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Abstract

Identifying discriminative motifs underlying the functionality and evolution of organisms is a

major challenge in computational biology. Machine learning approaches such as support

vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination

tasks, but—due to its black-box character—motifs underlying its decision function are

largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us

to visualize the significance of position-specific subsequences. Although being a major step

towards the explanation of trained SVMmodels, they suffer from the fact that their size

grows exponentially in the length of the motif, which renders their manual inspection feasi-

ble only for comparably small motif sizes, typically k� 5. In this work, we extend the work on

positional oligomer importance matrices, by presenting a new machine-learning methodol-

ogy, entitled motifPOIM, to extract the truly relevant motifs—regardless of their length and

complexity—underlying the predictions of a trained SVMmodel. Our framework thereby

considers the motifs as free parameters in a probabilistic model, a task which can be

phrased as a non-convex optimization problem. The exponential dependence of the POIM

size on the oligomer length poses a major numerical challenge, which we address by an effi-

cient optimization framework that allows us to find possibly overlappingmotifs consisting of

up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic

data set as well as a real-world human splice site data set.

Introduction

Major technological advances in sequencing techniques within the past decade have facilitated

a deeper understanding of the mechanisms underlying the functionality and evolution of

organisms. Considering the pure size of a genome, it comes, however, at the expense of an
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enormous amount of data that demands for automatic and computationally efficient methods

in, e.g., genomic discrimination tasks. One of the most accurate approaches to this end consist

in the support vector machine (SVM) [1–3] along with the use of a weighted-degree (WD) ker-

nel [4–8], which, in a nutshell, is a similarity measure between two DNA sequences, breaking

them into all possible subsequences up to a length L and counting the number of matches. The

WD-kernel SVM has been shown to achieve state-of-the-art prediction accuracies in many

genomic discrimination tasks such as, e.g., transcription start site detection [9]—achieving the

winning entry in the international comparison by [10] of 19 competing machine-learning

models—and splice site detection [11]. Efficient implementations such as the one contained in

the SHOGUNmachine-learning toolbox [12], which employs effective feature hashing tech-

niques [13], have been applied to problems where millions of sequences, each containing thou-

sands of nucleotides, are processed at the same time [14].

Unfortunately, due to its black-box character, biological factors underlying the SVM’s pre-

diction such as promoter elements and transcription start sites—the so-calledmotifs (illus-

trated in Fig 1)—are largely unknown. A first step towards the identification of motifs

underlying the functionality of organisms is achieved in [15] (for other approaches for inter-

preting non-linear classification see e.g. [16–20]), where the concept of positional oligomer

importance matrices (POIMs) is introduced. POIMs assign each positional oligomer (PO) y of

length l starting at position j with an importance score POIMj;y � E½sðXÞjX ½j�l ¼ y�, which
allows us to visualize the significance of the particular POs as illustrated in Fig 2.

Although being a major step towards the explanation of trained SVMmodels, POIMs suffer

from the fact that their size grows exponentially with the length of the motif, which

1. renders their computation feasible only for rather small motif sizes, typically k� 12 (see Fig

3 for exemplary execution times)

Fig 1. Example of a motif. i.e., an “interesting” subsequence of the DNA—illustrated as a positional weight

matrix (PWM): the size of a letter indicates the probability of occurrence of the corresponding nucleotide at a
certain position in the motif. The likeliest nucleotides are arranged top down.

doi:10.1371/journal.pone.0144782.g001
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2. hampers manual inspection (in order to determine candidate motifs) already for rather

small motif sizes such as k� 5 and is prohibitive for k� 10. For example, a POIM of order

k = 5 contains, at each position, already 45� 1,000 oligomers that a domain expert has to

manually inspect. Slightly increasing the motif length to k = 10 leads to an unfeasible

amount of 410� 1,000,000 subsequences per position in the POIM.

In this paper, we tackle the problem of obtaining motifs from the output of an SVM via the

use of POIMs from a different perspective. In a nutshell, our approach is the other way round:

we propose a probabilistic framework to reconstruct, from a given motif, the POIM that is the

most likely to be generated by the motif. By subsequently minimizing the reconstruction error

with respect to the truly given POIM, we can in fact optimize over the motif in order to find

the one that is the most likely to have generated the POIM at hand. The latter poses a substan-

tial numerical challenge due to the extremely high dimensionality of the feature space. Fig 4

illustrates our approach.

The main contributions of this work can be summarized as follows:

1. Advancing the work of [15] on positional oligomer importance matrices (POIMs), we propose

a novel probabilistic framework to finally go the full way from the output of a state-of-the-art

WD-kernel SVM via POIMs to the relevant motifs truly underlying the SVM predictions.

2. To deal with the sheer exponentially large size of the feature space associated with the WD

kernel, we propose a very efficient numerical framework based on numerous speed-ups

such as bit-shift operations, highly efficient scalar multiplications as well as advanced

sequence decomposition techniques, and provide a free open-source implementation

thereof, which is available at https://github.com/mcvidomi/poim2motif.git.

3. Our approach is able to even find overlappingmotifs consisting of up to hundreds of nucleo-

tides, while previous approaches are limited to either comparably short or contiguous

motifs.

4. We demonstrate the efficiency and efficacy of our approach on both synthetic data sets as

well as a human splice data set, evaluated by means of the JASPAR database [21].

Fig 2. Illustration of a POIM of degree 2 and length l = 5 over oligomers of length 2 (“2-mers”). Each
POIM entry captures the significance of the particular 2-mer at the specific position in the sequence, which is,
roughly said, the expected value of this positional 2-mer regarding the weights in the SVMWD-kernel. Boxes
colored in dark red indicate the most discriminative positional 2-mers.

doi:10.1371/journal.pone.0144782.g002
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The paper is structured as follows: after reviewing the traditional approach of obtaining a

POIM from a trained SVMmodel, we introduce the proposed probabilistic methodology—

motifPOIM—for approximately determining the motif underlying the observed POIM at

hand. Following this, we propose a numerical framework for solving the corresponding non-

convex optimization problem by the use of efficient sequence computation techniques such as

bit shifts. We evaluate the proposed methodology empirically both on controlled synthetic data

as well as real-world human splice data. Finally we conclude the paper and discusses starting

points for future work.

