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Abstract

Motivation: The accurate ranking of predicted structural models and selecting the best model from

a given candidate pool remain as open problems in the field of structural bioinformatics. The qual-

ity assessment (QA) methods used to address these problems can be grouped into two categories:

consensus methods and single-model methods. Consensus methods in general perform better

and attain higher correlation between predicted and true quality measures. However, these meth-

ods frequently fail to generate proper quality scores for native-like structures which are distinct

from the rest of the pool. Conversely, single-model methods do not suffer from this drawback and

are better suited for real-life applications where many models from various sources may not be

readily available.

Results: In this study, we developed a support-vector-machine-based single-model global quality

assessment (SVMQA) method. For a given protein model, the SVMQA method predicts TM-score

and GDT_TS score based on a feature vector containing statistical potential energy terms and

consistency-based terms between the actual structural features (extracted from the three-

dimensional coordinates) and predicted values (from primary sequence). We trained SVMQA using

CASP8, CASP9 and CASP10 targets and determined the machine parameters by 10-fold cross-

validation. We evaluated the performance of our SVMQA method on various benchmarking data-

sets. Results show that SVMQA outperformed the existing best single-model QA methods both in

ranking provided protein models and in selecting the best model from the pool. According to the

CASP12 assessment, SVMQA was the best method in selecting good-quality models from decoys

in terms of GDTloss.

Availability and implementation: SVMQA method can be freely downloaded from http://lee.kias.re.

kr/SVMQA/SVMQA_eval.tar.gz.

Contact: jlee@kias.re.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The three-dimensional (3D) structure of a protein is essential for

understanding the biomolecule’s functions in a detailed manner

(Baker and Sali, 2001). The completion of many genome sequencing

projects resulted in a massive amount of protein sequence data

(Lander et al., 2001) but it is estimated that less than 1% of these

protein sequences have their native 3D structures in protein data

bank (PDB) (Rigden, 2009). Common experimental techniques such

as X-ray crystallography, NMR and electron microscopy are expen-

sive and often time-consuming ways of determining the 3D struc-

tures of uncharacterized protein sequences. As a result, a huge gap

exists between the number of known protein sequences and their ex-

perimentally solved 3D structures. This sequence-structure gap is

projected to increase even more in the coming years (Wong, 2016).
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Currently, successful protein structure prediction is the only prac-

tical way of closing this gap. Due to the current advances in comput-

ing power, numerous alternative protein 3D models for a given

protein sequence can be generated with little computational burden.

However, properly ranking these predicted models and selecting the

best from the pool remain challenging problems in structural bio-

informatics (Kihara et al., 2009).

The two major steps of protein structure prediction are model

sampling and model ranking. The first step is generating a large

number of plausible 3D models for a given target; the second step

is ranking these structural models so that the best model can be se-

lected in a consistent manner. High-quality 3D models generated

in this way are useful in a wide range of biological applications

including ligand-docking and functional annotations. Generally,

there are two different approaches for evaluating the global quality

of a predicted model: the single-model approach uses only a given

model (Cao et al., 2014; Manavalan et al., 2014; Uziela and

Wallner, 2016; Yang and Zhou, 2008a,b; Zhang and Zhang,

2010; Zhou and Skolnick, 2011), while the consensus approach

uses multiple models (McGuffin, 2008, 2009; McGuffin and

Roche, 2010; Roche et al., 2014; Skwark and Elofsson, 2013).

Each has its own strengths and weaknesses. In the previous Critical

Assessment of Techniques for protein Structure Prediction (CASP)

experiments, the best consensus method had performed better than

the best single-model method. However, if poor quality models

dominated the model pool, single-model methods performed

better. Moreover, the computational costs of consensus methods

increase as the square of the number of models, which makes it

slow at applying them to a large number of models. Conversely,

single-model methods do not suffer from these drawbacks and are

better suited for real life applications where many models from

various sources may not be readily available. Single-model meth-

ods can be grouped into three categories: (i) Physics-based poten-

tial functions, (ii) Statistical potential functions and (iii) Machine

learning-based functions. Machine learning (ML) algorithms such

as support vector machine (SVM), neural network and random for-

est (RF) evaluate the model quality according to learned ‘rules’

(Ginalski et al., 2003; Manavalan et al., 2014; Uziela and Wallner,

2016; Wang et al., 2009). Various features extracted from the se-

quence and structure of a protein are used as an input to these ma-

chines and the model quality is obtained from them. The major

advantage of ML methods is that they can consider a large number

of features simultaneously, often capturing the hidden relation-

ships among them, which is hard to deduce with statistical poten-

tials alone.

