant over
those by ANN. The present study area is a typical case study
where ANN, even linear regression, performs quite well
and therefore significant improvement using SVM is not
observed. However, for other Indian subdivisions, significant
improvement using SVM (with grid search) over ANN is
observed by Tripathi et al. [2006]. Therefore, it can be con-
cluded that, although significant differences in results are not
observed in the present case study, the usefulness of the
present model (SVM coupled with PGSL) will be more
visible in terms of system performance measure, r value,
for other subdivisions.
[20] After selecting the SVM parameters, the monsoon data

of Assam and Meghalaya meteorological subdivision for
years 1950–1999 is used for calibration of the model and the
results (predicted and observed) are presented in Figure 7.
The goodness of fit of the model is also tested with Nash‐
Sutcliffe coefficient [Nash and Sutcliffe, 1970], which has
been recommended by ASCE Task Committee on defini-
tion of criteria for evaluation of watershed models of the
watershed management committee, Irrigation and Drainage
Division (1993). The Nash‐Sutcliffe coefficient (E) is given
by the following:

E ¼ 1�

P

t Pot � Ppt

� �2

P

t Pot � Po

� �2
ð8Þ

where, Pot and Ppt are the observed and predicted rainfall in
time t, and Po is the mean observed rainfall. Maximum value
of Nash‐Sutcliffe coefficient is 1. Value of E as 0 indicates

that the model predicts no better than the average of the
observed data, and 1 indicating a perfect fit. The value of E
is obtained as 0.65 for the model, which is satisfactory
[Mujumdar and Ghosh, 2008; Dankers et al., 2007]. After
validation, the SVMmodel is applied to the outputs of GCMs
presented in Table 1. The outputs of the GCMs are first
standardized with the individual means and standardization
of 20C3M runs for 1950–1999. It should be noted that spatial
resolutions of GCMs are different from NCEP grid settings,
and hence linear inverse square interpolation [Willmott et al.,
1985] is used to obtain NCEP gridded GCM output. The
principal components of GCMs are derived with the principal
directions/eigen vectors obtained with reanalysis data. The
trained SVM is applied to the principal components to obtain
the future projections for A1B, A2, and B1 scenarios. For
validation, the rainfall is also simulated for 20C3M runs
(years 1950–1999).
[21] The results for statistical downscaling with the simu-

lations of 20C3M for all the GCMs, mentioned in Table 1,
are presented in Figure 8. The results are presented in terms
of Cumulative Distribution Function (CDF). The CDF is
derived with Weibull’s plotting position formula. The CDFs
derived with 20C3M projections for all the GCMs are not
deviating significantly from that of observed. Thus the per-
formances of all the GCMs for 20C3M are similar and quite
well matching with that of observed data. However, down-
scaled GCM simulations show poor skill in capturing the
extreme events during calibration as well as future periods.
This is because standardization may reduce the bias in the
mean and variance of the predictor variable, but it is much
harder to accommodate the bias in large‐scale patterns of
atmospheric circulation in GCMs (e.g., shifts in the dominant

Figure 6. Variation of training and testing R with the allowable difference between them.
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Figure 7. Time series plot of observed and predicted (from reanalysis data) monsoon (June, July, August
and September) rainfall (monthly) in Assam and Meghalaya meteorological subdivision.

Figure 8. CDF of downscaled seasonal monsoon (June, July, August and September) rainfall from GCM
output for 20C3M (duration 1950–1999).
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storm track relative to observed data) or unrealistic inter-
variable relationships between predictor variables [Wilby and
Dawson, 2004]. Another reason may be that the GCMs are
not able to reproduce the extreme value as many extreme
events occur at a much smaller scale, which cannot be
resolved by GCMs dynamically. Table 2 compares the mean,
standard deviation, minimum, and maximum values of
downscaled GCM output for 20C3Mwith observed data. It is
observed that the mean rainfall for 1950–1999 is well simu-
lated by the GCMs; however, the extreme low (minimum)
and extreme high (maximum) events are not well simulated
by all the GCMs. This does not result in very good match of
standard deviation. This is because of GCM’s inability to
model local scale extreme events. It is true that after selection
of the best model, verification is not performed with a data set
independent of both training and testing. However, the model
is applied with 20C3M scenario of GCM outputs (inde-
pendent of training and testing data) and for 1950–1999, the
results are found to resemble the observed data set. This