Methods

After, firstly defining the weighted degree kernel, we briefly review the positional oligomer

importance matrices (POIMs) and then describe our novel approach for extracting motifs

from POIMs.

Fig 3. Memory footprint for POIMs of oligomer length k. Note that the plot is in semi-logarithmic scale and thus showing an exponential growth for
increasing oligomer length rendering a direct approach incomputable for even small k� 12.

doi:10.1371/journal.pone.0144782.g003

SVM2Motif

PLOS ONE | DOI:10.1371/journal.pone.0144782 December 21, 2015 4 / 23



Fig 4. Illustration of the proposed framework to extract motifs from a trained SVMmodel. In a first step, a POIM is computed corresponding to the
trained SVM (shown on the right, from top to bottom). Then a motif approximately corresponding to the POIM is determined by associating each candidate
motif (illustrated in the top right) with a motifPOIM (shown in the bottom right) via a probabilistic model and then minimizing the reconstruction error (indicated
by a� symbol) by a feedback loop (observe the curved errors on the right) with respect to the truly computed POIM (shown on the bottom left).

doi:10.1371/journal.pone.0144782.g004
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Preliminaries: Weighted Degree Kernel, Positional Oligomer Important
Matrices and Differential POIMs

The weighted-degree kernel, defined as

kðx; x0Þ ¼
X

k

l¼1

X

L�lþ1

j¼1
Ifx½j�l ¼ x0½j�lg; ð1Þ

breaks two DNA sequences x and x0 of length L into all possible subsequences of length l� L

starting at position j, denoted by x[j]l and x0[j]l, respectively. The kernel value κ(x, x0) is then
obtained by counting the number of matching subsequences, the so-called positional oligomers

(POs), when traversing the positions j = 1, . . ., L − l + 1. Equivalently, we may represent the

WD kernel by the corresponding binary feature embedding F, with κ(x, x0) = hF(x), F(x0)i,
where each entry ofF(x) represents a valid positional oligomer y of length l 2 {1, . . ., k} starting
at position j 2 {1, . . ., L−l + 1}. A WD-kernel SVM then simply fits the parameter w of the lin-

ear model s(x): = hw, F(x)i, which can, more concisely, be expressed as

sðxÞ ¼
X

k

l¼1

X

L�lþ1

i¼1
wðx½i�l ;iÞ ð2Þ

since F(x) is inherently sparse (only the entries in F(x) corresponding to the oligomers y = x[i]l

with l 2 {1, . . ., k} and i 2 {1, . . ., L−l + 1} are non-zero).

Let S = {A, C, G, T} be the DNA alphabet and X � UðSLÞ be a uniformly distributed ran-

dom variable with values in S
L and let x 2 SL be a realization thereof. For any positional k-mer

(y, j) 2 Sk × {1, . . ., L−k + 1} (k 2 {1, . . ., L}), let

Qk;y;j :¼ E½sðXÞjX ½j�k ¼ y� � E½sðXÞ�: ð3Þ

The POIM of order k is then defined as the tuple Q� Qk: = (Qk, y, j)(y, j)2Sk × {1, . . ., L−k + 1}.

See Fig 2 for an illustration of a POIM of degree k = 2. We may interpret Eq (3) as a measure

for the contribution of the positional oligomer (y, j) to the SVM prediction function s because a

high value of w(y, j), by Eq (2), implies a strong contribution to the prediction score s(x) if and

only if y = x[j]k. We can very well visualize POIMs in terms of heatmaps as illustrated in Fig 2,

from which we may obtain the most discriminative features by manual inspection.

As a first step towards a more automatic analysis of POIMs, [22] propose an extension of

the POIM method, the so-called differential POIM, which aims to identify the most relevant

motif lengths as well as the according starting positions. Formally, the differential POIM O is

defined as a k × Lmatrix O: = (Ol, j) with entries

Ol;j :¼
q
l;j

max � max fql�1;jmax ; q
l�1;jþ1
max g if l 2 f2; . . . ; Lg

0 elsewise;
ð4Þ

8

<

:

where

q
l;j

max :¼ max
y2Sl

jQl;y;jj:

We can interpret Ol, j as an overall score for the general importance of the oligomers of

length l starting at position j.

SVM2Motif
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Extracting Motifs by Mimicking POIMs

In this section, we introduce the proposed motifPOIM methodology for extraction of motifs

from POIMs. In a nutshell, it is based on associating each candidate motif by a probability of

occurrence at a certain location—which we call probabilistic positional motif (PPM)—and then

(re-)construct from each PPM the POIM that is the most likely to be generated from the candi-

date PPM, which we call motifPOIM. The final motif is obtained by optimizing over the candi-

date motifs such that the reconstruction error of the motifPOIM with respect to the truly given

POIM is minimized. See Fig 4 for an illustration.

To this end, let us formally define the PPM as a tuplemk: = (r, μ, σ), where r 2 R
4	k and

m; s 2 R. We think ofmk as a candidate motif with PWM r and estimated starting position μ.

