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Abstract

Background: Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors
approximately equal or larger than the number of observations. However, originally, application of SVM to analyze
biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating
predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial
work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM
implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated
by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the
Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear
SVM and SVM for survival analysis.

Results: The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of
the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes
and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal
component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three
algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when
comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation
studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were
assumed to be correlated in all tested scenarios.

Conclusions: The proposed approaches can be implemented with accuracy to select variables and assess direction
and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses.
Conducting variable selection and interpreting direction and strength of associations between predictors and
outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented
with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for
realistic scenarios about the structure of biomedical data.
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Background
Analysis of investigations aiming to classify or predict re-

sponse variables in biomedical research oftentimes is chal-

lenging because of data sparsity generated by limited

sample sizes and a moderate or very large number of pre-

dictors. Moreover, in biomedical research, it is particularly

relevant to learn about the relative importance of predic-

tors to shed light in mechanisms of association or to save

costs when developing biomarkers and surrogates. Each

marker included in an assay increases the price of the bio-

marker and several technologies used to measure bio-

markers can accommodate a limited number of markers.

Support Vector Machine (SVM) models are a powerful

tool to identify predictive models or classifiers, not only

because they accommodate well sparse data but also be-

cause they can classify groups or create predictive rules

for data that cannot be classified by linear decision func-

tions. In spite of that, SVM has only recently became

popular in the biomedical literature, partially because

SVMs are complex and partially because SVMs were

originally geared towards creating classifiers based on

all available variables, and did not allow assessing vari-

able importance.

Currently, there are three categories of methods to

assess importance of variables in SVM: filter, wrapper,

and embedded methods. The problem with the existing

approaches within these three categories is that they

are mainly based on SVM with linear kernels. There-

fore, the existing methods do not allow implementing

SVM in data that cannot be classified by linear deci-

sion functions. The best approaches to work with

non-linear kernels are wrapper methods because filter

methods are less efficient than wrapper methods and

embedded methods are focused on linear kernels. The

gold standard of wrapper methods is recursive feature

elimination (RFE) proposed by Guyon et al. [1]. Al-

though wrapper methods outweigh other procedures,

there is no approach implemented to visualize RFE re-

sults. The RFE algorithm for non-linear kernels allows

ranking variables but not comparing the performance

of all variables in a specific iteration, i.e., interpreting

results in terms of: association with the response vari-

able, association with the other variables and magni-

tude of this association, which is a key point in

biomedical research. Moreover, previous work with the

RFE algorithm for non-linear kernels has generally

focused on classification and disregarded time-to-event

responses with censoring that are common in biomed-

ical research.

The work presented in this article expands RFE to

visualize variable importance in the context of SVM with

non-linear kernels and SVM for survival responses. More

specifically, we propose: i) a RFE-based algorithm that al-

lows visualization of variable importance by plotting the

predictions of the SVM model; and ii) two variants from

the RFE-algorithms based on representation of variables

into a multidimensional space such as the KPCA space. In

the first section, we briefly review existing methods to

evaluate importance of variables by ranking, by selecting

variables, and by allowing visualization of variable relative

importance. In the Methods section, we present our

proposed approaches and extensions. Next, in Results,

we evaluate the proposed approaches using simulated

data and three real datasets. Finally, we discuss the

main characteristics and obtained results of all three

proposed methods.

Existing approaches to assess variable importance

The approaches to assess variable importance in SVM can

be grouped in filter, embedded and wrapper method clas-

ses. Filter methods assess the relevance of variables by

looking only at the intrinsic properties of the data without

taking into account any information provided by the clas-

sification algorithm. In other words, they perform variable

selection before fitting the learning algorithm. In most

cases, a variable relevance score is calculated, and

low-scoring variables are removed. Afterwards, the “rele-

vant” variable subset is input into the classification algo-

rithm. Filter methods include the F-score [2, 3].

Embedded methods, are built into a classifier and, thus,

are specific to a given learning algorithm. In the SVM

framework, all embedded methods are limited to linear

kernels. Additionally, most of these methods are based on

a somewhat penalization term, i.e., variables are penalized

depending on their values with some methods explicitly

constraining the number of variables, and others penaliz-

ing the number of variables [4, 5]. An additional exact al-

gorithm was developed for SVM in classification problems

using the Benders decomposition algorithm [6]. Finally, a

penalized version of the SVM with different penalization

terms was suggested by Becker et al. [7, 8]

Wrapper methods evaluate a specific subset of vari-

ables by training and testing a specific classification

model, and are thus, tailored to a specific classification

algorithm. The idea is to search the space of all vari-

able subsets with an algorithm wrapped around the

classification model. However, as the space of variables

subset grows exponentially with the number of vari-

ables, heuristic search methods are used to guide the

search for an optimal subset. Guyon et al. [1] proposed

one of the most popular wrapper approaches for vari-

able selection in SVM. The method is known as

SVM-Recursive Feature Elimination (SVM-RFE) and,

when applied to a linear kernel, the algorithm is based

on the steps shown in Fig. 1. The final output of this

algorithm is a ranked list with variables ordered ac-

cording to their relevance. In the same paper, the au-

thors proposed an approximation for non-linear
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kernels. The idea is based on measuring the smallest

change in the cost function by assuming no change in

the value of the estimated parameters in the

optimization problem. Thus, one avoids to retrain a

classifier for every candidate variable to be eliminated.