In this study, we present the development of SVMQA, a support-

vector-machine-based single-model quality assessment which is

based on the combination of two independent predictors,

SVMQA_TM and SVMQA_GDT. As input, both of these predictors

use statistical potential energy-based terms and consistency-based

terms (between predicted values from the primary sequence and ac-

tual structural features extracted from the 3D structure) in order to

predict the global quality assessment (QA) score (TM-score or

GDT_TS score). We trained both predictors in a similar way, with

slight variation in input features and objective values. The first pre-

dictor was trained with TM-score as the objective value

(SVMQA_TM). It measures the global fold similarity between two

structures and is less sensitive to local structural variations (Xu and

Zhang, 2010; Zhang and Skolnick, 2004). The second predictor was

trained with Global Distance Test Total Score (GDT_TS) as the ob-

jective value (SVMQA_GDT). It is calculated based on the largest

set of common alpha carbon atoms that fall within a set of pre-

defined distance cut-off values of their positions in the experimental

structure. GDT_TS is one of the primary metrics used for 3D model

evaluation by CASP assessors (Kryshtafovych et al., 2015). We

applied SVMQA on various benchmarking datasets and the results

show that SVMQA performed significantly better than other single-

model methods in ranking protein 3D models as well as in selecting

the best model from the pool. Moreover, SVMQA was blindly tested

in the CASP12 experiment. According to the assessors, SVMQA was

the best among the 42 participated QA methods in selecting good-

quality models from decoys (http://predictioncenter.org/casp12/qa_

diff2best.cgi).

2 Materials and methods

2.1 Dataset
In this work, we considered CASP8-10 single-domain targets and in-

dividual domains from the multi-domain targets. The final dataset

contained 164, 146 and 119 domains from CASP8, CASP9 and

CASP10, respectively. All the server models were downloaded from

the CASP website (http:/predictioncenter.org/download_area/). In

order to train the SVM with TM-score as the objective value, we

compared each model with the corresponding experimental struc-

ture and measured its global similarity in terms of TM-score (Xu

and Zhang, 2010; Zhang and Skolnick, 2004). Prior to the training,

we screened out significantly bad models by sorting them according

to TM-score and keeping only the top 60% of the models for each

target. In addition, we also excluded targets whose average TM-

score was less than 0.3. The final dataset contained a total of 390

domains (153 from CASP8, 134 from CASP9 and 103 from

CASP10). These targets were divided into 7 groups based on their

TM-score averages [X<TM-score average�Y, the value of X, Y in

the range of (0.3, 0.4) to (0.9, 1.0) with the step size of 0.1]. For

each group, we randomly selected 80% of the targets to generate the

training dataset, using the remaining targets as the testing dataset.

The final training and testing datasets respectively contained 312

and 78 domains.

To train the SVM with GDT_TS score as the objective value,

GDT_TS scores were taken from the CASP website. We note that

GDT_TS has been used as a standard CASP evaluation measure. A

GDT_TS score is in the range of [0, 100]. However, we normalized

it into the range of [0, 1] for the purpose of ML. Using a similar

protocol as described above, we kept only the top 60% of the mod-

els based on GDT_TS score and excluded targets whose average

GDT_TS score was less than 0.3. The final dataset contained 385

domains (157 from CASP8, 131 from CASP9 and 97 from

CASP10), which is 5 targets fewer than the final dataset obtained

based on TM-score. These 385 domains were also divided into 7

groups based on the average GDT_TS score. For each group, we

randomly selected 80% of the targets to generate the training

dataset, using the remaining targets as the testing dataset. The final

training and testing datasets respectively contained 312 and 73

domains.

2.2 Feature generation
The aim of the current experiment was to train an SVM to accur-

ately map input features extracted from a 3D model to its TM-

score/GDT_TS score; this is considered a regression problem. The

most crucial part of this task is to extract a set of relevant features.