verifies the applicability of the selected SVM for downscaling
purposes. After verifications with 20C3M, the downscaling
model is applied to A1B, A2, and B1 scenarios.
[22] The results for A1B, A2, and B1 scenarios are pre-

sented in Figures 9, 10, and 11, respectively. They are pre-
sented in terms of CDFs derived with Weibull’s plotting
position formula for three standard time slices, 2020s, 2050s,
and 2080s. For all the scenarios, possible increases of mon-
soon rainfall are observed for almost all the GCMs. However,
there are significant mismatches between the projections of
GCMs for the future. This suggests that use of the output of a
single GCM is not reliable. Downscaled outputs of a single
GCM represents a single trajectory among a number of rea-
lizations derived using various GCMs. Such a single trajec-
tory alone cannot represent the uncertainty related to future
hydrologic condition and will not be useful in assessing
hydrologic impacts due to climate change. No quantified
probability is attached to the simulated outcome of a single
GCM, and thus downscaling a single GCM output is not
particularly useful for risk adaptation studies [New and
Hulme, 2000]. In the present study, uncertainty resulting
from the use of multiple GCMs is modeled using a modified
version of Reliability Ensemble Averaging (REA) proposed
by Giorgi and Mearns [2003]. Details of uncertainty mod-
eling are presented in the next subsection.

5.1. Uncertainty Modeling

[23] For modeling GCM uncertainty in climate change
impact assessment, Giorgi and Mearns [2002, 2003] pro-
posed the Reliability Ensemble Averaging (REA) method.

Table 2. Validation With Downscaled GCM Output (1950–1999)

[unit: mm/month]

GCM/Observed Mean Standard Deviation Maximum Minimum

Observed 377.12 119.08 781.2 130.8
BCCR 385.05 74.96 589.05 232.73
CNRM 382.31 104.04 638.19 101.89
CM4 385.96 82.10 573.10 154.67
CGCM2.3.2 388.88 89.89 606.64 163.27
MIROC3.2 medres 391.48 95.01 620.46 210.68

Figure 9. CDF of predicted seasonal monsoon (June, July, August and September) rainfall from multiple
GCM output for A1B scenario.
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The method takes into account two reliability criteria: the
performance of the model in reproducing present‐day climate
(“model performance criterion”) and the convergence of the
simulated changes across the models (“model convergence
criterion”). The first criterion is based on the ability of GCMs
to reproduce present‐day climate: the better the model per-
formance, the higher the reliability of the GCM. The second
criterion is based on the convergence of simulations by dif-
ferent models for a given forcing scenario for the future. As
the observed climate time series is not available for the future,
a factor is used as reliability indicator of a GCM, which
measures the model reliability in terms of the deviation of
simulations by that GCM from the REA average (weighted
mean) simulations. High deviation denotes low model reli-
ability. The philosophy underlying the REA approach is to
minimize the contribution of simulations that either perform
poorly in the representation of present‐day climate over a
region or provide outlier simulations for future with respect to
the other models in the ensemble. In the present study, the
deviation of the simulated variable (rainfall) with respect to
the observed or REA average variable is computed with the
deviations of mean and standard deviation.
[24] The REA method was applied by Giorgi and Mearns

[2003] to mean seasonal temperature and precipitation
changes over 22 land regions of the world at continental
scales for A2 and B2 scenarios. In the present study, the
objective is to model monsoon rainfall at subdivisional scale
with an estimate of the temporal variation along 30‐year time
slices. Therefore, the earlier developed REAmodel is slightly
modified here and performed with respect to mean and

standard deviation of the monsoon rainfall and not only with
respect to the mean condition. Model performance measure
was evaluated by determining the total deviation of mean and
standard deviation of GCM‐simulated downscaled rainfall
for 20C3M (duration, 1950–1999) with respect to those of
observed rainfall. Model convergence measure is evaluated
based on the deviation of mean and standard deviation of
rainfall simulated with individual GCMs for future with
respect to weighted means of mean and standard deviation
(derived with the weighted projections of multiple GCMs).
As weights are unknown and to be determined using REA,
the algorithm used is an iterative method. The algorithm for
the proposed approach is as follows.
[25] 1. Weights are assigned to GCMs based on the model

performance. The deviation of the mean and standard devi-
ation of GCM projected rainfall (downscaled), for 20C3M
(duration, 1950–1999), from those of observed data for the
same duration (years, 1950–1999) is computed. The inverse
values of total deviations are proportionately used as weights
so that the sum of weights across all the GCMs is equal to 1.