SVM-RFE method is basically a backward elimin-

ation procedure. However, the variables that are top

ranked (eliminated last) are not necessarily the ones

that are individually most relevant but the most rele-

vant conditional on the specific ranked subset in the

model. Only taken together the variables of a subset

are optimal in some sense. So for instance, if we are fo-

cusing on a variable that is p ranked we know that in

the model with the 1 to p ranked variables, p is the

variable least relevant.

The wrapper approaches include the interaction be-

tween variable subset search and model selection as

well as the ability to take into account variable correla-

tions. A common drawback of these techniques is that

they have a higher risk of overfitting than filter

methods and are computationally intensive, especially

if building the classifier has a high computational cost

[9]. Additional work has been done to assess variable

importance in non-linear kernels SVM by modifying

SVM-RFE [3, 10, 11].

The methods we propose in the next section are

based on a wrapper approach, specifically in the RFE

algorithm, allowing visualization and interpretation of

the relevant variables in each RFE iteration using linear

or non-linear kernels and fitting SVM extensions such

as SVM for survival analysis,

Methods
RFE-pseudo-samples

One of our proposed methods follows and extends the

idea proposed in Krooshof et al. [12] and Postma et al.

[13] to visualize the importance of variables using

pseudo-samples in the kernel partial least squares and

the support vector regression (SVR) context, respect-

ively. The proposed is applicable to SVM classifying

binary outcomes. Briefly, the main steps are the

following:

1. Optimize the SVM method and tune the

parameters.

2. For each variable of interest, create a pseudo-

samples matrix with equally distanced values

z
∗
from the original variable, while maintaining the

other variables set to their mean or median (1). zq
can be quantiles of the variable for an arbitrary q

that is the number of selected quantiles. As the

data is usually normalized, we assume that the

mean is 0. There will be p pseudo-samples matri-

ces of dimension q x p. For instance, for variable

1, the pseudo-sample matrix will look like in (1)

with q pseudo-samples vectors.

Fig. 1 Pseudo-code of the SVM-RFE algorithm using the linear kernel in a model for binary classification
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V 1 V 2 V 3 V p

z1 0 0 … 0
z2 0 0 … 0
z3 0 0 … 0

⋮

zq 0 0 … 0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

pseudo−samples1
pseudo−samples2
pseudo−samples3

⋮

pseudo−samplesq

ð1Þ

3. Obtain the predicted decision value (not the

predicted class) from SVM (a real negative or

positive value) for each pseudo-sample using the

SVM model fitted in step 1. Basically, this decision

value corresponds to the distance of each

observation from the SVM margins.

4. Measure the variability of each variable’s

prediction using the univariate robust metric

median absolute deviation (MAD). This mesure is

expressed for a given variable p as

MADp ¼ medianðjDqp−medianðDpÞjÞc

being Dqp the decision value of the variable p for the

pseudo-sample q and being median(Dp) the median of

all decision values for the evaluated variable p. The

constant c is equal to 1.4826, and it is incorporated in

the expression to ensure consistency in terms of

expectation so that

E MAD D1;…;Dnð Þð Þ ¼ σ

for Di distributed as N(μ, σ2) and large n [14, 15].

5. Remove the variable with the lowest MAD value.

6. Repeat steps 2–5 until there is only one variable left

(applying in this way the RFE algorithm as detailed

in Fig. 2).

The rationale of the proposed method is that for

variables associated with the response, modifications

in the variable will affect predictions. On the con-

trary, for variables not associated with the response,

changes in the variable value will not affect predic-

tions and the decision value will be approximately

constant. Therefore, since the decision value can be

used as a score that measure distance to the hyper-

plane, the larger the absolute value the more

confident we are that the observation belongs to the

predicted class defined by the sign.

Fig. 2 Pseudo-code of the RFE-pseudo-samples algorithm applied to a time-to-event (right-censored) response variable
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Visualization of variables

The RFE-pseudo-samples algorithm allows us to plot

the decision values and the range of all variables, in

this way we account for:

� Strenght and direction of the association between

individual variables and the response: since we are

plotting the range of the variable and the decision

value, we are able to detect whether larger values of

the variable are protective or risk factors.

