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Abstract—Traditional classification algorithms can be limited in their
performance on highly unbalanced data sets. A popular stream of work
for countering the problem of class imbalance has been the application
of a sundry of sampling strategies. In this correspondence, we focus on
designing modifications to support vector machines (SVMs) to appro-
priately tackle the problem of class imbalance. We incorporate different
“rebalance” heuristics in SVM modeling, including cost-sensitive learning,
and over- and undersampling. These SVM-based strategies are compared
with various state-of-the-art approaches on a variety of data sets by
using various metrics, including G-mean, area under the receiver oper-
ating characteristic curve, F -measure, and area under the precision/recall
curve. We show that we are able to surpass or match the previously known
best algorithms on each data set. In particular, of the four SVM variations
considered in this correspondence, the novel granular SVMs–repetitive
undersampling algorithm (GSVM-RU) is the best in terms of both ef-
fectiveness and efficiency. GSVM-RU is effective, as it can minimize the
negative effect of information loss while maximizing the positive effect
of data cleaning in the undersampling process. GSVM-RU is efficient by
extracting much less support vectors and, hence, greatly speeding up SVM
prediction.

Index Terms—Computational intelligence, cost-sensitive learning,
granular computing, highly imbalanced classification, oversampling,
support vector machines (SVMs), undersampling.

I. INTRODUCTION

Mining highly unbalanced data sets, particularly in a cost-sensitive
environment, is among the leading challenges for knowledge discovery
and data mining [1], [2]. The class imbalance problem arises when
the class of interest is relatively rare as compared with other class(es).
Without the loss of generality, we will assume that the positive class
(or class of interest) is the minority class, and the negative class is
the majority class. Various applications demonstrate this characteristic
of high class imbalance, such as bioinformatics, e-business, infor-
mation security, and national security. For example, in the medical
domain, the disease may be rarer than normal cases; in business,
the defaults may be rarer than good customers, etc. For our work
on the Secure Computing TrustedSource network reputation system
(http://www.trustedsource.org), we have to address the high imbalance
toward malicious IP addresses. In addition, rapid classification is
paramount as most malicious machines are only active for a brief
period of time [3].
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Sampling strategies, such as over- and undersampling, are extremely
popular in tackling the problem of class imbalance, i.e., either the
minority class is oversampled, the majority class is undersampled,
or some combination of the two is deployed. In this correspondence,
we focus on learning support vector machines (SVMs) with different
sampling techniques. We focus on comparing the methodologies on
the aspects of effectiveness and efficiency. While effectiveness and
efficiency can be application dependent, in this correspondence, we
define them as follows.

Definition 1: Effectiveness means the ability of a model to accu-
rately classify unknown samples, in terms of some metric.

Definition 2: Efficiency means the speed to use a model to classify
unknown samples.

SVM embodies the structural-risk-minimization principle to mini-
mize an upper bound on the expected risk [4], [5]. Considering that
structural risk is a reasonable tradeoff between the training error and
the modeling complication, the SVM has a superior generalization
capability. Geometrically, the SVM modeling algorithm works by con-
structing a separating hyperplane with the maximal margin. Compared
with other standard classifiers, SVM is more accurate on moderately
imbalanced data. The reason is that only SVs are used for classification
and many majority samples far from the decision boundary can be
removed without affecting the classification [6]. However, an SVM
classifier can be sensitive to high class imbalance, resulting in a drop
in the classification performance on the positive class. It is prone to
generating a classifier that has a strong estimation bias toward the
majority class, resulting in a large number of false negatives [6], [7].

There have been some recent works in improving the classification
performance of SVMs on unbalanced data sets [6]–[8]. However, they
do not address efficiency very well, and depending on the strategy for
countering imbalance, they can take a longer time for classification
than a standard SVM. In addition, SVM can be slow for classification
on large data sets [9]–[11]. The speed of the SVM classification
depends on the number of SVs. For a new sample X , K(X,SV ), the
similarity between X and SV is calculated for each SV. Then, it is
classified using the sum of these kernel values and a bias. One method
to speed up the SVM classification is by decreasing the number of SVs.