�devi ¼ �GCMi ;20C3M � �obs

�

�

�

� ð9Þ

�devi ¼ �GCMi;20C3M � �obs

�

�

�

� ð10Þ

devi ¼ �devi þ �devi ð11Þ

wi ¼
1=devi

PNG
i¼1 1=devi

ð12Þ

Figure 10. CDF of predicted seasonal monsoon (June, July, August and September) rainfall frommultiple
GCM output for A2 scenario.
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where, mdevi, mGCM, 20C3M, mobs are mean deviation for ith
GCM,mean of rainfall simulated for 20C3M by ith GCM and
the observed mean, respectively. s denotes standard devia-
tion with same subscript notation. devi, wi and NG denotes
deviation for ith GCM, weight for ith GCM, and total number
of GCMs respectively. Differences between the mean of
observed and simulated data for 1950–1999 denotes the
inverse of system performance of a particular GCM in rep-
roducing mean condition. Differences between the standard
deviation of observed and simulated data for 1950–1999
denotes the inverse of system performance of a particular
GCM in reproducing temporal variability of hydrologic var-
iable during the period. Both are important in hydrologic
context and therefore equal weights are assigned to both the
criteria by adding them. It should be noted that high standard
deviation partially means that the hydrologic variable has
high temporal variability, possibly with higher occurrences
of extremes.
[26] 2. The weights thus computed are used as initial

weights assigned to the GCMs.
[27] 3. With the weights and the mean and standard

deviation of rainfall downscaled with GCM predictions, the
weighted mean of mean and standard deviation of future
monsoon rainfall is computed.
[28] 4. The deviation of the mean and standard deviation of

future rainfall for all the GCMs are computed individually
from the weighted means computed in step 3.
[29] 5. The average of the inverse of deviations (derived

from steps 1 and 4) is computed and proportionately (main-

taining the same ratio among the weights) used as new
weights so that the sum of newweights across all the GCMs is
equal to 1.
[30] 6. Steps 3 to 5 are repeated until convergence of the

weights is achieved.
[31] The weights obtained using the above‐mentioned

algorithm for A1B, A2, and B1 scenarios are presented in
Table 3. For all the scenarios, highest weight is assigned to the
GCM, CNRM based on the results of modified REA. These
weights are further used to compute the weighted mean
CDF [Mujumdar and Ghosh, 2008; Ghosh and Mujumdar,
2009] for the three time slices in the future: 2020s, 2050s,
and 2080s. The weighted mean CDFs for A1B, A2, and
B1 are presented in Figures 12, 13, and 14 respectively.
It is observed that for all the scenarios, there is a possibility
of increase in summer monsoon rainfall of Assam and
Meghalaya meteorological subdivision. A2 scenario shows
the highest increase, whereas B1 scenario projects less severe
changes. In India, during monsoon, Assam and Meghalaya
meteorological subdivision receives highest rainfall and

Figure 11. CDF of predicted seasonal monsoon (June, July, August and September) rainfall frommultiple
GCM output for B1 scenario.

Table 3. Weights Assigned to the GCMs

GCM A1B A2 B1

BCCR 0.1364 0.1726 0.1567
CNRM 0.4427 0.2882 0.3110
CM4 0.1959 0.2489 0.2009
MIROC3.2 medres 0.1403 0.1779 0.1892
CGCM2.3.2 0.0847 0.1124 0.1422
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is flood prone because of high occurrences of flood in
Brahmaputra River. With the possible increase in rainfall,
the flood condition will be more severe in the future. Long‐
term planning of flood management using the weighted CDF
is essential for the case study area.