In this study, we considered a total of 19 features (8 potential

energy-based and 11 consistency-based between the predicted and

actual values of the model).
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2.2.1 Potential energy-based terms

We considered various potential energy-based terms typically used for

QA. RWplus is a pairwise distance-dependent atomic statistical po-

tential; which uses an ideal random-walk chain as the reference state

(Zhang and Zhang, 2010). OPUS-PSP includes orientation dependent

energy (ODE) and Lenard-Jones repulsive energy (Lu et al., 2008),

however, we used both OPUS-PSP and ODE as two separate input

features. dDFIRE is based on the distance-dependent pairwise energy

terms (DFIRE) and the orientation between atoms (polar–polar,

polar–non-polar) involved in the dipole–dipole interaction (Yang and

Zhou, 2008a,b). We used both dDFIRE and DFIRE as two separate

input features. GOAP includes DFIRE and angle-dependent terms

(AG). We used GOAP, DFIRE and GOAP_AG as three separate in-

put features (Zhou and Skolnick, 2011). It should be noted that

DFIRE is already included in dDFIRE and GOAP, but because a

slightly different cut-off (rcut) value is used two DFIREs (Yang

and Zhou, 2008a,b; Zhou and Skolnick, 2011), we separately indi-

cated their origin by naming them DFIREdDFIRE and DFIREGOAP. In

total, we used 8 energy terms (dDFIRE, DIFREdDFIRE, RWplus,

OPUS-PSP, ODE, GOAP, DFIREGOAP and GOAP_AG) as input fea-

tures. These energy scores were normalized into the range of [0, 1] ac-

cording to the formula described in our previous study (Manavalan

et al., 2014).

2.2.2 Consistency between predicted and actual values

A total of 11 features were extracted from the consistency-based

terms between the actual and predicted values (see Supplementary

data). We note that, to the best of our knowledge, among the 19 fea-

tures used in this study, three (ODE, GOAP_AG and SA_score) had

never been used before, with the other 16 already having been previ-

ously used in existing ML-based methods (Cao et al., 2016; Jing

et al., 2016; Manavalan et al., 2014; Wang et al., 2009).

2.3 Benchmark datasets
We used four datasets to benchmark SVMQA. The first dataset was

the full set of I-TASSER decoys (Zhang and Zhang, 2010), down-

loaded from http://zhanglab.ccmb.med.umich.edu/decoys/decoy2.html.

The second dataset was the full set of 3DRobot decoys, which con-

sisted of four subdivided decoy sets: 3DRobot_set, On_Rosetta_set,

On_Modeller_set and On_I-TASSER_set. 3DRobot_set contained 200

non-homologous proteins, each protein containing 300 structural

decoys with RMSD ranging from 0 to 12 Å (Deng et al., 2016). The re-

maining three subsets (On_Rosetta_set (20 proteins), On_Modeller_set

(58 proteins) and On_I-TASSER_set (56 proteins)) were generated by

3DRobot, whose proteins were each taken from their respective decoy

papers (John and Sali, 2003; Simons et al., 1999; Zhang and Zhang,

2010). These decoys were downloaded from http://zhanglab.ccmb.

med.umich.edu/3DRobot/decoys/. The third dataset consisted of our

in-house server models, which were generated during CASP11. The

final dataset consisted of CASP11 server models, which were

taken from http://www.predictioncenter.org/download_area/CASP11/

server_predictions/. Finally, SVMQA was blindly tested in the

CASP12.

2.4 Evaluation parameters
Model accuracy was evaluated using three complementary meas-

ures: (i) Pearson’s correlation coefficient (CCrank), Spearman’s rank

correlation (qrank) and Kendall’s tau correlation (srank) between the

actual ranking and predicted ranking; (ii) Average TM-score or

GDT_TS loss; and (iii) Z-score. The definitions of these metrics are

given in Supplementary data.