� The proposed method fix the values of the non-

evaluated variables to 0 but this can be modified to

evaluate the performance of the desired variables

fixing the values to any other biologically

meaningful value.

� The distribution of the data can be indicative of the

type of association of each variable with respect the

response, i.e., U-shaped, linear or exponential, for

example.

� The variability on the decision values can be

indicative of the relevance of the variable with the

response. Given a variable, the more variability on

the decision values along its range the more

associated is the variable with the response.

RFE-kernel principal components input variables

Reverter et al. [16] proposed a method using the kernel

principal component analysis (KPCA) space (more de-

tail on the KPCA methodology in Additional file 1) to

represent, for each variable, the direction of maximum

growth locally. So, given two leading components the

maximum growth for each variable is indicated in a

plot in which each axis is one of the components. After

representing all observations in the new space, if a

variable is relevant under this context will show a clear

direction across all samples and if it’s not the sample’s

direction will be random. In the same work the authors

suggest to incorporate functions of the original vari-

ables into the KPCA space, so it’s possible to plot not

only growth of individual variables but combination of

them if makes sense within the research study. Our

proposed method, referred as RFE-KPCA-maxgrowth,

consists of the following steps:

1. Fit the SVM.

2. Create the KPCA space using the tuned parameters

found in the SVM process with all variables if possible,

for example, when the kernel used in SVM is the same

than in KPCA.

3. Represent the observations with respect the two

first components of the KPCA.

4. Compute and represent the input variables and the

decision function of the SVM into the KPCA

output, as detailed in Representation of input

variables section.

5. Compute the average angle of each variable-

observation with the decision function into the

KPCA output. Therefore, an average angle using all

observations, can be calculated for each variable

(Ranking of variables section).

6. Calculate the difference for each variable between

the average angle and the median of all variables

average angle. The variable closest to the median is

classified as the less relevant, as detailed in Ranking

of variables section.

7. Remove the least relevant variable.

8. Repeat all the process from 1 to 7 until there is one

variable left.

Representation of input variables

We approach the problem of the interpretability of

kernel methods by mapping simultaneously data points

and relevant variables in a low dimensional linear

manifold immersed in the kernel induced feature space

H [17]. Such linear manifold, usually a plane, can be

determined according to some statistical requirement,

for instance, we shall require that the final Euclidean

interdistances between points in the plot have to be, as

far as possible, similar to the interdistances in the fea-

ture space, which shall lead us to the KPCA. We have

to distinguish between the feature space H and the sur-

face in that space to which points in input space ℝ
p ac-

tually map, which we denote by ϕðXÞ . In general is a

dimensional manifold embedded in H. We assume here

that ϕðXÞ is sufficiently smooth that a Riemannian

metric can be defined on it [18].

The intrinsic geometrical properties of ϕðXÞ can be

derived once we know the Riemannian metric induced

by the embedding of ϕðXÞ in H. The Riemannian

metric can be defined by a symmetric metric tensor

gab. The explicit mapping to construct gab is unkonwn;

it can be written solely in terms of the kernel [17].

Any relevant variable can be described by a real valued

function f defined on the input space ℝ
p. Since we as-

sume that the feature map ϕ is one-to-one, we can iden-

tify f with ~f ≡ f ∘ϕ−1 defined on ϕðXÞ . We aim to

represent the gradient of ~f . The gradient of ~f is a vector

field defined on ϕðXÞ through its components under the

coordinates x = (x1,…, xp) as

grad ~f
� �a

¼
X

p

b¼1

gab xð ÞDb f xð Þ a ¼ 1;…; p ð2Þ

where gab is the inverse of the metric matrix G

= (gab) and Db denotes the partial derivative with

respect the b variable.

Sanz et al. BMC Bioinformatics          (2018) 19:432 Page 5 of 18



The curves v corresponding to the integral flow of

the gradient, i.e., the curves whose tangent vectors at

t are v0ðtÞ ¼ gradð~f Þ . These curves indicate, locally,

the maximum variation directions of f̂ . Under the co-

ordinates x = (x1,…, xp) the integral flow is the general

solution of the first order differential equation system

dxa

dt
¼
X

p

b¼1

gab xð ÞDb f xð Þ a ¼ 1;…; p ð3Þ

which has always local solution given initial conditions

v(t0) =w.

To help interpreting the KPCA output, we can plot

the projected v(t) curves (obtained in eq. 3) that indi-

cates, locally, the maximum variation directions of ~f , or

also, the corresponding gradient vector given in (2).

Let v(t) = k(∙, x(t)) where x(t) are the solutions of (3). If

we define

Zt ¼ ðkðxðtÞ; xiÞÞnx1; ð4Þ

the induced curve, ~vðtÞ , expressed in matrix form, is

given by the row vector

~v tð Þq1xr ¼ Z
0
t−

1

n
1
0
nK

� �

In−
1

n
1n1

0
n

� �

~V ð5Þ

where Zt has the form (4), and ′ symbol indicates

transposed.