The variable σ encodes the uncertainty in the location of the motif and can be thought of a

standard deviation of the location of the motif. Under this probabilistic model, we define, in

analogy to the SVM weight vector w occurring in Eq (2), a motif weight vector v� v(mk) with

entries (v(mk))z, i = v(z, i)(mk) defined as

vðz;iÞðmkÞ :¼
1
ffiffiffiffiffiffi

2p
p

s
exp �ði� mÞ2

2s2

� �

Y

k

l¼1
rzl ;l;

for any positional k-mer (z, i) 2 Sk × {1, . . ., L−k + 1}. Consequently, we define in analogy to

Eq (2) a function

�sðxjmkÞ :¼
X

L�kþ1

i¼1
vðx½i�k ;iÞðmkÞ: ð5Þ

By means of the above function, we can construct, from a PPM as defined above, a POIM R

� R(mk) with entries

Ry;jðmkÞ :¼ E½�sðX jmkÞjX ½j�
k ¼ y� � E½�sðX jmkÞ�: ð6Þ

Our overall aim is, by optimizing over the motifPOIM R, to approximate the original POIM

(cf. also the illustration in the introduction, given by Fig 4). An interesting fact here is that,

since computing motifPOIMs for longer PPMs (mk, k> 5) is computationally expensive, we

may use motifPOIMs of small orders ~k 2 f2; 3g, although, this is no restriction of the motif

length, as we model a PPM of length k � ~k as a number of D overlapping SubPPMs, D :¼
k� ~k þ 1 with length ~k � k. We define the SubPPMs analogous to PPMs as tuples

~mdðmk;
~kÞ :¼ ð~r ; ~m; sÞ; 8 d ¼ 0; . . . ;D� 1

with ~m :¼ mþ d and the sub-matrix ~r 2 R
4	~k of r starting with column d.

The basic idea is illustrated in Fig 5, where we divide a PPM into a set of SubPPM. Instead

of computing an motifPOIM for the PPM, we now compute a set of DmotifPOIMs for the

smaller overlapping SubPPMs.

Numerical Methods

In this section, we introduce an efficient numerical framework for the extraction of motifs from

POIMs by mathematical optimization. The core idea is to determine a motifmk with an according

motifPOIM R(mk) that approximates the original POIMQk. To this end, let us introduce some

notation. LetK 
 N be the set of all motif lengths to be considered and kmax ¼ max k2Kk the

maximum length. The vector T 2 N
kmax
0 contains the number of PPMs for each motif length,

SVM2Motif
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where Tk; k 2 K is the given number of PPMs of length k. For example, whenK ¼ f2; 4; 10g
and T = (0, 6, 0, 2, 0, 0, 0, 0, 0, 2), then the goal is to find 6 PPMs of length 2, 4 PPMs of length 4,

and 2 PPMs of length 10. Our optimization method is as follows: given the setK and the vector T,

we randomly initialize the PPMsmk;t t ¼ 1; . . . ;Tk; k 2 K and generate a set of motifPOIMs for

the SubPPMs ~mdðmk;
~kÞ; d ¼ 0; . . . ;D� 1. The optimization variables are all Tk; k 2 K PPMs.

For obtaining the priorities of the PPMs we weight the PPMs by lk;t; t ¼ 1; . . . ;Tk; k 2 K and

additionally optimize over the weights. Hence, the optimization variables are:

• PPM mk;t ¼ ðrk;t; mk;t; sk;tÞ; t ¼ 1; . . . ; Tk ; k 2 K,

where

mk;t 2 f1; . . . ; L� kþ 1g; t ¼ 1; . . . ;Tk; k 2 K

sk;t 2 ½�; k�; t ¼ 1; . . . ;Tk; k 2 K

rk;t 2 ½�; k�
4	k

; t ¼ 1; . . . ;Tk; k 2 K

• weight ofmk, t

lk;t 2 ½0;W�; t ¼ 1; . . . ;Tk; k 2 K;W 2 R
þ
:

A PPM generates a motifPOIM, which is given by the sum of DmotifPOIMs generated by

its SubPPMs. The sum of the weighted motifPOIMs, λk, t R(mk, t), t = 1, . . ., Tk, should estimate

the POIM Q~k for each k 2 K. The optimization problem is now that of minimizing the dis-

tance between the sum of the motifPOIMs and the original POIM, which leads to a non-convex

optimization problem with the following objective function:

f ðZÞ ¼ 1

2

X

k2K

X

y2S~k

X

L

j¼1

X

Tk

t¼1
lk;t

X

D�1

d¼0
Ry;jð ~mdðmk;t;

~kÞÞ � Q~k ;y;j

 !2

; ð7Þ

where Z ¼ ðmk;t; lk;t;
~kÞt¼1;...;Tk ;k2K:

Fig 5. Illustration of the SubPPM approach. instead of computing possibly intractable POIMs for long
motifs directly, we decompose each of the longer motifs (here: a single motif of length 12) into smaller

overlapping, conforming subsequences of length ~k
~ (in the figure: ~k~¼ 3). This approach allows us to

reconstruct motifs of arbitrary length using low dimensional POIMs, rendering the reconstruction of very
large, possibly overlapping motifs computationally feasible.

doi:10.1371/journal.pone.0144782.g005
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The associated constrained non-linear optimization problem is thus as follows:

min
ðmk;t ;lk;t Þt¼1;...;Tk ;k2K

f ðZÞ

subject to

� � sk;t � k; t ¼ 1; . . . ;Tk; k 2 K

1 � mk;t � L� kþ 1; t ¼ 1; . . . ;Tk; k 2 K

0 � lk;t �W; t ¼ 1; . . . ;Tk; k 2 K

� � rk;t;o;s � 1; t ¼ 1; . . . ;Tk; k 2 K

o ¼ 1; . . . ; jSj; s ¼ 1; . . . ; k;
X

jSj

o¼1
rk;t;o;s ¼ 1

ð8Þ

whereW 2 R
þ. Note that for the sake of optimization efficiency we relax the integer constraint

on motifs start positions in the sense that we optimize over positive real numbers. The objective

function f(η) is defined on the compact set U, since all parameters are defined in a closed and

bounded, convex space. Consequently, if U is not empty, f(η) is a continuously differentiable

function, since its conforming parts, that is, the Gaussian function and the product of the

PWM entries, all are continuously differentiable. Thus the global minimum of the optimization

problem Eq (8) is guaranteed to exist. Due to the non-convex nature of Eq (8), however, there

may exist multiple local minima.