2.5 Construction of SVMQA
A detailed description of the SVM used in this study is provided in

Supplementary data. In this section, we describe the parameter opti-

mization and feature selection processes of SVMQA. To construct

SVMQA, we used 19 input features for predicting the QA score of a

given 3D model in the range of [0, 1]. In order to estimate the import-

ance of each feature, we employed the RF ML method. A detailed de-

scription on how we estimated the importance of an input feature is

reported in our previous studies (Lee and Lee, 2013; Lee et al., 2015;

Manavalan et al., 2014). We then carried out 10-fold cross-validation

on the training dataset. For each round of cross-validation, we built

500 trees with the number of variables at each node chosen randomly

from 1 to 9. The ensemble average of feature importance score (FIS)

from all the trees (10-fold cross-validation) is shown in Figure 1. The

results show that GOAP_AG, %B and ASA_Cor made significant con-

tributions when the RF was trained with either GDT_TS or TM-score

as the objective value. Additionally, the ASA_Cos made a significant

contribution when the RF was trained with GDT_TS. Overall, each

FIS was similar between the two RF machines.

As seen in Figure 1, we selected different sets of features based

on FIS cut-off (0.01�FIS�0.30 with the step size of 0.01) and used

those sets of features greater than the cut-off value as a set of input

features for SVM to predict either TM-score or GDT_TS score. For

each feature set, we optimized the ML parameters (C, c, e) by using

10-fold cross-validation on the training dataset (see Section 2.1) and

selected the optimal parameters which gave the highest average

CCrank between the actual ranking and the predicted ranking of all

targets in the training set. These parameters were then applied to the

testing dataset (see Section 2.1) to check their transferability. Based

on the degree of consistency between the training and testing dataset

results, we selected the final set of parameters and features separ-

ately for SVMQA_TM and SVMQA_GDT. SVMQA_TM used all

19 features, while SVMQA_GDT used only 15 (mentioned in filled

circle), as shown in Figure 1.

Finally, SVMQA is set as the average QA-score of both

SVMQA_TM and SVMQA_GDT. To the best of our knowledge,

SVMQA is the only single-model QA method that uses two separate

predictors, whereas other single-model QA methods such as QApro,

QAcon, ModelEvaluator, MQAPrank, ProQ2 and RFMQA use only

a single predictor for either GDT_TS score or TM-score (Cao et al.,

Fig. 1. The input features are shown along with their importance scores.

Feature importance scores (FISs) separately calculated using GDT_TS score

and TM-score as the objective value are shown
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2016; Cao and Cheng, 2016; Jing et al., 2016; Manavalan et al.,

2014; Ray et al., 2012; Uziela and Wallner, 2016; Wang et al., 2009).

3 Results and discussions

SVMQA was constructed using the dataset described in Section 2.1.

In this section, we describe the performance of SVMQA on various

benchmarking datasets.

3.1 Performance of SVMQA on I-TASSER decoys
We evaluated the performance of SVMQA on the I-TASSER set

which consists of 56 non-homologous targets with each target con-

taining about 300–500 models (Zhang and Zhang, 2010).

Previously, this set was used to test the ability of QA methods (such

as GOAP, RWplus and OPUS-PSP) to identify near-native structures

and to evaluate the TM-score-energy correlation (Lu et al., 2008;

Manavalan et al., 2014; Zhang and Zhang, 2010; Zhou and

Skolnick, 2011). We list the performance of SVMQA along with

those of other energy-based methods in Table 1. SVMQA is ranked

at the top, based on all metrics tested including TMloss. Using the P-

value threshold of 0.01, we observed a significant difference be-

tween SVMQA and three energy-based methods (GOAP, RWplus

and OPUS-PSP) in terms of CCrank, and a significant difference be-

tween SVMQA and OPUS-PSP in terms of average TMloss. These re-

sults suggest that, both in ranking the structural models and in

selecting good models on the I-TASSER dataset, SVMQA is better

than the energy-based methods.

3.2 Performance of SVMQA on 3DRobot decoys
We evaluated the performance of SVMQA and other energy-based

methods on the 3DRobot decoys which contains 334 non-

homologous targets (Deng et al., 2016). Table 2 shows that, again,

SVMQA is ranked at the top based on all metrics used. We note that

the difference in TMloss between SVMQA and OPUS-PSP is not sig-

nificant (P-value 0.335). However, we observed a significant differ-

ence in CCrank between SVMQA and the five energy-based methods.

Combined performance of SVMQA on I-TASSER and 3DRobot sets

show that the SVMQA’s combination of various statistical potential

energy-based terms and consistency-based terms between predicted

and calculated values of 3D models improves the performance

of QA.

3.3 Performance of SVMQA on in-house CASP11

models
We evaluated the performance of SVMQA on protein 3D models

that were generated by nns (our in-house server) during CASP11.

