SVM: Support Vector Machines

- 1. Lecture Notes for Chapter 5, Introduction to Data Mining, By Tan, Steinbach, Kumar
- 2. Lecture notes for Chapter 3, The Top Ten Algorithms in Data Mining, By Hui Xue, Qiang Yang, and Songcan Chen
- 3. Lecture notes by Peter Belhumeur, Columbia University Edited by Wei Ding

Introduction

- Support vector machines (SVMs), including support vector classifier (SVC) and support vector regressor (SVR), are among the most robust and accurate methods in data mining algorithms.
- SVMs, which were originally developed by Vapnik in the 1990s, have a sound theoretical foundation rooted in statistical learning theory, require only as few as a dozen examples for training, and are often insensitive to the number of dimensions.

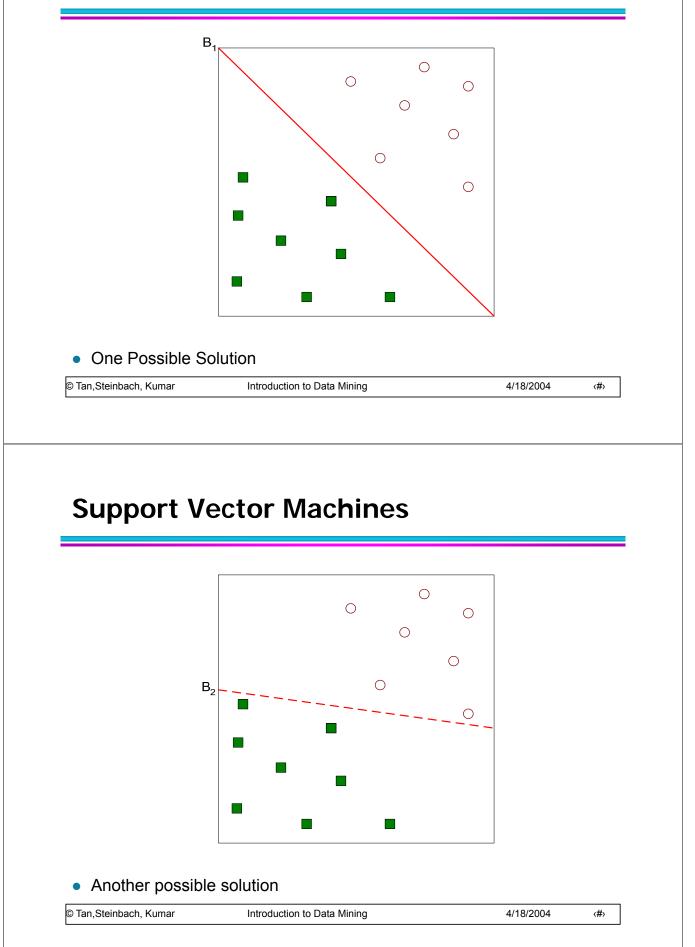
V. Vapnik

<#>

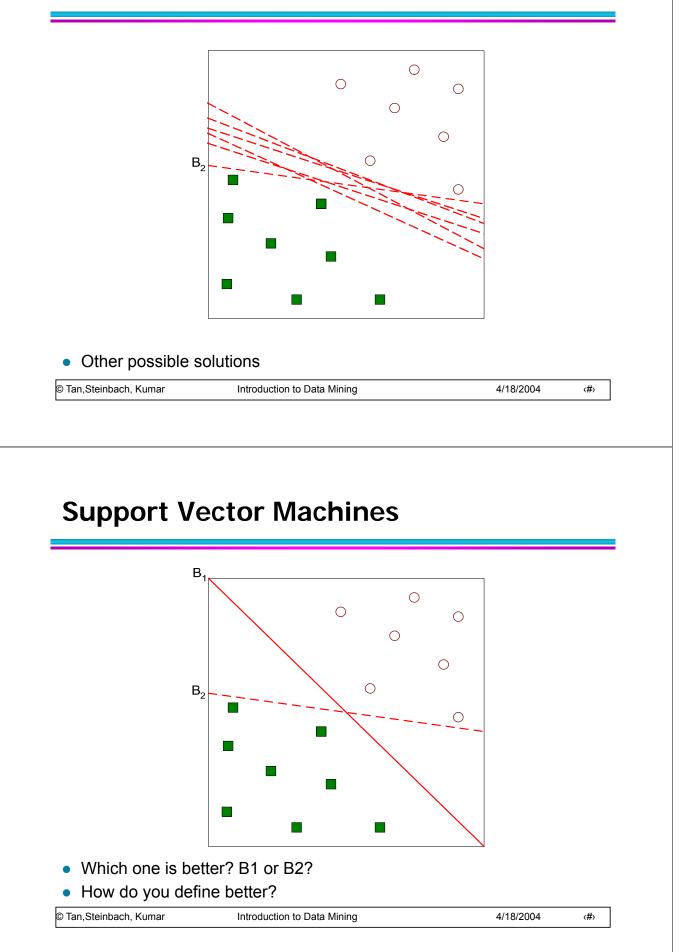
Support Vector Classifier

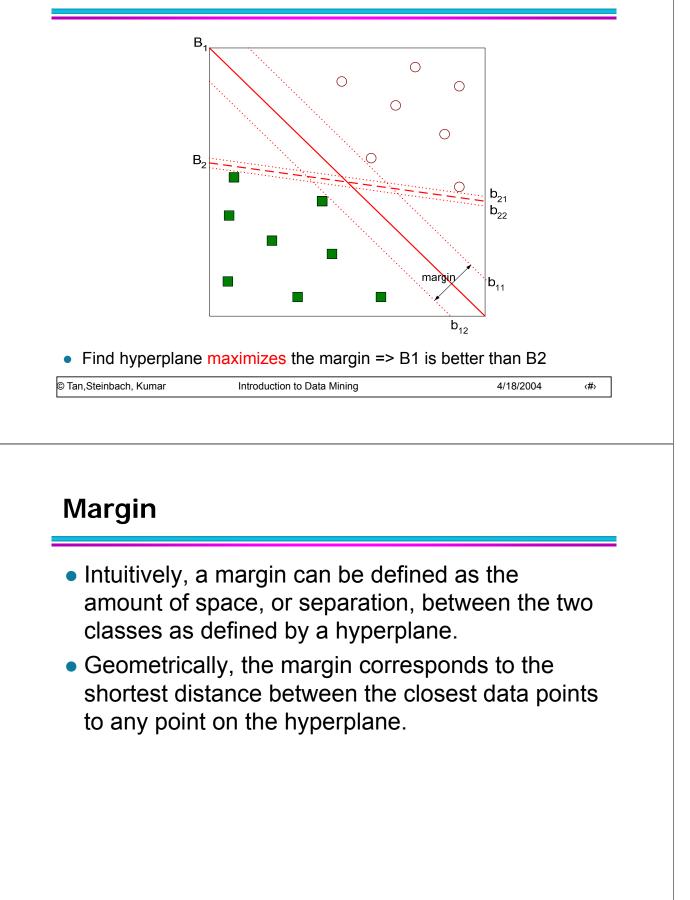
- For a two-class linearly separable learning task, the aim of SVC is to find a hyperplane that can separate two classes of given samples with a maximal margin which has been proved able to offer the best generalization ability.
- Generalization ability refers to the fact that a classifier not only has good classification performance on the training data, but also guarantees high predictive accuracy for the future data from the same distribution as the training data.