Efficient Computation

To allow an efficient numerical optimization of Eq (8), we first translate the motifPOIM for-

mula Eq (6) in another, equivalent form, similar as in [11]. To this end, note that the expected

value of �sðX jmkÞ for the given weight vector v(mk) and a random variable X 2 S
L is given by:

E½�sðX jmkÞ� ¼
1

jSLj
X

x2SL

�sðx;mkÞ:

It holds that

E½�sðX jmkÞ� ¼
1

jSLj
X

x2SL

X

k

l¼1

X

L�lþ1

i¼1
vðx½i�l ;iÞðmkÞ

¼
X

k

l¼1

X

L�lþ1

i¼1

1

jSLj
X

x2SL

vðx½i�l ;iÞðmkÞ

¼
X

k

l¼1

X

L�lþ1

i¼1

1

jSlj
X

z2Sl

vðz;iÞðmkÞ

¼
X

k

l¼1

X

z2Sl

X

L�lþ1

i¼1
vðz;iÞðmkÞPðX ½i�

l ¼ zÞ:

ð9Þ

Hence the conditioned expectation is almost equivalent to Eq (9), except the probability

term that is given by the conditioned probability conditioned that y is at position j:

PðX ½i�l ¼ zjX ½j�k ¼ yÞ: ð10Þ

We now consider this probability term and its affect on the summation in Eq (6)). To this

end, we introduce the following notation as in [11].

SVM2Motif
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Definition 1 Two positional oligomers (z, i) and (y, j) of length l and k are independent if

and only if they do not share any position; in this case we write ðy; jÞ⊀ðz; iÞ and (y, j)�(z, i) oth-
erwise (i.e., when they are dependent). If they are dependent and also agree on all shared posi-

tions we say they are compatible and we write ðy; jÞ≾ðz; iÞ (and ðy; jÞ≴ðz; iÞ if they are not
compatible).

According to the cases discussed in the above definition, the conditioned probability term

can take the following values:

PðX ½i�l ¼ zjX ½j�k ¼ yÞ ¼

1

jSlj
if ðy; jÞ⊀ðz; iÞ

0 if ðy; jÞ⋨ðz; iÞ

jScj
jSlj

if ðy; jÞ≾ðz; iÞ

; ð11Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

where c is the number of shared and compatible positions of two positional oligomers:

c ðy; jÞ; ðz; iÞð Þ ¼

l � ji� jj if i < j and ðy; jÞ≾ðz; iÞ
l if i ¼ j and ðy; jÞ≾ðz; iÞ
k� ji� jj if i > j and ðy; jÞ≾ðz; iÞ
0 else:

:

8

>

>

>

>

<

>

>

>

>

:

Taken the case ðy; jÞ⋨ðz; iÞ, the probability terms in the motifPOIM formula (6) subtract to

zero, so that the positional oligomer (z, i) is not considered in the sum Ry, j(mk). Hence, in

order to compute Ry, j(mk), it is sufficient to sum over two positional oligomer sets, where one

contains all (z, i) with ðy; jÞ≾ðz; iÞ, I≾

ðy;jÞ, and the others contains all (z, i) with ðy; jÞ⋨ðz; iÞ,
I

⋨

ðy;jÞ:

Ry;jðmkÞ ¼
X

ðz;iÞ2I≾

ðy;jÞ

vðz;iÞðmkÞð
jScj
jSkj
� 1

jSkj
Þ

þ
X

ðz;iÞ2I⋨

ðy;jÞ

vðz;iÞðmkÞð�
1

jSkj
ÞÞ;

ð12Þ

where I �ðy;jÞ :¼ fðz; iÞ 2 S
jyj 	 f1; . . . ; L� jyj þ 1gjðy; jÞ � ðz; iÞg and � 2 f≾;⋨g:

Numerical Speed-ups. In addition to the speed-up achieved by the above re-formulation

of the problem, we can additionally save time in the motifPOIM computation by exploiting bit

shift operations as follows. With the help of the dependence sets I≾

ðy;jÞ and I
⋨

ðy;jÞ we know all the

dependent and compatible positional oligomers of a single positional oligomer (y, j). Fig 6

exemplarily illustrates the dependent and compatible oligomers z of y = TAC.

The core idea leading to the numerical speed-up is as follows: In each (y, j) we consider the

two dependence sets. However, the fact is that an oligomer y has completely the same depen-

dent and compatible oligomers z at each position in the sequence. Thus, a dependent set con-

taining all dependent and compatible z of y is the same for all positions i = 1, . . ., L. The trick is

to generate a dependency matrixA (see Eq 13) for a single y once, which can then be use at

every sequence position without the need of recalculation. This matrix contains the probability

terms of the motifPOIM formula since they do not change for y over the positions, saving at

least |Sk|(2(k−1) + 1) complex computations per position. For each position j we now create a

weight matrix Cj of same size, which contains all the weights v(z, i)(mk) for the entries inA for a

SVM2Motif
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specific position j. Finally, the dot product ofA and Cj replaces the long motifPOIM formula

(12) and we achieve a faster computation speed.

Due to the fact that dependent positional oligomers overlap each other, a dependent k-mer

z of the k-mer y could have a maximal distance of k−1 from y. Hence, we have to consider the

oligomers z with a maximum distance of k−1 position next to both sites of y and the position of

y itself. That yields to the dependence set:

I yðkÞ ¼ ðz; iÞ 2 S
k 	 f1; . . . ; 2ðk� 1Þ þ 1g

� �

:

The dependent matrixAðyÞ is defined on I yðkÞ as a matrix of size 4k × (2(k−1) + 1) and

contains the positional oligomer probability terms of the motifPOIM formula as entries:

Az;iðyÞ ¼

4
c � 1

4
k

if ðz; iÞ≾ðy; kÞ

�1
4
k

else

: ð13Þ

8

>

>

>

<

>

>

>

:

Furthermore, we create a weight matrix Cj of same size as A, which contains all weights v(z,

i)(mk) of the entries inA for a specific position j, so that the dot product of Cj andA replaces

the sums of the motifPOIM formula (12), which speeds up computations considerably. This

fact is stated in the following theorem.