We previously presented a preliminary version of the granular
SVMs–repetitive undersampling (GSVM-RU) algorithm [12]. A vari-
ant of this GSVM technique has been successfully integrated into
Secure Computing’s TrustedSource reputation system for providing
real-time collaborative sharing of global intelligence about the latest e-
mail threats [3]. However, it remains unclear how GSVM-RU performs
compared with other state-of-the-art algorithms. Therefore, we present
an exhaustive empirical study on benchmark data sets.

In this correspondence, we also theoretically extend GSVM-RU
based on the information-loss-minimization principle and design a
new “combine” aggregation method. Furthermore, we revise it as a
highly effective and efficient SVM modeling technique by explicitly
executing granulation and aggregation by turns and, hence, avoiding
extracting too many negative granules. As a prior-knowledge-guided
repetitive undersampling strategy to “rebalance” the data set at hand,
GSVM-RU can improve classification performance by the following:
1) extracting informative samples that are essential for classification
and 2) eliminating a large amount of redundant, or even noisy, samples.
Aside from GSVM-RU, we also propose three other SVM modeling
methods that overweight the minority class, oversample the minor-
ity class, or undersample the majority class. These SVM modeling
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TABLE I
CONFUSION MATRIX

methods are compared favorably with previous works in 25 groups
of experiments.

The rest of this correspondence is organized as follows. Background
knowledge is briefly reviewed in Section II. Section III presents
GSVM-RU and three other SVM modeling algorithms with differ-
ent “rebalance” techniques. Section IV compares these four algo-
rithms with state-of-the-art approaches on seven highly imbalanced
data sets under different metrics. Finally, Section V concludes this
correspondence.

II. BACKGROUND

A. Metrics for Imbalanced Classification

Many metrics have been used for effectiveness evaluation on im-
balanced classification. All of them are based on the confusion matrix
as shown in Table I. With highly skewed data distribution, the overall
accuracy metric at (1) is no longer sufficient. For example, a naive
classifier that predicts all samples as negative has high accuracy.
However, it is totally useless in detecting rare positive samples. To
deal with class imbalance, two kinds of metrics have been proposed

accuracy =
TP + TN

TP + FP + FN + TN
. (1)

To obtain an optimal balanced classification ability, sensitivity at
(2) and specificity at (3) are usually adopted to separately monitor
the classification performance on two classes. Notice that sensitivity
is also called true positive rate or positive class accuracy, while
specificity is also called true negative rate or negative class accuracy.
Based on these two metrics, G-mean was proposed at (4), which is
the geometric mean of sensitivity and specificity [13]. Furthermore, an
area under a receiver operating characteristic curve (AUC-ROC) can
also indicate a balanced classification ability between sensitivity and
specificity as a function of varying a classification threshold [14]

sensitivity = TP/(TP + FN) (2)

specificity = TN/(TN + FP) (3)

G-Mean =
√

sensitivity ∗ specificity. (4)

On the other hand, sometimes, we are interested in the highly
effective detection ability for only one class. For example, for a credit-
card-fraud-detection problem, the target is detecting fraudulent trans-
actions. For diagnosing a rare disease, what we are particularly
interested in is finding patients with this disease. For such problems,
another pair of metrics, precision at (5) and recall at (6), is often
adopted. Notice that recall is the same as sensitivity. F -measure at
(7) is used to integrate precision and recall into a single metric for the
convenience of modeling [15]. Similar to AUC-ROC, an area under
precision/recall curve (AUC-PR) can be used to indicate the detection
ability of a classifier between precision and recall as a function of
varying a decision threshold [16]

precision = TP/(TP + FP) (5)

recall = TP/(TP + FN) (6)

F -Measure =
2 ∗ precision ∗ recall

precision + recall
. (7)

In this correspondence, the perf code, which is available at
http://kodiak.cs.cornell.edu/kddcup/software.html, is utilized to calcu-
late all of the four metrics.

B. Previous Methods for Imbalanced Classification

Many methods have been proposed for imbalanced classification,
and some good results have been reported [2]. These methods can be
categorized into the following three different categories: cost-sensitive
learning, oversampling the minority class, or undersampling the ma-
jority class. Interested readers may refer to [17] for a good survey.
However, different measures have been used by different authors,
which make comparisons difficult.