Support V	ector Machines		
	0 0 0	0	
	0	0	
		0	
	· · ·		



Support Vector Machines

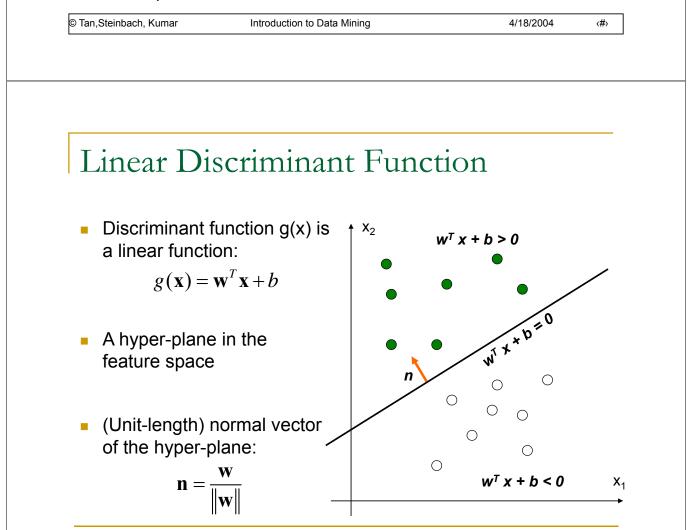




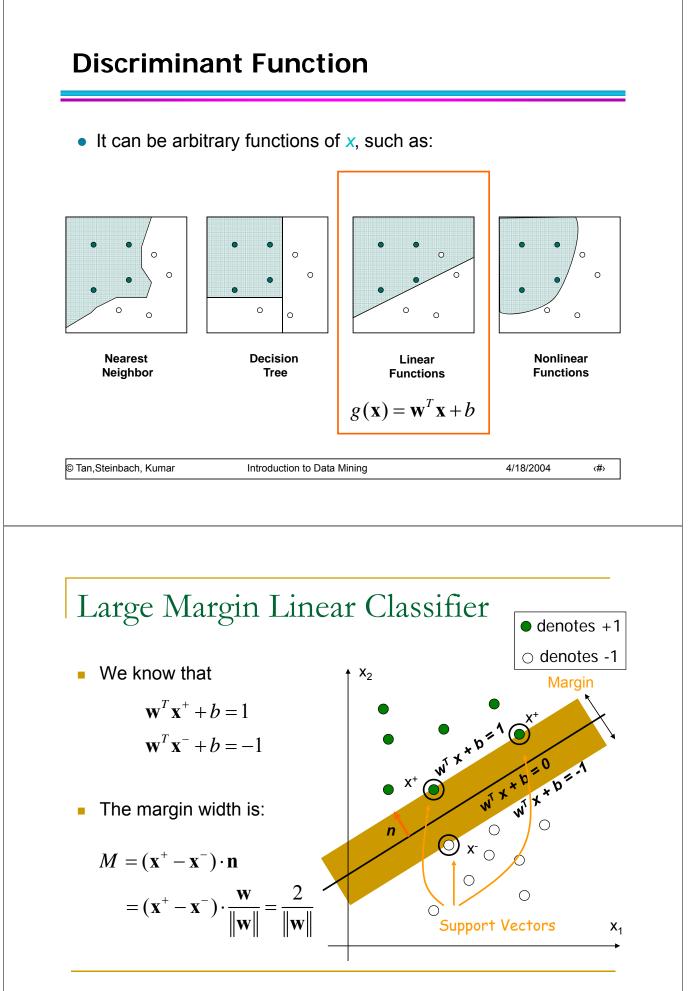
‹#>

Linear SVM: Separable Case

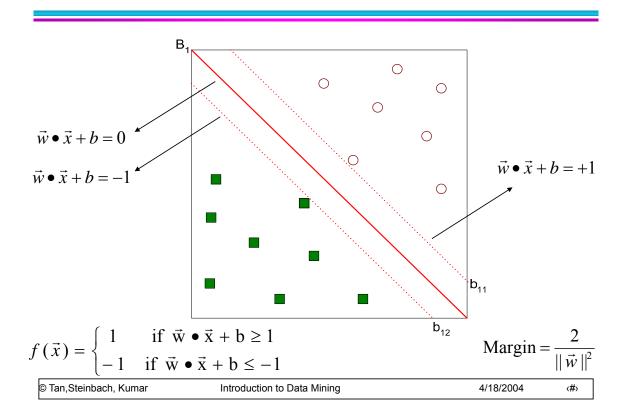
- A linear SVM is a classifier that searches for a hyperplane with the largest margin, which is why it is often known as a maximal margin classifier.
- N training examples
- Each example (x_i,y_i) (i=1,2,...,N), x_i=(x_{i1},x_{i2},...,x_{id})^T corresponds to the attribute set for the i_{th} example (that is, each object is represented by d attributes), y_i is in {-1,1} that denotes its class label.
- The decision boundary of a linear classifier can be written in the following form: w.x + b = 0 (where the weight vector w and bias b are the parameters of the model)



The vector w defines a direction perpendicular to the hyperplane, while varying the value of b moves the hyperplane parallel to itself.