Theorem 2 Let y be a k-mer, mk the PPM, v(mk) the motif weight vector, andA the depen-

dent matrix of y. Introducing a matrix C jðyjmkÞ, which is defined on I yðkÞ as a matrix of same

size Sk × (2(k−1) + 1) asAðyÞ and contains all weights of the positional oligomers inAðyÞ for
the motifPOIM position j as

C
j

z;iðyjmkÞ ¼
vðz;iþj�kÞðmkÞ if 1 � jþ i� k � L

0 else
; ð14Þ

(

then

Ry;jðmk;tÞ ¼ hAðyÞ; C jðyjmk;tÞi: ð15Þ

Fig 6. Illustration of the definition of dependent and compatible oligomers (cf. Definition 1).We say
that two positional oligomers are dependent when they overlap each other. If they additionally agree on all
shared positions, we say that they are compatible. In this figure, the positional oligomers (TAC, i) and (AAT, i
−2) are dependent and compatible since both of them contain the letter T at position i. Whereas the positional
3-mers (TAC, i) and (AAG, i−2) are dependent but not compatible.

doi:10.1371/journal.pone.0144782.g006
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Proof

hAðyÞ; Cjðyjmk;tÞi ¼
X

z2Sk

X

2ðk�1Þþ1

i¼1
C

j
z;iðyjmk;tÞAz;iðyÞ

¼
X

z2Sk

X

2ðk�1Þþ1

i¼1
vðz;iþj�kÞðmk;tÞAz;iðyÞ

¼
X

I≾

ðy;kÞ

ð 4
cððy;kÞ;ðz;iÞÞ � 1

4
k

Þvðz;iþj�kÞðmk;tÞ þ
X

I
⋨

ðy;kÞ

ð�1
4
k
Þvðz;iþj�kÞðmk;tÞ

¼
X

I≾ðy;jÞ

ð 4
cððy;jÞ;ðz;iÞÞ � 1

4
k

Þvðz;iÞðmk;tÞ þ
X

I
⋨

ðy;jÞ

ð�1
4
k
Þvðz;iÞðmk;tÞ:

Substituting the last equation into Eq (15) gives us Eq (12).

The case distinction in Theorem 2 is made since some dependent positional oligomers are

placed outside the possible sequence positions. Suppose we compute the weight matrix

C
j
z;iðyjmkÞ for y = ACT at the sequence position j = 1. Then there are overlapping 3-mers such

as, for example, (AAA, −1) and (TAC, 0), that not exist in the sequence at all. Thus, they are

weighted by zero.

Together with the fact that we implement the algorithm in the Python programming lan-

guage and use the numpy library for computations, calculations are very fast by using the algo-

rithm shown in Table 1.

Another step towards an efficient computation is as follows: The probability distribution

over the PPM with starting position μ in the sequence is a Gaussian function. One characteris-

tic of this function is that 99, 7% of the starting positions are within the confidence interval [μ

−3σ, μ + 3σ]. Hence, it suffices to compute the motifPOIM entries for the integer values in the

confidence interval and set the other motifPOIM entries to zero. Let ICO be the set containing

all positional oligomers of the confidence interval. A summary is given in Table 1. For each k 2
K a motifPOIM R is constructed (see Theorem 2) and the residual between the aforementioned

motifPOIM and the SVM POIM Qk of matching degree k is added to the variable iteratively

computing the function value.

Table 1. Efficient evaluation of Eq (7).

Data: mk;t ¼ ðrk;t; mk;t; sk;tÞ; lk;t; t ¼ 1; . . . ;Tk ; k 2 K

Result: fðmk;t; lk;tÞt¼1;...;Tk ;k2K
begin

f 0

for k 2 K do

R 0

for y 2 Σk do
Compute A(y) (see Eq 13)

for t = 1, . . ., Tk do

for j 2 ICO do

Compute Cj(y|mk, t) see Eq (14)

R[y][j] = R[y][j]+(hA(y), Cj(y|mk, t)i) (see Eq (15))

for y 2 Σk

for j = 1, . . ., L do

f = f+(R[y][j]−Qk[y][j])
2 (see Eq 7)

doi:10.1371/journal.pone.0144782.t001

SVM2Motif

PLOS ONE | DOI:10.1371/journal.pone.0144782 December 21, 2015 12 / 23



Empirical Analysis

In this section, we analyze our proposed mathematical model Eq (8) empirically. After intro-

ducing the experimental setup, we evaluate our approach on a synthetic data set where we fully

control the underlying ground truth. Finally, we investigate our model on a real human splice

data set and compare our results to motifs contained in the JASPAR database [21].

Overall Experimental Setup

For SVM training, we use the shogun machine-learning toolbox [12] (available from http://

www.shogun-toolbox.org/), which contains a C++ implementation of a WD-kernel SVM that

is specially designed for large-scale sequence learning problems and provides interfaces to

⪼matlab, Python, R, and java. The regularization constant C of the SVM and the degree d of the

weighted-degree kernel are set to C = 1 and d = 20, which are proven default values.

After SVM training, the POIM Q is generated through the Python script compute_poims.py

included in the shogun toolbox. The Python framework obtains the trained SVM and a (maxi-

mal) POIM degree kpoim = 12 as parameters and returns all POIMs, i.e., the differential POIM,

the maximum POIM, and the regular POIMs Ql, l = 1, . . ., kpoim. We set kpoim = 7 in synthetic

experiments and kpoim = 6 in real experiments because of memory requirements (storing all

POIMs up to a degree of 10 requires about 4 gigabytes of space). Note that this is no restriction

as our modified optimization problem Eq (8) requires POIMs of degree two or three only. Nev-

ertheless, POIMS of higher degree than three can be provide additional useful information

since they contain prior information about the optimization variables, which we use for a

proper initialization: For efficient optimization of our highly non-convex optimization prob-

lem Eq (8), an appropriate initialization of the optimization variables is mandatory. Thus, we

use the differential POIM (defined in Eq (4)) as indicator for extracting the area of interest: we

search for points of accumulation of high scoring entries, from which we manually estimate

the number of motifs as well as their length and starting position. Thereby we take the whole

interval of all highly scoring positions as motif length, where the start position is the first posi-

tion where all k-mers show a substantial increase in their scores. Once the motif interval is esti-

mated, we select the leading nucleotide from the highest scoring column entry within the

interval from the corresponding POIM and initialize the respective PWM entry with a value of

0.7 and 0.1 for non-matches. Indeed, we found this approach to be more stable and reliable

than using random initialization. These parameters serve as initialization for our non-convex

optimization problem Eq (8). To compute a motif from the computed POIMs, we employ the

L-BFGS-B Algorithm [23], where the parameters λ and σ both are initialized as 1. An illustra-

tion of the so-obtained experimental pipeline is shown in Fig 7.