Recently, several new models have been reported in the literature
with good classification performance on imbalanced data. Hong et al.
[18] proposed a classifier-construction approach based on orthogonal
forward selection, which precisely aims at high effectiveness and effi-
ciency. Huang et al. [19], [20] proposed a biased minimax probability
machine, which offers an elegant and systematic way to incorporate
a certain bias for the minority class by directly controlling the lower
bound of the real accuracy.

Previous research that aims to improve the effectiveness of SVM on
imbalanced classification includes the following. Vilariño et al. [22]
used a Synthetic Minority Oversampling TEchnique (SMOTE) [21]
oversampling and also a random undersampling for SVM modeling
on an imbalanced intestinal-contraction-detection task. Raskutti and
Kowalczyk [8] demonstrated that a one-class SVM that learned only
from the minority class can sometimes perform better than an SVM
modeled from two classes. Akbani et al. [6] proposed the SMOTE
with Different Costs algorithm (SDC). SDC conducts SMOTE over-
sampling on the minority class with different error costs. As a result,
the decision boundary can be far away from the minority class. Wu and
Chang [7] proposed the kernel boundary alignment algorithm (KBA)
that adjusts the boundary toward the majority class by modifying the
kernel matrix.

Vilariño et al. [22] worked on only one data set. One-class SVM
actually performs worse in many cases compared with a standard two-
class SVM [8]. SDC or KBA improves the classification effectiveness
on a two-class SVM. However, they are not efficient and, hence, are
difficult to scale to very large data sets. Wu and Chang [7] reported
that KBA usually takes a longer time for classification than SVM. SDC
is also slower than the standard SVM modeling because oversampling
increases the number of SVs. Unfortunately, SVM itself is already very
slow on large data sets [9]–[11].

This correspondence contrasts with the previous works as follows.

1) Most prior works evaluate classification performance only on
one or two metrics mentioned earlier. We present a broader
experimental study on all four metrics.

2) Most previous works use decision trees as the basic classifier
[1]. While there are some recent papers on SVM for imbalanced
classification [6]–[8], [22], the application of SVM is still not
completely explored, particularly the realm of undersampling
of SVs. Because SVM decides the class of a sample based
only on SVs, which are training samples close to the decision
boundary, the modeling effectiveness and efficiency may be
improved for the imbalanced classification by exploring the SV-
based undersampling.

III. GSVM-RU ALGORITHM

Granular computing represents information in the form of some
aggregates (called information granules) such as subsets, subspaces,
classes, or clusters of a universe. It then solves the targeted problem
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Fig. 1. Original SVM modeling. The circled points denote SVs.

in each information granule [23]. There are two principles in granular
computing. The first principle is divide-and-conquer—to split a huge
problem into a sequence of granules (granule split). The second
principle is data cleaning—to define the suitable size for one granule to
comprehend the problem at hand without getting buried in unnecessary
details (granule shrink). As opposed to traditional data-oriented nu-
meric computing, granular computing is knowledge oriented [24]. By
embedding prior knowledge or prior assumptions into the granulation
process for data modeling, a better classification can be obtained. A
granular computing-based learning framework called GSVM was pro-
posed in our previous work [25]. GSVM combines the principles from
statistical learning and granular computing theories in a systematic and
formal way. GSVM extracts a sequence of information granules, with
granule split and/or shrink, and then builds SVMs on some of these
granules if necessary. The main potential advantages of GSVM are the
following.

1) GSVM is more sensitive to the inherent data distribution by
establishing a tradeoff between the local significance of a subset
of data and the global correlation among different subsets of data
or between the information loss and the data cleaning. Hence,
GSVM may improve the classification effectiveness.

2) GSVM may speed up the classification process by eliminating
redundant data locally. As a result, it is more efficient and
scalable on huge data sets.

Based on GSVM, we propose a GSVM-RU algorithm that is specif-
ically designed for highly imbalanced classification.

A. GSVM-RU

SVM assumes that only SVs are informative to classification and
other samples can be safely removed. However, for a highly im-
balanced classification, the majority class pushes the ideal decision
boundary toward the minority class [6], [7]. As shown in Fig. 1,
(circled minus signs) negative SVs that are close to the learned bound-
ary may not be the most informative or even noisy. Some informative
samples may hide behind them. To find these informative samples, we
can conduct cost-sensitive learning or oversampling. However, these
two “rebalance” strategies increase the number of SVs (Figs. 2 and 3)
and, hence, slow down the classification process.