The modeling protocol is described in detail elsewhere (Joo et al.,

2015a,b; Joung et al., 2015). We applied SVMQA to select the best

model from the decoys (TMSVMQA) and compared it with both the

best model selected by the in-house single-model QA (ihQA) method

(Joo et al., 2014, 2015a,b), and with the nns1 model which was sub-

mitted as the best model (model 1) by our group during CASP11 ex-

periment. For this experiment, we considered 52 single-domain

targets from CASP11. The pairwise comparison between TMSVMQA

and TMselect by ihQA (TMihQA) is shown in Supplementary Figure

S1A. The model selection for five of the targets (T0766, T0769,

T0782, T0803 and T0822) by SVMQA was significantly better than

that by ihQA, but for the remaining targets the results were similar.

During CASP11, in addition to ihQA, we also applied a consensus

method to select the top model (nns1). Supplementary Figure S1B

shows the pairwise comparison between TMSVMQA and TMnns1.

SVMQA models for two of the targets (T0769 and T0829) were sig-

nificantly better than the nns1 models. The total sum values of

TMselect were 33.631 (SVMQA), 33.04 (nns1) and 32.30 (ihQA),

suggesting that the SVMQA model selection would have led to a

better 3D modeling of nns1.

3.4 Performance of SVMQA on CASP11 targets
We evaluated the performance of SVMQA on CASP11 targets. For

this purpose, we used 88 targets for both Stage1 and Stage2, as used

in the official CASP11 assessment. The average runtime for a single

target (Stage2) with the average length of 265 amino acids was

9m54s (Feature calculation: 9m51s, and SVMQA calculation: 3 s)

using 1 CPU core (Intel Xeon E5540@2.53 GHz). We note that

SANN and PSI-BLAST were the two most time-consuming sec-

tions of our calculation. We compared the performance of SVMQA

with the five best performing single-model QA methods [ProQ2

(Ray et al., 2012), ProQ2-refine (Uziela and Wallner, 2016),

MULTICOM-NOVEL (Cao and Cheng, 2016), MULTICOM-

CLUSTER (Cao et al., 2014) and VoroMQA] according to the

CASP11 assessment (Kryshtafovych et al., 2015), as well as with a

quasi-single-model method of ours called RFMQA (Manavalan

et al., 2014), and with a consensus method (Wallner) (Larsson et al.,

2009; Ray et al., 2012). It should be noted that all the values for

these 7 methods are from the official CASP11 assessment (http://pre

dictioncenter.org/casp11/qa_analysis.cgi). All the GDT_TS scores

shown in this work range between 0 and 100.

3.4.1 Performance of various methods on Stage1 CASP11 targets

In Table 3, we show the performance of SVMQA, RFMQA and the

other top five single-model QA methods on Stage1 of CASP11 each

sorted by GDTloss. For comparison, the best consensus method

Table 1. Performance of SVMQA and other statistical potential-energy based methods on the I-TASSER dataset

Method CCrank qrank srank Avg. TMloss P-value (TMloss) P-value (CCrank) RZ-score

SVMQA 0.551 0.458 0.322 0.088 – – 51.703

dDFIRE 0.525 0.434 0.304 0.100 0.536 0.0774 42.478

DFIREGOAP 0.520 0.425 0.298 0.101 0.620 0.0497 43.129

RWplus 0.488 0.416 0.291 0.101 0.459 0.000997 40.646

GOAP 0.477 0.392 0.272 0.111 0.144 9.8E-05 34.696

OPUS-PSP 0.282 0.286 0.195 0.130 0.00331 1.5E-10 20.470

The first column represents the method name. The second, the third and the fourth columns respectively represent the average Pearson’s correlation coefficient

(CCrank), average Spearman’s correlation (qrank) and average Kendall’s tau correlation (srank) between the actual ranking and the predicted ranking. The fifth col-

umn represents the average TMloss. The sixth and the seventh columns represent the P-value (pairwise Wilcoxon signed ranked sum test) for the difference in

TMloss and the difference in CCrank, respectively, between SVMQA and the other methods. A P-value� 0.01 indicates that the difference is statistically meaningful

between SVMQA and the selected method (shown in boldface). The final column represents the summation of Z-score for the first ranked model of each method.
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Wallner is also included. We note that ProQ2 outperformed

SVMQA in
P

Z-score by a rather large amount of 13.398, while in

other three metrics (qrank, srank and GDTloss) SVMQA was better

or similar. We observed that six of the targets (T0768, T0771,

T0775, T0780, T0796 and T0818) were responsible for this ranking

variation. Pairwise performance comparison between ProQ2

and SVMQA in terms of GDTloss and Z-score is shown in

Supplementary data.