We can also represent the gradient vector field of f̂ ,

that is, the tangent vector field corresponding to curve

v(t) through its projection into the KPCA output. The

tangent vector at t = t0, if x0 = ϕ−1
∘ v(t0) is given by

dv
dt
j
t¼t0

, and its projection, in matrix form, is given by

the row vector

d~v

dt

�

�

�

�

t¼t0

 !

1xr

¼
dZ0

t

dt

�

�

�

�

t¼t0

In−
1

n
1n1

0
n

� �

~V ð6Þ

with

dZ0
t

dt

�

�

�

�

t¼t0

¼
dZ1

t

dt

�

�

�

�

t¼t0

;…;

dZn
t

dt

�

�

�

�

t¼t0

 !0

; ð7Þ

and,

dZi
t

dt

�

�

�

�

t¼t0

¼
dk x tð Þ; xið Þ

dt

�

�

�

�

t¼t0

¼
X

p

a¼1

Dak x0; xið Þ
dxa

dt

�

�

�

�

t¼t0

ð8Þ

where dxa

dt
j
t¼t0

is defined in (3).

Ranking of variables

Our proposal is to take advantage of the representation

of direction of input variables applying two alternative

approaches:

� To include the SVM predicted decision values for

each training sample as an extra variable, what we

call reference variable. Then, compare directions of

each one of the input variables with the reference.

� To include the direction of the SVM decision

function and use it as the reference direction. Since it

is as a real-valued function of the original variables

we can represent the direction of this expression.

Specifically, the decision function removing the sign

function of the expression of SVM is given by

f xð Þ ¼
X

n

i¼1

αiyik xi; xð Þ þ b ð9Þ

we can reformulate (9) to

f xð Þ ¼
X

n

i¼1

ϱik xi; xð Þ þ b ð10Þ

where ϱi = αiyi. Applying the representation of input var-

iables methodology to function (10) and assuming

Gaussian kernel expressed as kðx1; x2Þ ¼ expð− 1
σ

kx1−x2k
2Þ , from formula (8),

we obtain

dZi
t

dt

�

�

�

�

t¼0

¼ k xi; xð Þ
X

p

a¼1

xai −x
a

� �

�
X

n

j¼1

ϱi σ xaj−x
a

� �

k x j; x
� �

" #

For both prediction values and decision function, we

can calculate the overall similarity of one variable with re-

spect the reference (either the prediction or the decision

function) by averaging the angle of the maximum growth

vector for all training points with the reference. So, if, for

a given training point, the angle of the direction of max-

imum growth of variable p with the reference is 0 (0 rad)

would mean that the vector of directions overlap and they

are perfectly positively associated. If the angle is 180 (π ra-

dians) they go in opposite direction, indicating that they

are perfectly negatively associated (Fig. 3). By averaging

the angle of all training points we obtain a summary of

the similarity of each variable with the reference and, con-

sequently, whether is relevant or not. Assuming that there

is noise in real data, a variable is classified as relevant or

not compared to the others: the variable closest to the

overall angle taking into account all variables is assumed
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to be the least relevant. Based on this, we can apply a

RFE-KPCA-maximum-growth approach for prediction

and for decision function as defined by Fig. 4.

Visualization of importance of variables

We can represent for each observation the original vari-

ables as vectors (with a pre-specified length), that indi-

cate the direction of maximum growth in each variable

or a function of each variable. When two variables are

positively correlated, the directions of maximum growth

for all samples should appear in the same direction and

in the perfect scenario samples should overlap. When

two variables are negatively correlated the direction

should be overall opposite, i.e., should be a mirror

image, and if they are no correlated, directions should

be random (Fig. 3).

Compared scenarios

To fix ideas, we applied the three proposed approaches:

RFE-pseudo-samples, RFE-KPCA-maxgrowth-prediction

and RFE-KPCA-maxgrowth-decision and compared

them to the RFE-Guyon for non-linear kernels. These

methods are applied to analyse simulated and real

time-to-event data with SVM. We simulated a

time-to-event response variable and the corresponding

censoring distribution. To evaluate the performance of

the proposed methods in this survival framework, sev-

eral scenarios involving different correlated variables

have been simulated.