6. Concluding Remarks

[32] Statistical downscaling model based on Support Vec-
tor Machine is developed to predict the monsoon rainfall
of Assam and Meghalaya meteorological subdivision from
GCM outputs. The parameters of support vector machine
control overtraining of the model, which is a key factor when
the trained model will be applied to a changed condition for
future. With the objective of maximizing the system per-
formance measure for testing data set as well as minimizing
the overtraining, the parameters of SVM are selected using
a global search algorithm, Probabilistic Global Search
Laussane (PGSL). SVM coupled with PGSL is applied for
calibration of the model, and the calibrated model is used for
future prediction with GCM outputs, for A1B, A2, and B1
scenarios. The rainfall downscaled with different GCMs
shows different projections. Therefore, relying on a single
GCMmay not be correct for adaptation purposes. Uncertainty
associated with multiple GCMs is modeled with modified
Reliability Ensemble Averaging (REA), which assigns
weights to GCMs based on “model performance” and “model
convergence.” The weights are further used to derive the
weighted mean CDF for future. The predictions show a
possible increase of summer monsoon rainfall in Assam and

Meghalaya meteorological subdivision for all the three sce-
narios. Increase of rainfall in flood‐prone areas of northeast
India requires proper flood management planning for future
where the derived weighted mean CDF of future rainfall may
be used. The limitations of the model are as follows.
[33] 1) The developed methodology is computationally

intensive and use of this method, for daily scale downscal-
ing, will be computationally more difficult. However, after
obtaining the hyperparameters with the computationally
intensive SVM‐PGSL approach, the model does not take
significant CPU time in deriving the relationship between
climate and hydrologic variables and using it in climate
change impact assessment.
[34] 2) The developed model uses correlation coefficient

as the performance measure for SVM and uses it in the
optimization model equations (2)–(6). However, it is reported
in literature [Krause et al., 2005; Jain and Sudheer, 2008],
that any system performance index alone is not adequate in
describing the performance of a model. Use of other per-
formance measures such as the Nash Sutcliffe Coefficient
along with correlation coefficient in the optimization model
equations (2)–(6) may be considered as the future scope of
the present work.
[35] 3) A major limitation of SVM regression is that the

outputs are point estimates. It is not possible to derive the
conditional distribution of predicted variable given input, and
hence quantification of uncertainty in prediction is not pos-
sible [Tipping, 2001]. Recent developments of Relevance
Vector Machine (RVM) [Tipping, 2001] based on Bayesian

Figure 12. Weighted mean CDF of monsoon rainfall in Assam and Meghalaya meteorological subdivi-
sion for A1B scenario.
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algorithm overcomes this limitation, and coupling of PGSL
with RVM is the potential area of future research.
[36] Finally GCMs are still (AR4) not good for modeling

climate and meteorological variables involved in tropical
monsoon. Use of more reliable Assessment Report 5 (AR5),
GCM simulated data, as predictors for downscaling, may
lead to better projections of rainfall in Indian meteorological
subdivisions.

Appendix A: Support Vector Regression

[37] Given training data {(x1, y1), …, (xl, yl),X 2 <n, Y 2
<}, the Support Vector (SV) regression equation may be
given by equation (1).
[38] The basic concept of Support Vector (SV) regression is

discussed in this section first with a linear model and then it is
extended to a nonlinear model using kernels. Given a training
data {(x1, y1),…, (xl, yl),X 2 <n, Y 2 <}, the linear model SV
regression equation can be given by the following [Smola,
1996]:

f xð Þ ¼ hw; xi þ b; ðA1Þ

where, h.,.i denoted the dot product in X. The loss func-
tion considered for SVM is an "‐insensitive loss function
described as follows:

j�j" ¼ jy� f xð Þj" ¼
0 if jy� f xð Þj � ";
jy� f xð Þj � " otherwise

�

ðA2Þ

[39] The objective of SVM regression is to find the func-
tion f (x) with minimum value of loss function and at the
same time is as flat as possible [Smola and Schoelkopf, 1998].
Flatness mathematically denotes the smaller value of w,
and one way to ensure this is tominimize the norm, i.e., kwk2 =
hw, wi. Thus the model can be expressed as the following
convex optimization problem:

Minimize
1

2
k w k2 þC

X

l

i

�i*þ
X

l

i¼1

�i

 !

ðA3Þ

subject to

yi � hw; xi � b � "þ �i ðA4Þ

hw; xi þ b� yi � "þ �i* ðA5Þ

�i; �i* � 0; ðA6Þ

where C is a prespecified value which determines the trade‐
off between the flatness of f (x) and the amount up to which
deviations larger than " are tolerated (xi and xi*), which
correspond to "‐insensitive loss function as presented
in equation (A2). The optimization model presented in
equations (A3)–(A6) can be solved using Lagrange multi-

Figure 13. Weighted mean CDF of monsoon rainfall in Assam and Meghalaya meteorological subdivi-
sion for A2 scenario.
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pliers. A dual set of variables are introduced to construct
the Lagrange function, which is given below:

L ¼
1

2
k w k2 þC

Xl

i¼1
�i*þ

Xl

i¼1
�i

� �

�
Xl

i¼1
�i�i þ �i*�i*ð Þ

�
Xl

i¼1
	i "þ �i � yi þ hw; xi þ bð Þ

�
Xl

i¼1
	i* "þ �i*þ yi � hw; xi � bð Þ ðA7Þ

where L is the Lagrangian and hi, hi*, ai, ai* are Lagrangian
multipliers satisfying the positivity constraints.