3.4.2 Performance of various methods on Stage2 CASP11 targets

We evaluated the performance of SVMQA and other top single-

model QA methods on the Stage2 CASP11 dataset. For comparison,

the best consensus method Wallner is also included. Among the

single-model methods, ProQ2 is ranked at the top and SVMQA is

ranked second based on the average GDTloss, but the difference be-

tween the two is not significant in terms of the loss (P-value is 0.588),

demonstrating that the performance of SVMQA is close to the

state-of-the-art single-model selection ability (Table 4). The pairwise

comparison between models selected by these methods is shown in

Figure 2A. We observed that the SVMQA model for T0795 was

significantly worse, resulting in a drop of the SVMQA’s ranking.

When we excluded this target from the current analysis, SVMQA

(5.839) was better than ProQ2 (6.271) in terms of GDTloss.

We examined the result of T0795 in detail to understand the

reason for SVMQA’s apparent failure. Figure 2B shows GDT_TS

score versus the SVMQA score. Four of the 8 energy-based terms

(DFIREdDFIRE, RWplus, ODE and DFIREGOAP) favored myprotein-

me_TS2 as the best model (GDT_TS 11.58), which apparently influ-

enced the SVMQA ranking. SVMQA picked myprotein-me_TS2 as

the best model and myprotein-me_TS1 as the second best model

(65.44). When we examined the energy landscape of all 19 features

(see Supplementary Figs S3 and S4), we observed that five of the 8

energy-based terms heavily favored myprotein-me_TS2 over mypro-

tein-me_TS1 while consistency-based terms mostly favored them

other way. Therefore, it appears that the current version of SVMQA

was trained to favor energy-based terms over consistency-based

terms for this target. Another possibility is that the screening out

procedure of low TM-score/GDT_TS score decoys prior to training

might have not properly discriminated low-quality 3D models. That

is, if we had screened out low the GDT_TS models of T0795,

Table 2. Performance of SVMQA and other statistical potential-energy based methods on the 3DRobot decoys

Method CCrank qrank srank Avg. TMloss P-value (TMloss) P-value (CCrank) RZ-score

SVMQA 0.910 0.882 0.713 0.035 – – 597.423

OPUS-PSP 0.807 0.752 0.570 0.036 0.3349 6.4E-54 594.003

GOAP 0.883 0.849 0.671 0.052 0.00333 1.6E-18 567.896

RWplus 0.834 0.806 0.624 0.071 0.00039 8.4E-50 533.271

DFIREGOAP 0.840 0.808 0.627 0.074 5.9E-05 1.8E-47 528.946

dDFIRE 0.785 0.763 0.585 0.087 0.00016 1.6E-54 510.039

The legend is the same as in Table 1.

Table 3. Performance of SVMQA and other top QA methods on Stage1 of CASP11

Method CCrank qrank srank Ave. GDTloss P-value (GDTloss) P-value (CCrank) RZ-score

Wallner 0.759 0.717 0.581 5.322 0.002 8.5E-14 144.260

SVMQA 0.640 0.563 0.429 7.874 � � 112.772

ProQ2 0.647 0.524 0.394 8.136 0.571 0.830 126.170

ProQ2-refine 0.654 0.544 0.413 8.555 0.892 0.204 120.303

RFMQA 0.609 0.497 0.376 9.028 0.330 0.0425 108.889

MULTICOM-NOVEL 0.636 0.534 0.407 9.082 0.982 0.377 117.343

MULTICOM-CLUSTER 0.648 0.511 0.387 9.470 0.366 0.892 118.111

VoroMQA 0.563 0.444 0.334 10.761 0.149 0.0001 108.579

The legend is the same as in Table 1, however, the fifth column represents the average GDTloss (instead of TMloss), and the sixth and the seventh columns

represent the P-value (pairwise Wilcoxon signed ranked sum test) of GDTloss and CCrank, respectively. For comparison, we also included Wallner, which is a con-

sensus method and was the best QA method of CASP11.