Fig. 3 Visual representation of variable importance. Vectors are the projection on the two leading KPCA axes of the vectors in the kernel feature
space pointing to the direction of maximum locally growth of the represented variables. In this scheme, the reference variable is in red and
original variables are in black. Each sample point anchors a vector representing the direction of maximum locally growth. a When an original
variable is associated with the reference variable, the angle between both vectors, averaged across all samples, is close to zero radians. b In
contrast, when an original variable is negatively associated with the reference variable, the angle between both vectors, averaged across all
samples, is close to π radians. c When an original variable does not show any association with the reference variable, the angle changes non-
consistently among the samples. In noisy data, behavior (c) is expected to occur in most variables, so the variable with average angle closest to
the overall angle after accounting for all variables is assumed to be the least relevant
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Simulation of scenarios and data generation

We generated 100 datasets with a time-to-event response

variable and 30 predictor variables following a multivariate

normal distribution. The mean of each variable was a

realization of a Uniform distribution U(0.03,0.06) and the

covariance matrix was computed so that all variables were

classified in four groups according to their pairwise correl-

ation: no correlation (around 0), low correlation (around

0.2), medium correlation (around 0.5) and high correlation

(around 0.8). The variance distribution of each variable was

fixed to 0.7 (see correlation matrix at Additional File 2).

The time-to-event variable was simulated based on

the proportional hazards assumption through a Gom-

pertz distribution [19]:

T ¼
1

α
1−

α log Uð Þ

γ exp β; xih ið Þ

� �

ð11Þ

where U is a variable following a Uniform(0,1) distri-

bution, β is the coefficients variable vector, α ∈ (−∞,∞)

and γ> 0 are the scale and shape parameters of the

Gompertz distribution. These parameters were se-

lected so that overall survival was around 0.6 at

18 months follow-up time.

The number of observations in each dataset was 50

and the time of censoring distribution followed a Uni-

form allowing around 10% censoring.

Fig. 4 Pseudo-code of the RFE-KPCA-maximum-growth algorithm for both function and prediction approach. The algorithm is applied to a time-
to-event (right-censored) response variable
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Relevance of variables scenarios

To evaluate the proposed methods, we generated the

time-to-event response variable assuming the following

scenarios: i) large and low pairwise correlation among

predictors, some of them with variables highly associ-

ated with the response and others not, ii) positive and

negative association with the response variable, and iii)

linear and non-linear associations with the response

variable and, in some cases, interaction among pre-

dictor variables. The relevant variables for each one of

the 6 simulated scenarios are:

1. Variable 1.

2. -Variable 29 + Variable 30.

3. -Variable 1 + Variable 8 + Variable 20 + Variable 29

- Variable 30.

4. Variable 1 + Variable 2 + Variable 1 x Variable 2.

5. Variable 1 + Variable 30 + Variable 1 x Variable 30

+ Variable 20 + (Variable 20)2.

6. Variable 1 + (Variable 1)2 + exp(Variable 30).

Real-life datasets

The PBC, Lung and DLBCL datasets freely available at

the CRAN repository were used as real data to test the

performance of the proposed methods. Briefly, datasets

of the following studies were analyzed:

� PBC: this data is from the Mayo Clinic trial in

primary biliary cirrhosis of the liver conducted

between 1974 and 1984. The study aimed to evaluate

the performance of the drug D-penicillamine in a

placebo controlled randomized trial. This data

contains 258 observations and 22 variables (17 of

them are predictors). From the whole cohort 93

observations experienced the event, 65 finalized the

follow-up period being a non-event, and thus were

censored, and 100 were censored before the end of

the follow-up time of 2771 days, with an overall

survival probability of 0.57.

� Lung: this study was conducted by the North

Central Cancer Treatment Group (NCCTG) and

aimed to estimate the survival of patients with

advanced lung cancer. The available dataset included

167 observations, experiencing 89 events during the

follow-up time of 420 days, and 10 variables. A total

of 36 observations were censored before the end of

follow-up. The overall survival was 0.40.

� DLBCL: this dataset contains gene expression data

from diffuse large B-cell lymphoma (DLBCL) patients.

The available dataset contains 40 observations and 10

variables representing the mean gene expression in 10

different clusters. From the analysed cohort 20

patients experienced the event, 10 finalized the

follow-up and 8 were right-censored during the

72 months follow-up period.

Cox proportional-hazards models were used and

compared with the proposed methods. We applied the

RFE algorithm and in each iteration the variable with

lowest proportion of explainable log-likelihood in the

Cox model was removed. To compare the obtained

rank of variables the correlation between the ranks

was computed. Additionally, the C statistic was com-

puted by ranked variable and method to evaluate its

discriminative ability.

Probabilistic SVM

The data was analysed with a modified SVM for sur-

vival analysis that was previously considered optimal

to handle censored data [20]. The method, known as

probabilistic SVM [21] (more details on this method

on Additional file 3), allows not perfectly defining

some observations and give them an uncertainty in

their class. For these uncertainties a confidence level

or probability regarding the class is provided.