To improve efficiency, it is natural to decrease the size of the training
data set. In this sense, undersampling is, by nature, more suitable than
other approaches for modeling an SVM for imbalanced classification.

Fig. 2. SVM-WEIGHT modeling. The circled points denote SVs.

Fig. 3. SVM-SMOTE modeling. The circled points denote SVs.

However, the elimination of some samples from the training data set
may have two effects.

1) Information loss: Due to the elimination of informative or useful
samples, classification effectiveness is deteriorated.

2) Data cleaning: Because of the elimination of irrelevant, re-
dundant, or even noisy samples, classification effectiveness is
improved.

For a highly imbalanced data set, there may be many redundant
or noisy negative samples. Random undersampling is a common
undersampling approach for rebalancing the data set to achieve better
data distribution. However, random undersampling suffers from infor-
mation loss. As Fig. 4 shows, although random undersampling pushes
the learned boundary close to the ideal boundary, the cues about the
orientation of the ideal boundary may be lost [6].

GSVM-RU is targeted to directly utilize SVM itself for undersam-
pling. The idea is based on the well-known fact about SVM—only
SVs are necessary, and other samples can be safely removed without
affecting the classification. This fact motivates us to explore the
possibility of utilizing SVM for data cleaning/undersampling.

However, due to the highly skewed data distribution, the SVM
modeled on the original training data set is prone to classify every
sample as negative. As a result, a single SVM cannot guarantee to
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Fig. 4. SVM-RANDU modeling. The circled points denote SVs.

Fig. 5. GSVM-RU modeling. The circled points denote SVs.

extract all informative samples as SVs. Fortunately, it seems reason-
able to assume that a single SVM can extract a part of, although not
all, informative samples. Under this assumption, multiple information
granules with different informative samples can be formed by the
following granulation operations. First, we assume that all positive
samples are informative in order to form a positive information gran-
ule. Second, negative samples extracted by an SVM as SVs are also
possibly informative so that they form a negative information granule.
Here, we call these negative samples negative local support vectors
(NLSVs). Then, these NLSVs are removed from the original training
data set to generate a smaller training data set, on which a new SVM is
modeled to extract another group of NLSVs. This process is repeated
several times to form multiple negative information granules. After
that, all other negative samples still remaining in the training data set
are simply discarded.

An aggregation operation is then executed to selectively aggregate
the samples in these negative information granules with all positive
samples to complete the undersampling process. Finally, an SVM is
modeled on the aggregated data set for classification. As shown in
Fig. 5, considering that only a part of the NLSVs (and the negative
samples very far from the decision area) is removed from the original
data set, the GSVM-RU undersampling can still give good cues about

Fig. 6. Basic idea of GSVM-RU.

the orientation of the ideal boundary and, hence, can overcome the
shortcoming of random undersampling, as mentioned earlier. Fig. 6
shows the idea of the GSVM-RU.

For the SVM modeling, GSVM-RU adds another hyperparameter
Gr, which is the number of negative granules. To implement GSVM-
RU as a utilizable algorithm, there are two related problems.

1) How many negative information granules should be formed?
2) How will the samples in these information granules be

aggregated?

It seems safe to extract more granules to reduce information loss.
However, information contributed by two different granules may be
redundant or even noisy to each other. Hence, lesser granules may
decrease this redundancy or noise from the final aggregation data
set. In general, if Gr granules are extracted, we have 2Gr different
combinations to build the final aggregation data set. It is extremely
expensive to try all of these combinations.

For simplicity and efficiency, in this correspondence, we revise
the preliminary GSVM-RU algorithm [12] and propose running gran-
ulation and aggregation in turns. First, the aggregation data set is
initialized to consist of only positive samples. Furthermore, the best
classification performance is initialized as the performance of the naive
classifier that classifies every sample as negative. When a new negative
granule is extracted, the corresponding NLSVs are immediately aggre-
gated into the aggregation data set. An SVM is then modeled on this
new aggregation data set. If the classification performance is improved,
we continue to the next phase to extract another granule; otherwise,
the repetitive undersampling process is stopped, and the classifier in
the previous phase will be saved for future classification.