�i; �i*; 	i; 	i* � 0 ðA8Þ

[40] From the saddle point condition, the partial derivatives
of L with respect to the primal variables (w, b, xi, xi*) have
to vanish for optimality.

@L

@b
¼
X

l

i¼1

	i*� 	ið Þ ¼ 0 ðA9Þ

@L

@w
¼ w�

X

l

i¼1

	i � 	i*ð Þxi ¼ 0 ðA10Þ

@L

@�
ð*Þ
i

¼ C � 	
ð*Þ
i � �

ð*Þ
i ¼ 0 ðA11Þ

where xi
(*), ai

(*), hi
(*) refer to xi and xi*; ai and ai*; hi and hi*

respectively.
[41] Substituting equations (A9)–(A11) in equation (A7)

the following dual optimization problem is formulated.

Maximize �
1

2

Xl

i;j¼1
	i � 	i*ð Þ 	j � 	j*

� �

hxi; xji

� "
Xl

i¼1
	i þ 	i*ð Þ þ

Xl

i¼1
yi 	i � 	i*ð Þ ðA12Þ

subject to

X

l

i¼1

	i � 	i*ð Þ ¼ 0 ðA13Þ

	i; 	i* 2 0;C½ �: ðA14Þ

Equation (A10) can be rewritten as follows:

w ¼
X

l

i¼1

	i � 	i*ð Þxi ðA15Þ

and thus from equation (A1):

f xð Þ ¼
X

l

i¼1

	i � 	i*ð Þhxi; xi þ b ðA16Þ

Figure 14. Weighted mean CDF of monsoon rainfall in Assam and Meghalaya meteorological subdivi-
sion for B1 scenario.
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[42] This is called the Support Vector Expansion for linear
model which is used in SV regression. b can be computed by
using Karush Kuhn Tucker (KKT) condition [Smola and
Schoelkopf, 1998].
[43] For downscaling model linear regression may not

be appropriate, and therefore a nonlinear mapping using
kernel K is performed to map the input data into a higher
dimensional feature space. Using the kernel, the regression
equation (equation (A16)) can be modified to equation (1)
and the same algorithm can be used to compute the weights
and bias. Details of kernel functions are presented in the next
subsection.

A1. Kernel Functions

[44] Kernel functions are used in SVM for nonlinear
mapping of the original data or input into a high‐dimensional
feature space. Kernel function used in a SVM should follow
Mercer’s theorem, according to which it can be written that:

Z

X�X

K x; x 0ð Þf xð Þf x 0ð Þdxdx 0 � 0 8f 2 L2 Xð Þ ðA17Þ

Some of the valid kernel functions satisfying the above
mentioned condition are given below.
[45] 1) Linear kernel: The linear kernels are the simplest

kernels used in SVM for linear regression. They can be given
by:
Homogeneous Kernel:

K x; x 0ð Þ ¼ hx; x 0i ðA18Þ

Nonhomogeneous Kernel:

K x; x 0ð Þ ¼ hx; x 0i þ 1ð Þ ðA19Þ

[46] The performance of SVM with linear kernel function,
being similar to that of linear regression, is not capable of
modeling complicated and nonlinear relationship between
climatological variables and monsoon rainfall, and therefore
such kernels are not used in the present study.
[47] 2) Radial basis functions: Radial Basis Functions

(RBFs) have received significant attention because of their
excellent performance in capturing nonlinear relationship. A
generalized RBF [Chapelle et al., 1999] can be given by:

K x; x 0ð Þ ¼ exp �
k xa � x 0a kb

2�2

� 	

ðA20Þ

where s is the width of RBF kernel, giving an idea about the
smoothness of the derived function. A large kernel width acts
as a low‐pass filter in frequency domain, attenuating higher‐
order frequencies and thus resulting in a smooth function.
Alternatively, RBF kernel with small kernel width retains
most of the higher‐order frequencies, leading to an approxi-
mation of a complex function by learning machine [Smola
and Schoelkopf, 1998]. An RBF will satisfy Mercer’s con-
dition if and only if 0 ≤ b ≤ 2. The choice of a has no impact
on Mercer’s condition. Conventionally, a is selected as 1 as
it does not have significant impacts on training perfor-
mance [Chapelle et al., 1999]. Different values of b, i.e.,

b = 0.5, 1 and 2 denote heavy‐tailed RBF, Laplacian RBF
and Gaussian RBF.