Comparison of methods

The parameters selected to perform the grid-search for

Gaussian kernel were 0.25, 0.5, 1, 2 and 4. The C and
~C values were 0.1, 1, 10 and 100. For each combination

of parameters, a tunning parameter step with 10 train-

ing datasets were fitted and validated using 10 different

validation datasets. Additionally, 10 training datasets,

different from all datasets used in the tuning parame-

ters step, were simulated and fitted with the best com-

bination found in tuning parameters step. The tuned

parameters were fixed for each RFE iteration, i.e., were

not estimated at each iteration. Once the optimal

parameters for the pSVM were found the methods

compared were:

� RFE-Guyon for non-linear data: this method was

considered the gold standard.

� RFE-KPCA-maxgrowth-prediction: the KPCA is

based on Gaussian kernel with parameters obtained

in the pSVM model.

� RFE-KPCA-maxgrowth-decision: the KPCA is based

on Gaussian kernel with parameters obtained in the

pSVM model.

� RFE-pseudo-samples: the range of the data, to

create the pseudo-samples is created split- ting

data into 50 equidistant points. The range of the

pseudo-samples goes from − 2 to 2, since

variables are normally distributed around 0

approximately.
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Metrics to evaluate algorithm performance

The mean and standard deviation of the rank obtained

in 100 simulated datasets was used to summarize the

performance by method and scenario. For the

RFE-pseudo-samples algorithm the first iteration figure

with all 100 datasets was created summarizing the in-

formation by variable. For the RFE-maxgrowth ap-

proach, as example, one of the datasets was presented

in order to interpret the method, since it was not pos-

sible to summarize all 100 principal components plots

in one figure.

Results

Simulated datasets

In this section, main results are described by algorithm

and scenario. Results are structured according to overall

ranking of variables and visualization and interpretation

of two scenarios for illustrative purposes.

Overall ranking comparison

Scenario 1 results are shown in Fig. 5. All 4 methods iden-

tified the relevant variable being the RFE-maxgrowth-pre-

diction the one with the lowest average rank (thus,

optimal), followed by the RFE-maxgrowth-function,

RFE-pseudo-samples and RFE-Guyon. For all methods,

except the RFE- Guyon, a set of variables was closest to

the Variable 1 rank (variables 2 to 8). These variables were

highly correlated with Variable 1.

For scenario 2 (Fig. 6), the true relevant variables were

identified for all 4 algorithms, being the average rank

pretty similar, except the RFE-maxgrowth-function. The

specific overall rank order was RFE-Guyon, RFE-max-

growth-prediction, RFE-pseudo-samples and RFE-max-

growth-function. The average rank for the other

non-relevant variables was similar for all methods. In this

scenario the relevant variables were not correlated with

any other variable in the dataset.

In scenario 3 (Fig. 7), 5 variables are relevant in the true

model. The algorithms were able to detect the relevant

non-correlatedvariables (variables 20, 29 and 30), except

the RFE-maxgrowth-function, that for this set of variables

was the worst method. For the other 3 algorithms and this

set of variables, the RFE-pseudo-samples was slightly bet-

ter and the RFE-Guyon slightly worst than the others. For

the other 2 highly correlated variables (Variable 1 and

Variable 8) the two best methods were clearly RFE-pseu-

do-samples and RFE-maxgrowth-function.

In Scenario 4 (Fig. 8), all methods, except RFE-Guyon,

detected the two relevant variables. However, RFE-max-

growth-function identified as relevant, with a pretty

similar rank, variables 3 to 8 (highly correlated with the

true relevant ones). The RFE-pseudo-samples algorithm

ranks increased as the correlation with the true relevant

variables decreased.

For Scenario 5 (Fig. 9) three variables were relevant (1,

20 and 30). An interaction and a quadratic term were in-

cluded. RFE-pseudo-samples was clearly the method that
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Fig. 5 Scenario 1 results. Average rank by variable and method for the 100 simulated datasets for Scenario 1 (being Variable 1 the relevant variable).
Dotted vertical black line represents the variable used to generate the time-to-event variable. The lower the rank, the more relevant the variable is for
the specific algorithm
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Fig. 7 Scenario 3 results. Average rank by variable and method for the 100 simulated datasets for Scenario 3 (being variables 1, 8, 20, 29 and 30
the relevant variables). Dotted vertical black lines represent the variables used to generate the time-to-event variable. The lower the rank, the
more relevant the variable is for the specific algorithm
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Fig. 9 Scenario 5 results. Average rank by variable and method for the 100 simulated datasets for Scenario 5 (being variables 1, 20 and 30 the
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best identified the relevant variables. The other three al-

gorithms were not able to detect the three variables, al-

though RFE-maxgrowth-function was able to identify as

relevant, with a similar rank, variables 1 to 8 (highly cor-

related among them).

In Scenario 6 (Fig. 10), Variable 1 and Variable 30 were

selected as relevant; being the former included as main

effect with a quadratic term and the latter exponen-

tiated. All methods, except RFE-maxgrowth-function,

were able to detect the importance of Variable 30. With

respect to Variable 1, RFE-pseudo-samples and RFE-

Maxgrowth-function yielded a similar rank of approxi-

mately 10.5. The other two algorithms, RFE-Guyon and

RFE-maxgrowth-prediction, were not able to identify as

relevant Variable 1 with the ranks for this variable

comparable to to other non-relevant variables.