In [12], we proposed the “discard” operation for aggregation. When
a new negative granule is extracted, only negative samples in the
latest granule are aggregated into the new aggregation data set, and
all samples in the old negative granules are discarded. This operation
is based on the “boundary push” assumption. If the old NLSVs are
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TABLE II
CHARACTERISTICS OF DATA SETS

discarded, the decision boundary is expected to be closer to the
ideal one. The repetitive undersampling process is stopped when the
new extracted granule alone cannot further improve the classification
performance.

However, the “discard” operation is not always suitable because it
removes all previous negative granules which are likely to be informa-
tive. In this correspondence, we design a new “combine” aggregation
operation. When a new granule is extracted, it is combined with all old
granules to form a new aggregation data set. The assumption is that
not all informative samples can be extracted as NLSVs in one granule.
As a result, this operation is expected to reduce information loss
by extracting NLSVs multiple times. The repetitive undersampling
process is stopped when the new extracted granule cannot further
improve the classification performance if joined with the previous
aggregation data set.

The choice of which aggregation operation is better is data and, also,
metric dependent. For efficiency, we run both of them only when the
second negative granule is extracted. The winner will be used for the
following aggregation. All SVMs modeled in the repetitive process
use the same kernel and parameters, which are tuned with grid search
[26]. With such a repetitive undersampling process, a clear knowledge-
oriented data-cleaning strategy is implemented.

B. Three Other SVM Modeling Algorithms

In this correspondence, we investigate three other “rebalance” tech-
niques on SVM modeling for an exhaustive comparison study.

1) SVM-WEIGHT: SVM-WEIGHT implements cost-sensitive
learning for SVM modeling. The basic idea is to assign a larger penalty
value to false negatives (FNs) than false positives (FPs) [6], [27],
[28]. Although the idea is straightforward and has been implemented
in LIBSVM [26], there is no systematic experimental report yet
to evaluate the performance of this idea on highly imbalanced
classification. Without the loss of generality, the cost for an FP is
always one. The cost for an FN is usually suggested to be the ratio of
negative samples over the positive samples. However, our experiments
show that it is not always optimal. Hence, we add one parameter Rw
into this algorithm. If there are Np and Nn positive and negative
samples, respectively, the FN cost should be Nn/(Rw ∗ Np). The
optimal value of Rw is decided by the grid search.

2) SVM-SMOTE: SVM-SMOTE adopts the SMOTE algorithm
[21] to generate more pseudopositive samples and then builds an
SVM on the oversampling data set [6]. SVM-SMOTE also introduces
one parameter Ro. If there are Np positive samples, we should add
Ro ∗ Np pseudopositive samples into the original training data set.
The optimal value of Ro is decided by the grid search.

3) SVM-RANDU: SVM-RANDU randomly selects a few negative
samples and then builds an SVM on the undersampling data set [6].
Random undersampling was studied in [1], [13]. SVM-RANDU has an
unknown parameter Ru. If there are Np positive samples, we should
randomly select Ru ∗ Np negative samples from the original training
data set. The optimal value of Ru is decided by the grid search.

Fig. 7. G-mean values of GSVM-RU modeling with “discard” operation on
mammography data.

Fig. 8. F -measure values of GSVM-RU modeling with “combine” operation
on mammography data.

C. Time Complexity

On highly imbalanced data, an SVM typically needs O((Np +
Nn)3) time for training in the worst case [5]. SVM-RANDU takes
O((Np + Np ∗ Ru)3), which is faster than SVM because, typically,
Np ∗ Ru � Nn. SVM-SMOTE, takes O((Np ∗ (Ro + 1) + Nn)3),
which is slower than SVM because it increases the size of the training
data set. SVM-WEIGHT seems to take the same O((Np + Nn)3)
time as SVM. However, overweighting typically makes it harder for
SVM learning to converge, and hence, it usually takes a longer time
than SVM without overweighting. GSVM-RU takes O(Gr ∗ (Np +
Nn)3) because we need to model an SVM for each granule extraction.
However, the later modeling steps are faster because the previous
negative SVs (which are “hard” samples for classification) have been
removed.

At the prediction phase, if an SVM has Ns SVs and there are
Nu unknown samples for prediction, it takes O(Ns ∗ Nu) time for
prediction. Our experiments demonstrate that GSVM-RU and SVM-
RANDU extract significantly less SVs and, hence, are more efficient.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on March 03,2010 at 18:03:01 EST from IEEE Xplore.  Restrictions apply. 