Support Vector Machines



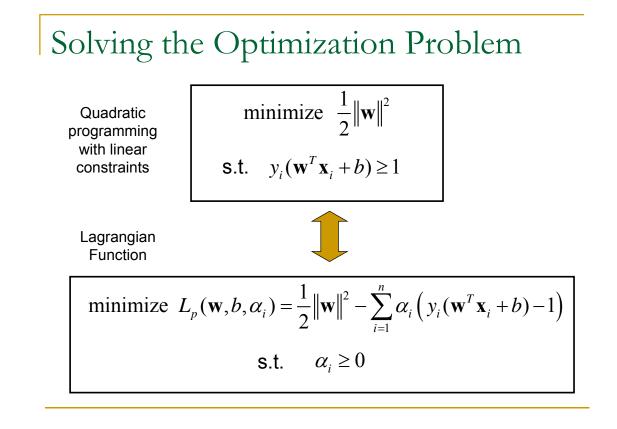
Support Vector Machines

• We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$ - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$ - But subjected to the following constraints: $f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$

This is a constrained optimization problem

- Numerical approaches to solve it (e.g., lagrange multiplier)

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	(#)
------------------------	-----------------------------	-----------	-------------



Solving the Optimization Problem

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha_i \ge 0$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L_p}{\partial b} = 0 \qquad \qquad \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

Solving the Optimization Problem

$$\begin{aligned} \text{minimize } L_p(\mathbf{w}, b, \alpha_i) &= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) \\ \text{s.t.} \quad \alpha_i \geq 0 \end{aligned}$$

$$\begin{aligned} \text{Lagrangian Dual} \\ \text{Problem} \end{aligned}$$

$$\begin{aligned} \text{maximize } \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{s.t.} \quad \alpha_i \geq 0 \text{, and } \sum_{i=1}^n \alpha_i y_i = 0 \end{aligned}$$

Solving the Optimization Problem

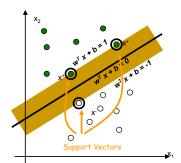
From KKT condition, we know the optimum:

$$\alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0$$

- Thus, only support vectors have $\alpha_i \neq 0$
- The solution has the form:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = \sum_{i \in SV} \alpha_{i} y_{i} \mathbf{x}_{i}$$

get *b* from $y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$, where \mathbf{x}_i is support vector