Visualization of proposed methods

RFE-pseudo-samples

An example of the results for Scenario 2 (all other sce-

narios are included as Additional files, from Add-

itional Files 4, 5, 6, 7, 8 and 9), the 100 simulated

datasets and first iteration of the RFE algorithm is

shown in Fig. 11. Two variables show a completely dif-

ferent pattern from the others: Variable 29 and Vari-

able 30. The association with the response of them was

a mirror image of each other: for Variable 30, the

larger the pseudo-sample value the larger the decision

value and for Variable 29, the larger the pseudo-sample

the lower the decision value. The other variables are

pretty constant along the pseudo-samples range.

RFE-KPCA-maxgrowth prediction and function

Figure 12 shows an example of RFE-maxgrowth-prediction

algorithm, Scenario 1, and iteration 25. To make the plot

more interpretable, we only displayed the 5 variables se-

lected as the most relevant: 1, 2, 25, 26 and 28. The first

two were highly correlated (in average, a 0.8 Pearson cor-

relation) and the others were independent by design. The

reference is the prediction approach, but it is equivalent to

function approach. The first component (PC1) is the one

that classifies the event group, most events are negative

and non-events are positive. For the reference, the direc-

tions are going from non-event to event along the PC1 and

PC2. With respect to the other variables, only Variable 1

and Variable 2 present a pattern in terms of directions for

each observation similar to the reference. Variables 25, 26

and 28 look pretty random. The interpretation of this is:

variables 1, 2 and the reference perform similarly, thus,

Variable 1 and Variable 2 are relevant and the others are

not. Besides that, since 25, 26 and 28 directions are ran-

dom between them, they are not associated with the re-

sponse and they are not correlated, which is true by the

data generation mechanism.
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Fig. 10 Scenario 6 results. Average rank by variable and method for the 100 simulated datasets for Scenario 6 (being variables 1 and 30 the
relevant variables). Dotted vertical black lines represent the variable used to generate the time-to-event variable. The lower the rank the more
relevant the variable is for the specific algorithm
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Real-life datasets

In Fig. 13 the Spearman correlation between each

method comparing the obtained ranks for each one of

the variables in the three dataset is shown. In all three

compared real datasets the RFE-pseudo-samples and

RFE-maxgrowth-prediction were the methods most cor-

related with the Cox model. In the Additional Files 10,

11 and 12, the rank comparison between each method

and PBC, DLBCL and Lung datasets, respectively, is

presented.

From Figs. 14, 15 and 16 the C statistic results by method

and real dataset are shown. The RFE-pseudo-samples

method discriminative ability is better than the other ones,

especially in the DLBCL and PBC dataset, were the C statis-

tics of the top ranked variables (the ones classified by the al-

gorithm as more relevants) are larger. The RFE-maxgrowth

methods perform slightly better than the RFE-Guyon except

in DLBCL dataset (Fig. 16) were RFE-Guyon performance is

overall better being the C statistic better in larger ranks.

Discussion

In biomedical research, it is important to select the vari-

ables most associated with the studied outcome and to

learn about the strength of this association. In SVM with

non-linear kernels, variable selection is particularly chal-

lenging because the feature and input spaces are different,

thus learning about variables in the feature space does not

address the main question about variables in the original

space. Although non-linear kernels, specially the Gaussian

kernel, are widely used, little work has been done compar-

ing methods to select variables in SVM with non-linear

kernels. Moreover, almost no work has focused on inter-

pretation and visualization of the association predictor-re-

sponse in SVM with linear or non-linear kernels to help

the analyst to not only select variables but also learn about

the strength and direction of the association. The algo-

rithms we proposed here for SVM aimed to fill this gap

and allow analysts to use SVM to better address common

scientific questions, i.e.: select variables when using

non-linear kernels and learn about the strength of associa-

tions of predictor-response. Moreover, the algorithms pre-

sented are applicable for analysis of time-to-event

responses that are often the primary outcomes in biomed-

ical research.