[48] Acknowledgments. The author sincerely thanks editor Dr. Steve
Ghan and the anonymous reviewers for reviewing themanuscript and provid-
ing critical comments which have significantly improved the quality of
contribution. The work reported in this paper was carried out as a part of
the projects 07IR040 sponsored by IRCC, Indian Institute of Technology
Bombay, and SR/FTP/ETA‐16/08, sponsored by the Department of Science
and Technology, India.

References
Aihong, X., R. Jiawen, Q. Xiang, and K. Shichang (2007), Reliability
of NCEP/NCAR reanalysis data in the Himalayas/Tibetan Plateau,
J. Geographical Sci., 17(4), 421–430.

Chapelle, O., P. Haffner, and V. N. Vapnik (1999), Support vector
machines for histogram‐based image classification, IEEE Trans. Neural
Networks, 10(5), 1055–1064.

Conway, D., R. L. Wilby, and P. D. Jones (1996), Precipitation and sir flow
indices over British Isles, Clim. Res., 7, 169–183.

Crane, R. G., and B. C. Hewitson (1998), Doubled co2 precipitation
changes for the susquehanna basin: down‐scaling from the genesis gen-
eral circulation model, Int. J. Climatol., 18, 65–76.

Dankers, R., O. B. Christensen, L. Feyen, and M. Kalas (2007), Evaluation
of very high‐resolution climate model data for simulating flood hazards
in the Upper Danube Basin, J. Hydrol., 347, 319–331.

Dibike, Y. B., S. Velickov, D. Solomatine, and M. B. Abbott (2001),
Model induction with support vector machines: introduction and applica-
tions, J. Computing Civil Eng., 15(3), 208–216.

Domer, B., B. Raphael, K. Shea, and I. F. C. Smith (2003), A Study of
Two Stochastic Search Methods for Structural Control, J. Computing
Civ. Eng., 17(3), 132–141.

Ghosh, S., and P. P. Mujumdar (2007), Nonparametric methods for model-
ing GCM and scenario uncertainty in drought assessment, Water Resour.
Res., 43, W07405, doi:10.1029/2006WR005351.

Ghosh, S., and P. P. Mujumdar (2009), Climate change impact assessment:
Uncertainty modeling with imprecise probability, J. Geophys. Res., 114,
D18113, doi:10.1029/2008JD011648.

Giorgi, F., and L. O. Mearns (2002), Calculation of average, uncertainty
range, and reliability of regional climate changes from AOGCM simula-
tions via the “Reliability Ensemble Averaging” (REA) method, J. Clim.,
15(10), 1141–1158.

Giorgi, F., and L. O. Mearns (2003), Probability of regional climate change
calculated using the reliability ensemble averaging (REA) method, Geo-
phys. Res. Lett., 30(12), 1629, doi:10.1029/2003GL017130.

Govindaraju, R. S. (2005), Bayesian learning and relevance vector
machines for hydrologic applications, In: 2nd Indian International Con-
ference on Artificial Intelligence (IICAI‐05), Pune, India.

Gunn, S. R., M. Brown, and K. M. Bossley (1997), Network performance
assessment for neuro fuzzy data modelling, In: Intelligent Data Analysis,
ed. By X. Liu, P. Cohen and M. Berthold, Lecture Notes in Computer
Science, 1208, 313–323.

Hewitson, B. C., and R. G. Crane (1992), Large‐scale atmospheric controls
on local precipitation in tropical Mexico, Geophys. Res. Lett., 19(18),
1835–1838.

Hewitson, B. C., and R. G. Crane (1996), Climate downscaling: Tech-
niques and application, Clim. Res., 7, 85–95.