As a measure of the motif reconstruction quality (MRQ), we employ the same score as in

JASPAR SPLICE [24]. When comparing equally sized sequences, this scoring reduces to the

simple formula

MRQ ¼
X

k

p¼1

1

k
� 1

2k

X

c2fA;C;G;Tg
ðtcp � rcpÞ

2

" #

ð16Þ

Synthetic Data Experiments

We first evaluate the proposed methodology on synthetically generated data, where we have

full access to the underlying ground truth. This experiment aims successive at demonstrating

the ability of our method in finding
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1. a single motif

2. a single mutated motif

3. overlapping motifs

4. long motifs.

Data Sets. To this end, we generate four sample sets S1, S2, S3, S4 as follows:

1. The sample S1 consists of 10,000 DNA sequences of length 30 over the alphabet {A, C, G,

T}30, randomly drawn from a uniform distribution UðSLÞ over SL. We subsequently modify

25% of the sequences by replacing the positions 11 to 16 by the synthetic target sequence

CCTATA. These modified sequences form the positively labeled examples, while the

remaining 75% of sequences are assigned to a negative label.

2. The sample S2 is obtained from S1 by mutating any of the six conforming nucleotides of the

inserted motif with probability p. This models a scenario where a motif is not quite clearly

expressed in the data. We realized the sample S2 � S
p
2 for various levels of mutation p 2

[0, 1].

3. Similar to S1, the sample S3 consists of 10,000 uniformly drawn DNA sequences of length

30, where, in 12.5% of the sequences, we replace the positions 5 to 15 by the positional oligo-

mer (AATCTGGCGGT, 5). Similarly, we insert the PO (CAATAGCCTGATGGC, 10) into

another 12.5% of sequences, resulting in a total of 25% of altered sequences, which are

assigned to a positive label (and all other sequences are labeled negatively).

4. The sample S4 consists of 10,000 uniformly drawn DNA sequences of length 400, where, in

25% of the sequences, we replace the positions 21 to 220 by a positional oligomer of the

form TCGGA TCGGA TCGGA. . . with length 200.

Results

Results on the unmutated data set S1. The results of the realization of this synthetic experi-

ment using training subsets of size n from the base sample S1 are shown in Fig 8, for various val-

ues of n. We can observe from the figure that the reconstruction error decreases as a function of

the sample size n already for n = 100. The corresponding motif/PWM computed by our approach

correctly identifies the true underlying motif sequence as the most likely path in the PWM.

Fig 7. Experimental pipeline of the motif extraction process (from left to right). given a trained SVM, we construct the corresponding POIM before
applying the proposedmotifPOIM approach to reconstruct underlying motifs (PWMs). Differential POIMs give reasonably initial values for the length and
number of motifs.

doi:10.1371/journal.pone.0144782.g007

SVM2Motif

PLOS ONE | DOI:10.1371/journal.pone.0144782 December 21, 2015 14 / 23



Results on the mutated data set S2. Furthermore, we realize the very same experiment

using the sample S2 � S
p
2 for various levels of mutations. The results are shown in Fig 9. We

can observe that, up to a mutation level of 60%, we correctly identify the true underlying motif

as being the sequence with the highest probability in the PWM. For more than 70% of muta-

tions in the training data, the performance drops severely. This effect however, is due to a drop

of classification performance of the corresponding SVM as can be seen in Table 2. Table 2

highlights results for an exemplary sample for each level of mutation, to relate SVM classifica-

tion error to mutation level, and also random PWM initialization strategy (30 runs) to greedy

initialization.

Results with overlapping motifs, i.e., data set S3. To validate our method for overlapping

motifs, we also experiment on the sample S3. The differential POIM and the POIM of degree

two resulting from our experimental pipeline are shown in Fig 10(a) and 10(b). Interestingly,

the two accumulations of entries with high scores indicate that the POIM includes two overlap-

ping motifs. The investigation of these accumulations is slightly more involved than in the

Fig 8. The results of the synthetic experiment for varying SVM training sample size n using non-mutated sequences of length 30. As expected, the
motif is better reconstructed the more training sequences are used for SVM training. However, as can be seen in the figure, the true motif is picked up early, a
tendency that we claim to the robustness of our approach.

doi:10.1371/journal.pone.0144782.g008
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experiment above: we observe, for each motif length l> 1, 11−l + 1 subsequent cell entries hav-

ing an extraordinary high score as indicated by light blue, green, orange, or red colors (e.g.,

length l = 7, we observe a block of 5 subsequent entries). Thus, the first discriminative motif

starts at position 5 and consists of 11 nucleotides. We can observe a drop at position 10 (notice

the dark blue color) indicating the starting position of the second motif. Altogether, the figure

indicates that the optimal model parameters are:K ¼ f11; 15g, T11 = 1, T15 = 1, where μ11, 1 =

5 and μ15, 1 = 10. Furthermore, Fig 10 (c) and 10(d) show the PWMs resulting from our optimi-

zation approach. We can observe that, although the two motifs are overlapping, both motifs

are identified correctly. As for the previous experiment, we also report on the optimal parame-

ters and execution time, shown in Table 3, from which we observe an increase in computation

time by a factor of about 5, when contrasted to the runtimes measured on the samples S1 and

S2. This can be attributed to the presence of multiple motifs in S3, each having an increased

length of 11 and 16 nucleotides, respectively, instead of just 6 nucleotides as in the sample S1,

leading to an increase in computational complexity.