286 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 1, FEBRUARY 2009

TABLE III
EFFECTIVENESS OF CLASSIFICATION

IV. EMPIRICAL STUDIES

The experiments are conducted on a machine with a Centrino
1.6-MHz CPU and 1024-MB memory. The software is based on
the OSU SVM Classifier Matlab Toolbox, which is available at
http://sourceforge.net/projects/svm/ and implements a Matlab inter-
face to LIBSVM [26].

A. Data Sets

Seven data sets, collected from related works, are used in our empir-
ical studies. As shown in Table II, all of them are highly imbalanced,
as less than 10% of the samples are positive. There are also significant
variations of the data size (from several hundreds to over tens of
thousands) and the number of features (from 6 to 49).

For each data set, the performance is evaluated with the following
four metrics: G-mean, AUC-ROC, F -measure, and AUC-PR.

The classification performance is estimated with different training/
testing heuristics. For five of the seven data sets, ten-fold cross vali-
dation is used. For Abalone (19 versus other) and Yeast (ME2 versus
other) data sets, it is estimated by averaging on a seven times random
partition, with a training/testing ratio of 6 : 1 or 7 : 3. Basically, if a
training/testing heuristic was used for a data set in previous works, we
also use it for comparison.

For each fold or each training/testing process, the data is normalized
first so that each input feature has zero mean and one standard
deviation on the training data set; then, classification algorithms are
executed on the normalized training data set, and the model parameters
are optimized by the grid search.

The modeling process is carried out separately for each of the four
metrics. SVM-SMOTE and SVM-RANDU are executed ten times,
and the average performance ± standard deviation is reported. SVM-
WEIGHT and GSVM-RU are executed only once because they are
stable in the sense that the performance is never modified among
multiple runs if parameters are fixed.

In the following, only high-level comparisons between GSVM-RU
and other approaches are reported. Readers can access detailed com-
parison results on each data set at http://tinman.cs.gsu.edu/~cscyntx/
gsvm-ru/imbalance-result.pdf.

B. How GSVM-RU Improves Classification

With limited space, the mammography data set is used as one
example to show how GSVM-RU works to improve classification. We
obtain similar performance gains on other data sets.

With G-mean for evaluation, the best validation performance is
observed when the “discard” aggregation operation is adopted and the
fourth granule is used as the final aggregation data set (i.e., the first
three granules are discarded). The result indicates that the first assump-
tion (the decision boundary is pushed toward the minority class) is
reasonable here. When the NLSVs in the old granules are discarded,
the decision boundary gradually goes back to the “ideal” one, and
thus, classification performance is improved (Fig. 7). After the fifth
granule is extracted, too many informative samples are discarded so
that the classification performance deteriorates. Hence, the repetitive
undersampling process is stopped.

With F -measure for evaluation, the best validation performance is
observed when the “combine” aggregation operation is adopted and
the first 11 granules are combined to form the final aggregation data
set. The result indicates that the second assumption (a part but not
all of the informative samples can be extracted in one granule) is
reasonable in this case. When more and more informative samples are
combined into the aggregated data set, information loss is lesser so
that a more accurate classification can be obtained (Fig. 8). However,
when the 12th granule is extracted and combined into the aggregation
data set, the validation performance cannot be further improved.
The reason is that the new extracted samples are too far from the
“ideal” boundary so that they are prone to be redundant or irrelevant
rather than informative. Hence, the repetitive undersampling process is
stopped.

C. GSVM-RU Versus Previous Best Approaches

Twenty-five groups of experiments are conducted with 25 different
data set/metric combinations (Table III). Of them, 18 groups are
available for effectiveness comparison with previous studies. For 12
groups, GSVM-RU outperforms the previous best approach. For six
other groups, the performance of GSVM-RU is very close to the
previous best result.
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TABLE IV
AVERAGE PERFORMANCE OF PREVIOUS BEST APPROACHES AND

GSVM-RU ON 18 EXPERIMENTS

Fig. 9. (a) G-mean analysis. (b) AUC-ROC analysis.

Table IV reports the average performance on G-mean, AUC-ROC,
and F -measure metrics on the 18 groups of experiments. GSVM-
RU demonstrates better average performance than previous best ap-
proaches on all three metrics.

