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Introduction

 Support vector machines (SVMs), including 
support vector classifier (SVC) and support 
vector regressor (SVR), are among the most 
robust and accurate methods in data mining 
algorithms.

 SVMs, which were originally developed by Vapnik
in the 1990s, have a sound theoretical foundation 
rooted in statistical learning theory, require only 
as few as a dozen examples for training, and are 
often insensitive to the number of dimensions. 
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Support Vector Classifier

 For a two-class linearly separable learning task, 
the aim of SVC is to find a hyperplane that can 
separate two classes of given samples with a 
maximal margin which has been proved able to 
offer the best generalization ability.

 Generalization ability refers to the fact that a 
classifier not only has good classification 
performance on the training data, but also 
guarantees high predictive accuracy for the future 
data from the same distribution as the training 
data.
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Support Vector Machines

 Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines

 One Possible Solution
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Support Vector Machines

 Another possible solution
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Support Vector Machines

 Other possible solutions
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Support Vector Machines

 Which one is better? B1 or B2?

 How do you define better?
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Support Vector Machines

 Find hyperplane maximizes the margin => B1 is better than B2
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Margin

 Intuitively, a margin can be defined as the 
amount of space, or separation, between the two 
classes as defined by a hyperplane.

 Geometrically, the margin corresponds to the 
shortest distance between the closest data points 
to any point on the hyperplane. 
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Linear SVM: Separable Case

 A linear SVM is a classifier that searches for a 
hyperplane with the largest margin, which is why it is 
often known as a maximal margin classifier.

 N training examples

 Each example (xi,yi) (i=1,2,…,N), xi=(xi1,xi2,…,xid)T

corresponds to the attribute set for the ith example 
(that is, each object is represented by d attributes), yi

is in {-1,1} that denotes its class label. 

 The decision boundary of a linear classifier can be 
written in the following form: w.x + b = 0 (where the 
weight vector w and bias b are the parameters of the 
model) 

Linear Discriminant Function

 Discriminant function g(x) is 
a linear function:

( ) Tg b x w x

x1

x2

wT x + b < 0

wT x + b > 0

 A hyper-plane in the 
feature space

 (Unit-length) normal vector 
of the hyper-plane:


w

n
w

n

The vector w defines a direction perpendicular to the hyperplane, while varying the value of b moves the 
hyperplane parallel to itself.
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Discriminant Function

 It can be arbitrary functions of x, such as:

Nearest 
Neighbor

Decision 
Tree

Linear
Functions

( ) Tg b x w x

Nonlinear
Functions

Large Margin Linear Classifier 

 We know that

 The margin width is:

x1

x2

denotes +1

denotes -1

 1

 1

T

T

b

b





 

  

w x

w x

Margin

x+

x+

x-

( )

2
    ( )

M  

 

  

   

x x n

w
x x

w w

n

Support Vectors



© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               ‹#›

Support Vector Machines
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Support Vector Machines

 We want to maximize:

– Which is equivalent to minimizing:

– But subjected to the following constraints:

 This is a constrained optimization problem

– Numerical approaches to solve it (e.g., lagrange multiplier)
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Solving the Optimization Problem 
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Solving the Optimization Problem 
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Solving the Optimization Problem 

 The solution has the form: 

 ( ) 1 0T
i i iy b   w x

 From KKT condition, we know the 
optimum: 

 Thus, only support vectors have  0i 
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Solving the Optimization Problem 

SV

( ) T T
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 The linear discriminant function is: 

 Notice it relies on a dot product between the test point x
and the support vectors xi

 Also keep in mind that solving the optimization problem 
involved computing the dot products xi

Txj between all pairs 
of training points
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Large Margin Linear Classifier 

 What if data is not linear 
separable? (noisy data, 
outliers, etc.)

 Slack variables ξi can 
be added to allow mis-
classification of 
difficult or noisy data 
points

x1

x2

denotes +1

denotes -1

1
2
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Non-linear SVMs
 Datasets that are linearly separable with noise work out 

great:

0 x

0 x

x2

0 x

 But what are we going to do if the dataset is just too 
hard? 

 How about… mapping data to a higher-dimensional 
space:
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Non-linear SVMs:  Feature Space
 General idea:  the original input space can be 

mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x→ φ(x)
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Nonlinear SVMs: The Kernel Trick
 With this mapping, our discriminant function is now:

SV

( ) ( ) ( ) ( )T T
i i

i

g b b   


   x w x x x

 No need to know this mapping explicitly, because we only 
use the dot product of feature vectors in both the training 
and test.

 A kernel function is defined as a function that 
corresponds to a dot product of two feature vectors in 
some expanded feature space:

( , ) ( ) ( )T
i j i jK  x x x x
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Nonlinear SVMs: The Kernel Trick

2-dimensional vectors x=[x1   x2];  

let K(xi,xj)=(1 + xi
Txj)2

,

Need to show that K(xi,xj) = φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj),    where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]

 An example:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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Nonlinear SVMs: The Kernel Trick

 Linear kernel:

2

2
( , ) exp( )

2
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i jK
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
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x x
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( , ) (1 )T p
i j i jK  x x x x

0 1( , ) tanh( )T
i j i jK   x x x x

 Examples of commonly-used kernel functions:

 Polynomial kernel:

 Gaussian (Radial-Basis Function (RBF) ) 
kernel:

 Sigmoid:

 In general, functions that satisfy Mercer’s condition can 
be kernel functions.
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Nonlinear SVM: Optimization

 Formulation: (Lagrangian Dual Problem)
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 The solution of the discriminant function is

SV
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 The optimization technique is the same.
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Kernel Trick

 The significance of the kernel is that we may use 
it to construct the optimal hyperplane in the 
feature space without having to consider the 
concrete form of the transformation φ.

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               ‹#›

Support Vector Machine: Algorithm

 1. Choose a kernel function

 2. Choose a value for C

 3. Solve the quadratic programming problem 
(many software packages available)

 4. Construct the discriminant function from the 
support vectors 
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Some Issues
 Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate 
similarity measures

 Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications 
- In the absence of reliable criteria, applications rely on the use of a 
validation set or cross-validation to set such parameters. 

 Optimization criterion – Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are 
tested 
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Summary: Support Vector Machine

 1. Large Margin Classifier 

– Better generalization ability & less over-fitting

 2. The Kernel Trick

– Map data points to higher dimensional space 
in order to make them linearly separable.

– Since only dot product is used, we do not 
need to represent the mapping explicitly.
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Summary

 SVM has its roots in statistical learning theory

 It has shown promising empirical results in many 
practical applications, from handwritten digit 
recognition to text categorization

 Works very well with high-dimensional data and 
avoids the curse of dimensionality problem

 A unique aspect of this approach is that it 
represents the decision boundary using a subset 
of the training examples, known as the support 
vectors. 