Fig 9. We illustrate the robustness of our approach by plotting the reconstruction errors vs. the mutation level for a fixed amount of training
samples.We observe that even for high mutation levels (e.g. 50%) the motif reconstruction quality (MRQ) is sufficiently good to reconstruct the true
underlying motif correctly.

doi:10.1371/journal.pone.0144782.g009
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Results for a very long motif, i.e., data set S4. At last, we investigate whether our

approach is able to find a very long motif, as contained in the sample S4. Due to the huge num-

ber of variables and the immense size of the POIM, we divide the POIM into 10 smaller con-

forming parts, in each searching for a motif of length 20. Fig 11 shows the results. We can

observe that combination of the 10 computed PWMs reconstructed the real motif adequately.

We can summarize that the experiments on synthetic data demonstrate the ability of our

approach to robustly extract the true underlying—possibly overlapping—motifs from noisy

data sets even for large motif sizes.

Application to Human Splice Data

In this section, we evaluate our methodology on a human splice data set, which we downloaded

from http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl. The available human splice

Table 2. Experimental results for a fixed sample S1 with nomutation (p = 0) and S2with various levels
of mutation (p = 0.1, . . ., 1).

Greedy PWM init Random PWM init

p SVM acc iter MRQ iter MRQ

0.0 0.9987 14 0.93 39±14 0.8±0.1

0.1 0.998 13 0.92 43±12 0.76±0.12

0.2 0.998 13 0.92 40±19 0.77±0.1

0.3 0.9991 14 0.92 45±21 0.74±0.11

0.4 0.996 13 0.92 41±17 0.8±0.06

0.5 0.9989 14 0.92 36±21 0.79±0.07

0.6 0.9944 13 0.92 41±15 0.78±0.05

0.7 0.616 13 0.46 16±6 0.53±0.08

0.8 0.5 13 0.44 15±2 0.56±0.1

0.9 0.5 14 0.35 15±2 0.55±0.07

1.0 0.5 20 0.33 16±3 0.47±0.08

The proposed greedy initialization of the PWMs is more reliable and stable than randomly initialized PWMs

(mean and standard deviations are shown for 30 re-starts), indicated by higher MRQs and less iterations.

Furthermore, the SVM classification error is related to the level of mutation and clearly correlated with the

motif reconstruction quality (MRQ) of our method, independent of the initialization strategy.

doi:10.1371/journal.pone.0144782.t002

Fig 10. Results for the synthetic experiment with overlappingmotifs (AATCTGGCGGT, μ = 5) and (CAATAGCCTGATGGC, μ = 10). The differential
POIM is shown in Figure a), where we can extract the starting position of the two motifs as 5 and 10. Figure b) shows the POIM for the 2-mers, where the area
between the starting and ending positions of both motifs is characterized by high scores. Figure c) and d) represent the reconstructed motifs found by our
proposed methodology.

doi:10.1371/journal.pone.0144782.g010
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dataset contains 15 million samples of length 141, including one percent positive labeled data.

For verifying our results we use the JASPAR database [21] (available at http://jaspar.genereg.

net), which provides us with a collection of important DNA motifs and also contains a splice

site database. As a measure of the motif reconstruction quality (MRQ), we use the JASPAR

SPLICE score [24].

Note that real DNA sequences may contain non-polymorphic loci, which is why such a

motif is not discriminative and we may thus not expect the SVM to identify this locus. We thus

catch this special case and place this positional oligomer in the solution sequence. We apply

the full experimental pipeline described in the previous section to the splice data, i.e., we first

train an SVM, then generate the POIM and the differential POIM, from which we reconstruct

a motif by our motifPOIM optimization approach.

We compare our approach against the publicly available motif finder MEME (Multiple EM

for Motif Elicitation, [25]), a well known motif discovering tool for DNA sequences, included

in the MEME suite, which is a collection of tools for motif discovering and sequence analyzing.

The user can specify the number of motifs as well as the length by either the exact length or a

range specification. MEME expects the input sequences in FASTA file format. For comparison,

we conducted three experiments with varying numbers of positive samples. For support vector

machine training, we double the number of samples by filling in negative ones. We chose 400

positive samples (computation time*1min), which is the maximum amount of sequences

when using the MEME online tool, 700 positive samples (*10min), which is the maximum

recommended amount when using the MEME locally, and 2000 positive samples (*12h). We

compare the found motifs against the true splice site motif, taken from the JASPAR database

with the JASPAR consensus score.

Fig 12 shows the preliminary results for 400 samples in terms of the differential POIM and

corresponding POIM of degree 2, shown for the entire sequence (see Fig 12 (a) and 12(c),

respectively) as well as zoomed in for the “interesting” positions 36–76 of the sequence (see Fig

12 (b) and 12(d)). According to Fig 12 (b), the largest entries correspond to a 3- and 2-mer that

Table 3. Execution times and optimal parameters for the synthetic data set S3with overlappingmotifs.

μ σ λopt fopt time iter

5 0.77 0.84 0.159 22.68 46

10 0.81 0.68

Motifs have length 11 and 15 and start at position 5 and 10 respectively. Computational times as well as

the number of function evaluations are the same, as our method optimizes holistically everything at once.

doi:10.1371/journal.pone.0144782.t003

Fig 11. Results of the synthetic experiment on the data set S4. The motif of length 200 is reconstructed
correctly by overcoming the computationally infeasible POIM dimensionality of 4200 by splitting the long motif
into smaller overlapping motifs. The resulting motif is shown here for the first 20 and the last 181 to 200
positions.

doi:10.1371/journal.pone.0144782.g011
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can be found at position 56 and 57, respectively. A significant increase of the score is recogniz-

able for all k-mers at position 45, which is enhanced at position 46. The last largest entry for a

6-mer is found at position 58, which corresponds to the last largest entries of 4-mers at position

60 and 2-mers at position 62, from which we conclude that the discriminative motif starts at

position 45 and ends at position 63. Thus, the motif we are searching is expected to have a

length of 19 nucleotides, which we use as an initialization for our motifPOIM approach. We

also account for non-polymorphic loci and find that the nucleotides A and G appear in all

DNA sequences of the data set, always at the positions 60 and 61, respectively. We thus place

them in the final PWM with a probability of 100 percent.