Hughes, J. P., and P. Guttorp (1994), A class of stochastic models for relat-
ing synoptic atmospheric patterns to regional hydrologic phenomena,
Water Resour. Res., 30(5), 1535–1546.

Hughes, J. P., D. P. Lettenmaier, and P. Guttorp (1993), A stochastic
approach for assessing the effect of changes in synoptic circulation
patterns on gauge precipitation, Water Resour. Res., 29(10), 3303–3315.

IPCC (2007), Climate Change 2007 The physical science basis, Contribu-
tion of Working Group I to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin,
M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. R. Miller Jr.
and Z. Chen, Cambridge University Press, Cambridge, UK.

Jain, S. K., and K. P. Sudheer (2008), Fitting of hydrologic models: A close
look at the Nash‐Sutcliffe Index, J. Hydrol. Eng., 13(10), 981–986.

Jones, P. D., J. M. Murphy, and M. Noguer (1995), Simulation of climate
change over Europe using a nested regional‐climate model, I: assessment
of control climate, including sensitivity to location of lateral boundaries,
Q. J. R. Meteorol. Soc., 121, 1413–1449.

Kalnay, E., et al. (1996), The NCEP/NCAR 40‐year reanalysis project,
Bull. Am. Meteorol. Soc., 77(3), 437–471.

GHOSH: DOWNSCALING WITH SVM D22102D22102

17 of 18



Karamouz, M., B. Zahraie, and S. Araghinejad (2005), Decision support
system for monthly operation of hydropower reservoirs: A case study,
J. Comp. Civ. Eng., 19(2), 194–207.

Krause, P., D. P. Boyle, and F. Base (2005), Comparison of different
efficiency criteria for hydrological model assessment, Adv. Geosci., 5,
89–97.

Ma, L., T. Zhang, O. W. Frauenfeld, B. Ye, D. Yang, and D. Qin (2009),
Evaluation of precipitation from the ERA‐40, NCEP‐1, and NCEP‐2
Reanalyses and CMAP‐1, CMAP‐2, and GPCP‐2 with ground‐based
measurements in China, J. Geophys. Res., 114, D09105, doi:10.1029/
2008JD011178.

Mujumdar, P. P., and S. Ghosh (2008), Modeling GCM and scenario uncer-
tainty using a possibilistic approach: Application to the Mahanadi River,
India, Water Resour. Res., 44, W06407, doi:10.1029/2007WR006137.

Nagesh Kumar, D., K. Srinivasa Raju, and T. SathishRiver (2004), Flow
forecasting using recurrent neural networks, Water Resour. Manage.,
18(2), 143–161.

New, M., and M. Hulme (2000), Representing uncertainty in climate
change scenarios: A Monte Carlo approach, Integrated Assessment, 1,
203–213.

Raisanen, J., and T. N. Palmer (2001), A probability and decision‐model
analysis of a multimodel ensemble of climate change simulations,
J. Clim., 14, 3212–3226.

Raphael, B., and I. F. C. Smith (2000), A probabilistic search algorithm
for finding optimally directed solutions, Proceedings of Construction
Information Technology 2000, Icelandic Building Research Institute,
Reykjavik, 708–721.

Raphael, B., and B. Smith (2003), A direct stochastic algorithm for global
search, Applied Mathematics and Computation, 146(3), 729–758.

Smola, A. J. (1996), Regression Estimation with Support Vector Learning
Machines, Technische Universitat Munchen, Munich, Germany.

Smola, A. J., and B. Schoelkopf (1998), A tutorial on support vector
regression, NeuroCOLT2 Technical Report NC2‐TR‐1998‐030, Royal
Holloway College, University of London, UK.

Suykens, J. A. K. (2001), Nonlinear modelling and support vector
machines, In: Proceedings of IEEE Instrumentation and Measurement
Technology Conference, Budapest, Hungary, 287–294.

Svanerudh, P., B. Raphael, and I. F. C. Smith (2002), Lowering costs of
timber shear‐wall design using global search, Eng. Comput., 18, 93–108.

Tao, K., and A. P. Barros (2010) Using fractal downscaling of satellite
precipitation products for hydrometeorological applications. J. Atmos.
Oceanic Technol., 27, 409–427 doi:10.1175/2009JTECHA1219.1.

Tatli, H., H. N. Dalfes, and S. Mentes (2004), A statistical downscaling
method for monthly total precipitation over Turkey. Int. J. Climatol.,
24(2), 161–180.