Table 4. Performance of SVMQA and other top QA methods on Stage2 of CASP11

Method CCrank qrank srank Ave. GDTloss P-value (GDTloss) P-value (CCrank) RZ-score

Wallner 0.614 0.566 0.426 4.869 0.247 6.2E-08 99.779

ProQ2 0.368 0.363 0.256 6.340 0.588 0.00167 84.055

SVMQA 0.428 0.417 0.294 6.524 – – 84.206

ProQ2-refine 0.366 0.373 0.264 6.754 0.776 0.00098 87.168

MULTICOM-NOVEL 0.389 0.389 0.277 6.888 0.792 0.00983 88.250

RFMQA 0.370 0.352 0.246 6.953 0.352 0.0049 76.366

MULTICOM-CLUSTER 0.405 0.397 0.280 7.058 0.838 0.355 83.001

VoroMQA 0.412 0.394 0.277 7.307 0.964 0.165 91.363

The legend is the same as in Table 3.
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SVMQA could have easily identified myprotein-me_TS1 as the best

model.

Using the P-value threshold of 0.01, the difference in CCrank be-

tween SVMQA and four other methods (ProQ2, ProQ2-refine,

MULTICOM-NOVEL and RFMQA) is significant. The qrank and

srank of SVMQA were higher than the other single-model QA meth-

ods. These results show that ranking the structural models by

SVMQA was significantly better than the top three CASP11 pre-

dictors (ProQ2, ProQ2-refine and MULTICOM-NOVEL). In terms

of model selection, SVMQA is similar to ProQ2 and better than

other single-model QA methods.

We note that SVMQA outperformed our previous method

RFMQA both in ranking structural models and in model selection.

The differences between them are as follow: (i) The size of the train-

ing dataset used in SVMQA (CASP8-10 domain targets) was larger

than that used in RFMQA (CASP8-9 domain targets); (ii) 19 input

features were used in SVMQA, whereas only 9 of these features

were used in RFMQA; (iii) The objective function was different be-

tween these two methods: SVMQA was optimized based on CCrank,

while RFMQA was optimized based on TMloss; and (iv) SVMQA

used two separate predictors for TM-score and GDT_TS score of a

given 3D model, whereas RFMQA only used a single predictor for

TM-score. Consequently, when selecting the best model from the

decoys, SVMQA generated more robust results than RFMQA by

employing two separate predictors.

3.4.3 Domain based performance of various methods on Stage2

CASP11 targets

We evaluated the performance of QA methods separately on single-

domain targets and multi-domain targets. Figure 3 shows that

SVMQA performed exceptionally well for single-domain targets

than the other methods did by producing the lowest GDTloss (5.618)

and the highest sum Z-score (55.411). The improved performance

may have been due to the fact that domain-based targets were used

to develop the SVMQA machine. For multi-domain targets,

VoroMQA performed better than the other single-model methods

did with the lowest GDTloss (4.788) and the highest sum Z-score

(43.996). Notably, SVMQA performance on multi-domain targets

was similar to those of MULTICOM-NOVEL, MULTICOM-

CLUSTER and RFMQA in terms of GDTloss. This result indicates

that although SVMQA was trained on single domain targets, it per-

formed reasonably well for multi-domain models.

3.5 Performance of SVMQA in CASP12 experiment
In addition to SVMQA, 41 other QA methods had participated in

the CASP12 blind prediction, including single-model QA methods,

quasi-single-model QA methods and consensus methods. In its blind

prediction, SVMQA was the best QA method in selecting good-

quality models from decoys in terms of GDTloss (http://predictioncen

ter.org/casp12/qa_diff2best.cgi) according to the CASP assessors.

This is the first time in CASP that single-model methods (SVMQA,

ProQ3 and MESHI_SERVER) outperformed the best consensus

method. As mentioned earlier, previously, the best consensus

method had always outperformed the best single-model method. We

believe that this was due to the fact that there were more easy targets

than hard targets in previous CASP experiments but in CASP12,

there were as many hard targets as easy targets.