The final results for 400 positive samples, are shown in Fig 13, where the true underlying

motif taken from the JASPAR splice database is shown in Fig 13 (a), while the motif computed

by our approach is shown in Fig 13 (b) and the motif found by MEME is shown in Fig 13 (c).

The execution times and the optimal parameters found by the L-BFGS-B solver are shown in

Table 4. For all experiments, the start position is around the initialization value of 45, with a

small variance of up to σ = 0.44. The great difference in the optimal function value is caused by

Fig 12. Results of the real-world human splice experiment. Figures (a) and (c) show the differential POIM and the POIM of degree 2, respectively, for the
entire sequence length of 200, while Figures (b) and (d) zoom into the “interesting” positions 36–76 only.

doi:10.1371/journal.pone.0144782.g012

Fig 13. Results for 400 human splice-site examples. Figure (a) shows the (normalized) ground truth motif given by the JASPAR database (20
nucleotides). Figure (b) and (c) depict the corresponding (normalized) PWMs, reconstructed by our approach SVM2Motif (19 nucleotides long, a JASPAR
score of 98.92) and by MEME (21 nucleotides, a JASPAR score of 94.77) respectively.

doi:10.1371/journal.pone.0144782.g013
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the experiment dependent POIM scorings, for example in the POIM of degree 2 of the first

experiment we observe a maximal score value of 4 (see Fig 12), where the maximal value in the

third experiment was 5. Furthermore, from Table 4, we observe moderate execution times of

up to 22.8 seconds. From the resulting motif, shown in Fig 13 (b), we observe a striking accor-

dance with the true motif as evidenced by a high consensus score of 98.6. However, the motif

found by MEME, shown in Fig 13 (c), which has a length of 21 nucleotides, has a lower consen-

sus score of 94, 5 although there exists a high similarity to the true motif. The reason is that the

motif found by MEME starts 2 positions and ends 1 position before the true motif. The results

for 700 and 2000 positive training samples, are shown in Figs 14 and 15, respectively. Here, the

results for our approach show similar high consensus scores. MEME, found in both experi-

ments a 21 nucleotides long motif starting 4 positions before the true motif. To get more

insights, we fixed the motif length for both methods to 20 nucleotides, which corresponds to

the underlying ground truth taken from the JASPAR database. The results are shown in

Table 5. Again we observe high consensus scores for the motif computed with our method.

Interestingly, the MEME motif finder suffers a severe loss of performance for the first two

experiments, achieving consensus scores of around 90 for the last experiment, while the perfor-

mance of our approach remains comparable. The results show, that our approach is in princi-

ple able to infer motifs of high quality and more robust than MEME. Moreover, our approach

easily handles sample-sizes beyond MEME.

Table 4. Execution times and optimal parameters for the human splice data set.

# pos samples μopt σopt fopt time (s) iter

400 45.0 0.24 175.34 4.19 24

700 44.5 0.44 176.31 22.8 98

2000 44.5 0.4 287.8 16.46 74

doi:10.1371/journal.pone.0144782.t004

Fig 14. Results for 700 human splice-site examples. Figure (a) shows the (normalized) ground truth motif given by the JASPAR database (20
nucleotides). Figure (b) and (c) depict the corresponding (normalized) PWMs, reconstructed by our approach SVM2Motif (19 nucleotides long, a JASPAR
score of 98.51) and by MEME (21 nucleotides, a JASPAR score of 90.06) respectively.

doi:10.1371/journal.pone.0144782.g014
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Conclusion and Discussion

We have developed a new methodology to extract long, overlapping and mutated motifs from

trained support vector machines. Putting forward the work of [15] on positional oligomer

importance matrices (POIMs), the proposed novel probabilistic framework extracts from the

output of a WD-kernel SVM the relevant motifs. To deal with the exponentially large size of

the feature space associated with the SVM weight vector and the corresponding POIM (“. . . we

realize that the list of POs can be prohibitively large for manual inspection.” [15], page 8), we

proposed a very efficient numerical framework.

The results clearly illustrate the power of our approach in discovering discriminative motifs.

In all synthetic data tasks, the hidden motifs could be found and almost perfectly reconstructed.

For the human splice site experiments, we recovered known motifs up to a very high precision

of 98.39% as compared to the JASPAR Splice data base. A thorough investigation of the associ-

ation between the found motif and its biological function can be subject to further research.

For practical purposes, a Python framework is available at https://github.com/mcvidomi/

poim2motif.git. We have implemented the core algorithms as an add-on to the Python inter-

face of the Shogun Machine Learning Toolbox. It is not only an established machine-learning

framework within the bioinformatics community, moreover, it already incorporates the possi-

bility to extract positional-oligomer importance matrices of trained support vector machines

with a WD-kernel. Future work will extend our approach to an automatic extraction of the ini-

tialization variables, that is, the number of motifs, their length and starting positions. Ulti-

mately, the usage by experimentalists will determine the utility of this approach and govern the

direction of further extensions. A core issue might be the extension to other interesting kernels,

Fig 15. Results for 2000 human splice-site examples. Figure (a) shows the (normalized) ground truth motif given by the JASPAR database (20
nucleotides). Figure (b) and (c) depict the corresponding (normalized) PWMs, reconstructed by our approach SVM2Motif (19 nucleotides long, a JASPAR
score of 98.67) and by MEME (21 nucleotides, a JASPAR score of 89.95) respectively.

doi:10.1371/journal.pone.0144782.g015

Table 5. MRQ values for the human splice data set.

# pos samples MEME SVM2Motif

length = 21 length = 20 length = 19 length = 20

400 94.77 90.2 98.92 98.6

700 90.06 88.78 98.51 98.31

2000 89.95 90.4 98.67 97.66

doi:10.1371/journal.pone.0144782.t005
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such as, e.g., spectrum kernels [26], multiple kernels [27–33], other learning methods [34, 35],

or learning settings [36–38].
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