Tebaldi, C., L. O. Mearns, D. Nychka, and R. L. Smith (2004), Regional
probabilities of precipitation change: A Bayesian analysis of multimodel
simulations, Geophys. Res. Lett., 31, L24213, doi:10.1029/2004GL021276.

Tebaldi, C., R. Smith, D. Nychka, and L. O. Mearns (2005), Quantifying
uncertainty in projections of regional climate change: A Bayesian
approach to the analysis of multi‐model ensembles, J. Clim., 18,
1524–1540.

Tipping, M. E. (2001), Sparse Bayesian learning and the relevance vector
machine, J. Machine Learning Res., 1, 211–244.

Trigo, R. M., and J. P. Palutikof (1999), Simulation of daily temperatures
for climate change scenarios over portugal: A neural network model
approach, Clim. Res., 13, 45–59.

Tripathi, S., and V. V. Srinivas (2005), Downscaling of general circulation
models to assess the impact of climate change on rainfall of India,
Proceedings of International Conference on Hydrological Perspectives
for Sustainable Development (HYPESD ‐ 2005), 23–25 February, IIT
Roorkee, India, 509–517.

Tripathi, S., V. V. Srinivas, and R. S. Nanjundiah (2006), Downscaling of
precipitation for climate change scenarios: a support vector machine
approach, J. Hydrol., 330, 621–640.

Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer
Verlag, New York.

Vapnik, V. N. (1998), Statistical Learning Theory, Wiley, New York.
Venugopal, V., E. Foufoula‐Georgiou, and V. Sapozhnikov (1999),
A Space time downscaling model for rainfall, J. Geophys. Res.,
104(D16), 19,705–19,721.

Vrac, M., D. Paillard, and P. Naveau (2007), Non‐linear statistical down-
scaling of present and LGM precipitation and temperatures over Europe,
Clim. Past Discuss., 3, 899–933.

Wetterhall, F., S. Halldin, and C. Xu (2005), Statistical precipitation
downscaling in central sweeden with the analogue method, J. Hydrol.,
306, 174–190.

Wilby, R. L., and C. W. Dawson (2004), Using SDSM Version 3.1 A deci-
sion support tool for the assessment of regional climate change impacts,
User Mannual.

Wilby, R. L., and I. Harris (2006), A framework for assessing uncertainties
in climate change impacts: Low‐flow scenarios for the River Thames,
UK, Water Resour. Res., 42, W02419, doi:10.1029/2005WR004065.

Wilby, R. L., L. E. Hay, and G. H. Leavesly (1999), A comparison of
downscaled and raw gcm output: implications for climate change scenar-
ios in the San Juan river basin, Colorado, J. Hydrol., 225, 67–91.

Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O.
Mearns (2004), The guidelines for use of climate scenarios developed
from statistical downscaling methods. Supporting material of the
Intergovernmental Panel on Climate Change (IPCC), prepared on
behalf of Task Group on Data and Scenario Support for Impacts and
Climate Analysis (TGICA).(http://ipccddc.cru.uea.ac.uk/guidelines/
StatDownGuide.pdf).

Wilks, D. S. (1999), Multisite downscaling of daily precipitation with a
stochastic weather generator, Clim. Res., 11, 125–136.

Wilks, D. S., and R. L. Wilby (1999), The weather generation game: a
review of stochastic weather models, Prog. Phys. Geog., 23(3), 329–357.

Willmott, C. J., C. M. Rowe, and W. D. Philpot (1985), Small‐scale climate
map: a sensitivity analysis of some common assumptions associated with
the grid‐point interpolation and contouring, Am. Cartographer, 12, 5–16.

Xue, Y., R. Vasic, Z. Janjic, F. Masinger, and K. Mitchell (2007), Assess-
ment of Dynamic Downscaling of the Continental U.S. Regional Climate
Using the Eta/SSiB Regional Climate Model, J. Clim., 20, 4172–4193.

Zorita, E., J. P. Hughes, D. P. Lettenmaier, and H. von Storch (1995), Sto-
chastic characterization of regional circulation patterns for climate model
diagnosis and estimation of local precipitation, J. Clim., 13, 223–234.

S. Ghosh, Assistant Professor, Department of Civil Engineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400 076, India.
(subimal@civil.iitb.ac.in)

GHOSH: DOWNSCALING WITH SVM D22102D22102

18 of 18