Figure 4 shows three best and three worst examples of model se-

lection by SVMQA in CASP12 Stage2. In the first three examples

(A–C), SVMQA models were better than the other top four QA

models (single-model methods ProQ3 and Meshi-server, a quasi-

single-model method ModFOLD6_rank and a consensus method

Wallner) and in the other three examples (D–F) SVMQA performed

relatively poorly. The SVMQA models and the best models of the

six targets are respectively shown in magenta and cyan. In Figure

4(A–C), it should be noted that SVMQA models were all better than

the other four QA models. In the case of T0884, the SVMQA model

was slightly worse than Wallner and ModFOLD6_rank models. The

orientation of the C-terminal a-helical segment (Figure 4D, marked

by circle) was different between the SVMQA model and the best

model. In the case of T0885, the SVMQA model was worse than

those selected by Meshi-server and ProQ3. This is also an a-helical

protein whose arrangement of helices from N- to C-terminal was

slightly different between the SVMQA model and the Meshi-server

model, which was the best model. T0900 (single-domain and free

modeling target) was the only target where the SVMQA model was

significantly worse than the other four QA models. The SVMQA

model was of a much larger size (radius of gyration¼16.436 Å)

than the other 4 QA models (12.55 Å< radius of gyration <13.26

Å) and the b-sheet arrangement was quite different between the

SVMQA model and the best model.

4 Conclusion

In this study, we introduced a novel single-model QA method, which

we call SVMQA. SVMQA predicts a given model’s global QA score as

the average of the predicted TM-score and GDT_TS score by

Fig. 3. The performance of single-model QA methods on single-domain and

multi-domain Stage2 CASP11 targets. X-axis is the method name and y-axis

is (A) Average GDTloss and (B) Summation of Z-score

Fig. 2. Pairwise comparisons of SVMQA and ProQ2. (A) GDT_TS score of the

model selected by SVMQA (GDT_TSSVMQA) versus ProQ2 (GDT_TSproQ2) on

Stage2 CASP11 targets and (B) The plot of the GDT_TS score of the model

against their SVMQA score for Stage2 CASP11 target T0795

Single-model QA using SVM 2501

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/16/2496/3611273 by U
.S. D

epartm
ent of Justice user on 17 August 2022

Deleted Text: <italic>p</italic>
Deleted Text: ,
Deleted Text: ,
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: ,
Deleted Text: i
Deleted Text: ,
http://predictioncenter.org/casp12/qa_diff2best.cgi
http://predictioncenter.org/casp12/qa_diff2best.cgi
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: l


combining two separate predictors, SVMQA_TM and SVMQA_GDT.

We constructed SVMQA using 19 input features including 8 energy-

based terms and 11 consistency-based terms between predicted values

from the sequence of a target protein and calculated values from the 3D

structure of a model. SVMQA is used both to rank protein 3D models

and to select the best from a given pool.

Benchmarking tests on SVMQA were very promising. When tested

on I-TASSER and 3DRobot decoys, SVMQA outperformed all five

energy-based methods tested together (dDFIRE, RWplus, OPUS-PSP,

GAOP and DFIREGOAP) both in ranking the structural models and in

selecting the best model. When tested on our in-house server models

generated during CASP11, the SVMQA model selection was better

than both of our CASP11 in-house QA procedure and the actual

CASP11 submission (model 1 of our server nns). We also tested

SVMQA on both Stage1 and Stage2 targets of CASP11. SVMQA was

shown to perform as either the best or the second best among single-

model QA methods. In particular, for Stage2 CASP11 targets, SVMQA

outperformed the three best single-model QA methods (ProQ2, ProQ2-

refine and MULTICOM-NOVEL) in terms of ranking the 3D models,

while in selecting the best model, SVMQA was similar to ProQ2.

Based on the above successes, SVMQA was integrated into our

modeling pipeline for CASP12 targets. According to the CASP12 as-

sessment, SVMQA was the best method for selecting good-quality

models from given decoys in terms of GDTloss even when compared

to consensus methods. Overall, SVMQA performed significantly

better in terms of ranking structural models and better in terms of

model selection than the other single-model methods listed in this

study. CASP12 marks the first CASP case where a single-model QA

method outperformed the best consensus method. This is likely due

to the fact that, in CASP12, there were as many hard targets as easy

targets, leading to better performance of single-model methods.

These results indicate that SVMQA can contribute to the successful

3D modeling of difficult target proteins in terms of model selection.
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