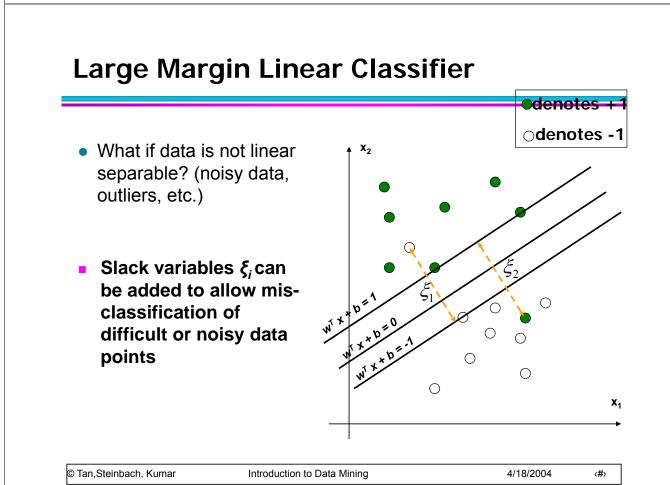


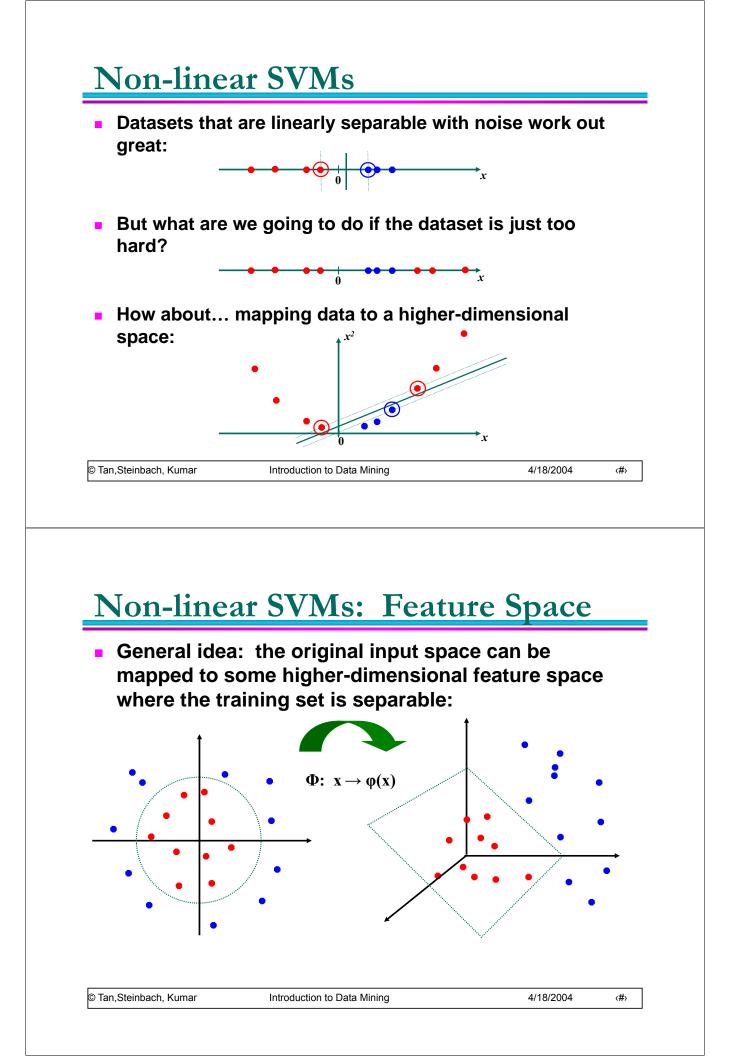
Solving the Optimization Problem

The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- Notice it relies on a *dot product* between the test point *x* and the support vectors *x_i*
- Also keep in mind that solving the optimization problem involved computing the dot products x_i^Tx_j between all pairs of training points





Nonlinear SVMs: The Kernel Trick

• With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

‹#>

Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors $\mathbf{x}=[x_1 \ x_2];$

let $K(x_i, x_j) = (1 + x_i^T x_j)^2$,

Need to show that $K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$:

$$\begin{split} K(\mathbf{x}_{i}, \mathbf{x}_{j}) &= (1 + \mathbf{x}_{i}^{T} \mathbf{x}_{j})^{2}, \\ &= 1 + x_{iI}^{2} x_{jI}^{2} + 2 x_{iI} x_{jI} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2 x_{iI} x_{jI} + 2 x_{i2} x_{j2} \\ &= [1 \ x_{iI}^{2} \ \sqrt{2} \ x_{iI} x_{i2} \ x_{i2}^{2} \ \sqrt{2} x_{iI} \ \sqrt{2} x_{i2}]^{T} [1 \ x_{jI}^{2} \ \sqrt{2} \ x_{jI} x_{j2} \ x_{j2}^{2} \ \sqrt{2} x_{jI} \ \sqrt{2} x_{j2}] \\ &= \varphi(\mathbf{x}_{i})^{T} \varphi(\mathbf{x}_{i}), \quad \text{where } \varphi(\mathbf{x}) = [1 \ x_{I}^{2} \ \sqrt{2} \ x_{I} x_{2} \ x_{2}^{2} \ \sqrt{2} x_{I} \ \sqrt{2} x_{2}] \end{split}$$

© Thisislide is Relatesy of www.ire.umentreabee/mpift6080/documents/papers/symplyuterial.ppt (#)

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
 - Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Gaussian (Radial-Basis Function (RBF)) kernel: $\|\mathbf{x} \mathbf{x}\|^2$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

 In general, functions that satisfy *Mercer's condition* can be kernel functions.