The three algorithms we proposed performed gener-

ally better than the gold standard RFE-Guyon for

non-linear kernels. As expected, results for all methods

were better when the true relevant variables were inde-

pendent, i.e., they were no correlated with the other

variables in the SVM model. However, this scenario is

rarely the case in biomedical research, particularly

when analysis includes several variables. Generally, the

RFE-pseudo-samples outperformed the other three

methods in all tested scenarios. Additionally, the

RFE-pseudo-samples algorithm rendered a more

friendly visualization of results than RFE-Guyon.
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Fig. 11 Visualization of RFE-pseudo-samples results for Scenario 2. Results for Scenario 2 (in which variables 29 and 30 were the relevant
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distribution for each variable is shown with a non-parametric local regression estimation (LOESS) with the corresponding 95% confidence interval
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With regards to the RFE-maxgrowth, both prediction

and function approaches performed similarly. The predic-

tion approach identified the relevant variables better than

the fuction approach and the function was less time con-

suming. The prediction approach can be interpreted as an

instance of the function. Although the RFE-maxgrowth-

function was based on the explicit decision function and,

thus, was expected to outperform the other three ap-

proaches, it did not perform as accurately as the other

three approaches. One explanation could be that by
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Fig. 12 Visualization of RFE-KPCA-maxgrowth results for Scenario 1. Scenario 1 (being Variable 1 the relevant variable) results for a random simulated
dataset and iteration 25 of the RFE-KPCA-maxgrowth-prediction approach. The first component of the KPCA (PC1) is represented in the X-axis and the
second component (PC2) is represented in the Y-axis. Events, non-events (censored at the end of follow-up time) and losses to follow-up (censored
during follow-up) are represented by red, green and blue color, respectively

Fig. 13 Spearman correlation matrix comparing 5 methods in the a PBC, b Lung and c DLBCL datasets. The Spearman correlation was computed
comparing the ranks obtained by each one of the variables in the dataset
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approaching the decision function with a non-linear kernel

as a combination of variables we are loosing more informa-

tion than by using the RFE-maxgrowth-prediction.

In the RFE-maxgrowth-prediction algorithm, the pre-

diction was included as an extra variable into the KPCA

space. When including this extra variable, the con-

structed space accounts for the patterns that define

event and non-event into the KPCA and is different

from the constructed space ignoring the prediction vari-

able. However, in the RFE-maxgrowth-function the

KPCA space does not take into account any specific

variable directly related to the classes.

The interpretation of the RFE-maxgrowth algorithm

is more complex than the RFE-pseudo-samples algo-

rithm because it includes interpretation of the compo-

nents of the KPCA, the directions of maximum growth

of each input variable, and the comparison of the

direction of the maximum growth of the input vari-

ables between the event and non-events. Although this

approach is more informative, it can only be inter-

preted for a reduced number of variables.

When analyzing the three real datasets the three

SVM methods performed overall better than Cox

model which is the classical statistical model to

analyze time-to-event data. Moreover, the three real

datasets fit in terms of sample size and number of

variables into the Cox assumptions. Within the pro-

posed methods the RFE-pseudo-samples performed

better than the others, being the top-ranked variables

the ones with largest discriminative power. The

RFE-maxgrowth methods performed slightly better

than RFE-Guyon. The obtained results in the real

datasets are consistent with the ones obtained in the

simulation study.

Fig. 15 C statistics results by method and ranked variable in the Lung dataset. The X-axis shows the rank of each one of the variables in
the dataset after applying the RFE algorithm. The lower the rank the more relevant the variable is and the larger the C statistic is
expected. As each method can rank differently the variables, given a rank the variable can be different between methods, due to this the
C statistic (Y-axis) is different

Fig. 14 Discriminative ability, measured as C statistic, by method and ranked variable in the PBC dataset. The X-axis shows the rank of each one
of the variables in the dataset after applying the RFE algorithm. The lower the rank the more relevant the variable is and the larger the C statistic
is expected. As each method can rank differently the variables, given a rank the variable can be different between methods, due to this the C
statistic (Y-axis) is different
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The main limitation of the proposed methods is that

they are more computationally intensive than classical

RFE-Guyon. That could be a limitation depending on

the size of the database, the proportion of censored

observations during the follow-up period or the SVM

extension model used to analyze the time-to-event

data. However, this shouldn’t be an extra complexity

point when analyzing binary response data with no

censored obsevations.

Further extensions of the presented work are the

comparisons of the proposed methods with other ma-

chine learning agorithms used to identify relevant vari-

ables such as Random Forest, Elastic Net or

Correlation-based Feature Selection evaluator, by

analyzing simulated scenarios and real datasets. Addi-

tionaly, future work should focus in another important

part of the identification of relevant features which is

finding the method with largest accuracy or discrimin-

atory ability and not only the identification of the true

relevant variables.

Conclusion

Conducting variable selection and interpreting associa-

tions between predictors and response variables with the

proposed approaches when analyzing biomedical data

using SVM with non-linear kernels has some advan-

tadges over the currently available RFE of Guyon. Add-

itionally, the proposed approaches can be implemented

with high level of accuracy and speed, and with low

computational cost, particularly when using the RFE-

pseudo-samples algorithm. Although the proposed

methods had more difficulties to identify relevant vari-

ables when those variables were highly correlated, they

performed better than the classical RFE algorithm with

non-linear kernels proposed by Guyon.
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