Figs. 9(a) and 10(b) show comparison results on the four metrics.
In each figure, the performance of the previous best approach, SVM-
WEIGHT, SVM-SMOTE, SVM-RANDU, and GSVM-RU is reported
for each available data set. The value on the horizontal axis is for-
matted as data name (previous best approach name). If there is no
previous result, only data name is reported. It can be clearly seen that
GSVM-RU and the other three SVM modeling algorithms are able
to surpass or match the previously known best algorithms on each of
the 18 data set/metric combinations, i.e., we effectively compare these
SVM modeling techniques against the best known approaches under
the same experimental conditions. Notice that in Fig. 9(a), the G-mean
value of SVM-SMOTE is zero for the Abalone data set (19 versus
other) with both 7 times 6 : 1 splitting or 7 times 7 : 3 splitting.
Moreover, notice that there are no “previous best” results in Fig. 10(b)
because no previous research has been conducted for AUC-PR analysis
on these data sets.

Fig. 10. (a) F -measure analysis. (b) AUC-PR analysis.

D. GSVM-RU Versus Other Three SVM Modeling Algorithms

Table V reports the average performance of four SVM model-
ing algorithms over the 25 groups of experiments. SVM-WEIGHT
demonstrates almost the same effectiveness as GSVM-RU with all four
metrics. However, GSVM-RU extracts only 181 SVs, which means
that GSVM-RU is more than four times faster than SVM-WEIGHT
(with 794 SVs) for classification.

SVM-SMOTE demonstrates a similar effectiveness on AUC-ROC,
F -measure, and AUC-PR to GSVM-RU. However, it is worse on
G-mean. The reason is that it achieves zero G-mean value on the ex-
tremely imbalanced Abalone (19 versus other) data set. SVM-SMOTE
is also much slower, with 655 SVs for classification. Moreover, SVM-
SMOTE is unstable because of the randomness of the oversampling
process.

SVM-RANDU is slightly faster than GSVM-RU for prediction by
extracting only 143 SVs. However, SVM-RANDU is slightly less
effective than GSVM-RU with all four metrics. Moreover, SVM-
RANDU is unstable because of the randomness of the undersampling
process.

V. CONCLUSION

In this correspondence, we have implemented and rigorously evalu-
ated four SVM modeling techniques, including one novel method of
undersampling SVs. We compare these four algorithms with state-
of-the-art approaches on seven highly imbalanced data sets under
four metrics (G-mean, AUC-ROC, F -measure, and AUC-PR). The
comparative approaches consist of the best known technique on the
corresponding data sets. To our knowledge, this is the first work to
conduct an exhaustive comparative study with all four metrics and the
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TABLE V
AVERAGE PERFORMANCE OF FOUR SVM MODELING ALGORITHMS ON 25 EXPERIMENTS

variations in SVM modeling. Hence, we expect that this correspon-
dence can be helpful for future research works for comparison study
on these benchmark highly imbalanced data sets.

Specifically, the GSVM-RU algorithm implements a guided repet-
itive undersampling strategy to “rebalance” the data set at hand.
GSVM-RU is effective due to the following: 1) extraction of infor-
mative samples that are essential for classification and 2) elimination
of a large amount of redundant, or even noisy, samples. As shown
in Table III, GSVM-RU outperforms the previous best approach in
12 groups of experiments and performs very close to the previous best
approach in six other groups of experiments.

In most cases, GSVM-RU achieves the optimal performance with
the “discard” operation. This demonstrates that the “boundary push”
assumption seems to be true for many highly imbalanced data sets.
Considering its efficiency, the “discard” operation is also suggested
as the first aggregation operation to try for GSVM-RU modeling.
However, the optimal performance is observed with the “combine”
operation on the mammography and the satimage data sets for F -
measure and AUC-PR metrics. This suggests that the “information
loss” assumption may be more suitable for some highly imbalanced
data sets, particularly with F -measure and AUC-PR metrics.

We have also systematically investigated the effect of overweight-
ing the minority class on SVM modeling. The idea, named SVM-
WEIGHT, seems to be naive at first glance and, hence, is ignored
in previous research works. However, our experiments show that it
is actually highly effective. Although SVM-WEIGHT is not efficient
compared with GSVM-RU, considering that the former extracts more
SVs, it can be the first SVM modeling method of choice if the available
data set is not very large.
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