Tan, Steinbach, Kumar	Introduction to Data Mining	4/18/2004

Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

maximize $\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$ such that $0 \le \alpha_{i} \le C$ $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

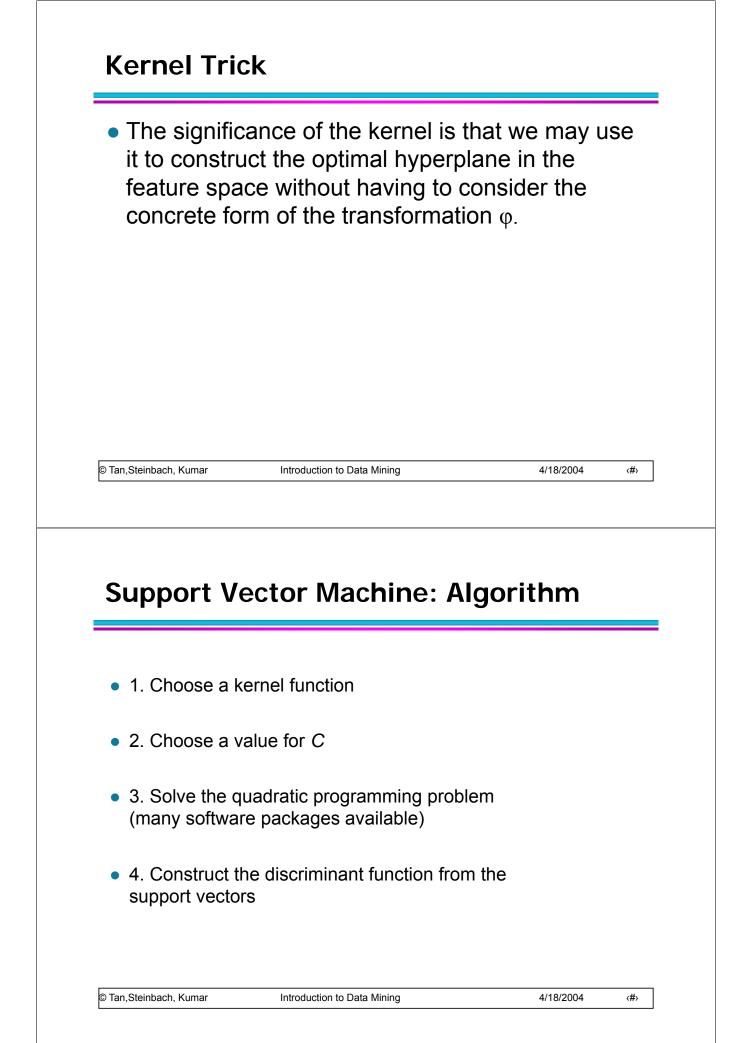
The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in \mathrm{SV}} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

• The optimization technique is the same.

© Tan,Steinbach, Kumar

‹#>



Some Issues

- Choice of kernel
 Gaussian or polynomial kernel is default
 if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
 - Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
 - Optimization criterion Hard margin v.s. Soft margin
 a lengthy series of experiments in which various parameters are tested

Introduction to Data Mining	4/18/2004	<# >
	Introduction to Data Mining	Introduction to Data Mining 4/18/2004

Summary: Support Vector Machine

- 1. Large Margin Classifier
 - Better generalization ability & less over-fitting
- 2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

Summary

 SVM has its 	roots in	statistical	learning	theory
---------------------------------	----------	-------------	----------	--------

- It has shown promising empirical results in many practical applications, from handwritten digit recognition to text categorization
- Works very well with high-dimensional data and avoids the curse of dimensionality problem
- A unique aspect of this approach is that it represents the decision boundary using a subset of the training examples, known as the support vectors.

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	<#>