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Abstract

Identifying protein surface regions preferentially recognizable by antibodies (antigenic epitopes) is at the heart of new
immuno-diagnostic reagent discovery and vaccine design, and computational methods for antigenic epitope prediction
provide crucial means to serve this purpose. Many linear B-cell epitope prediction methods were developed, such as
BepiPred, ABCPred, AAP, BCPred, BayesB, BEOracle/BROracle, and BEST, towards this goal. However, effective immunological
research demands more robust performance of the prediction method than what the current algorithms could provide. In
this work, a new method to predict linear antigenic epitopes is developed; Support Vector Machine has been utilized by
combining the Tri-peptide similarity and Propensity scores (SVMTriP). Applied to non-redundant B-cell linear epitopes
extracted from IEDB, SVMTriP achieves a sensitivity of 80.1% and a precision of 55.2% with a five-fold cross-validation. The
AUC value is 0.702. The combination of similarity and propensity of tri-peptide subsequences can improve the prediction
performance for linear B-cell epitopes. Moreover, SVMTriP is capable of recognizing viral peptides from a human protein
sequence background. A web server based on our method is constructed for public use. The server and all datasets used in
the current study are available at http://sysbio.unl.edu/SVMTriP.
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Introduction

By secreting antibodies against antigens, B-cells play an

important role in the immune system to fight an invasive

pathogenic organism or substance. Antigenic epitopes are regions

of the protein surface that are preferentially recognized by B-cell

antibodies [1]. Prediction of antigenic epitopes is useful for the

investigation on the mechanism of body’s self-protection systems

and could be helpful for the design of vaccine components and

immuno-diagnostic reagents [2].

Usually, B-cell antigenic epitopes are classified as either

continuous or discontinuous. A continuous (also called linear)

epitope is a consecutive fragment from the protein sequence; a

discontinuous epitope is composed of several fragments scattered

along the protein sequence, but still form an antigen-binding

interface in 3D. The boundary between continuous and discon-

tinuous epitopes is vague; a continuous fragment in a discontin-

uous epitope can be considered as a continuous epitope.

Currently, the majority of available epitope prediction methods

focus on continuous epitopes due to the relative simplicity of the

problem and the convenience of available investigation methods,

in which the amino acid sequence of a protein is taken as the

input. Such prediction methods are based upon the amino acid

properties including hydrophilicity [3,4], solvent accessibility [5],

secondary structure [6], flexibility [7], and antigenicity [8]. In

addition, based on the epitope databases such as IEDB [9], Bcipep

[10], and FIMM [11], there are also some methods using machine

learning approaches, such as Hidden Markov Model (HMM) [12],

Artificial Neural Network (ANN) [13], and Support Vector

Machine (SVM) [14,15], to locate linear epitopes, such as

PREDITOP [8,16], PEOPLE [17], BEPITOPE [18], BepiPred

[12], ABCPred [13], AAP [14], BCPred [15], BayesB [19],

BEOracle/BROracle [20], and BEST [21].

In this work, a new linear B-cell epitope prediction method is

developed using the SVM method to integrate the Tri-peptide

similarity and Propensity scores (SVMTriP). SVMTriP is tested for

varied epitope sequence lengths. With the five-fold cross-valida-

tion, SVMTriP achieves a sensitivity (Sn) of 80.1% and a precision

(P) of 55.2% for sequences with 20 amino acids (AA), which are

higher than those of AAP [14] and BCPred [15].

Results

Prediction performance
SVMTriP is trained and tested with different epitope lengths,

and for each length, the SVM parameters have their independent

optimal values. For example, for 20AA-length cases, SVMTriP

reaches its optimal performance at c = 32, g = 0.05, and p = 0.5 for

the SVM model with Sn = 80.1% 62.1% and P = 55.2% 61.0%
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at the point with the maximal F-measure, 0.693. All results are

shown in Table 1. Though, for different lengths of epitope

sequences, SVMTriP has various points with the maximal F-

measure, the precision values for different lengths are similar. The

sensitivity increases significantly as the length of the epitope

sequences becomes large. The range of the values of areas under

the receiver operating characteristic curves (AUC) is from 0.674 to

0.702. Based on results of multiple evaluation methods (Table 1),

SVMTriP for 18AA- and 20AA-length cases have the best

performance. However, one may note a fact that most of

experimental determined epitopes from IEDB [9] have less than

20 AA residues. A possible reason why SVMTriP favors long

length of sequences is a long sequence may have more tri-peptides

to show detectable frequency tendency. Another possibility is that

the epitopic amino acid residues in experimentally determined

epitopes are subsets of all real epitopic residues. Based on the

testing results, 20AA is set as the default epitope length for

SVMTriP to search for putative epitopes on the web server.

For comparison, AAP and BCPred are implemented locally

based on their method descriptions [14,15], trained/tested with

the same dataset and the five-fold cross-validation procedure for

20AA case. The results are listed in Table 2. Compared with

BCPred and AAP, SVMTriP has a similar precision value, but

significantly improved sensitivity at the point with the maximal F-

measure. Figure 1 shows the receiver operating characteristic

curve (ROC) for three methods, from which one may notice that

SVMTriP has significantly larger true positive rate than BCPred

and AAP in the region of low false positive rate. The AUC values

are 0.667, 0.667, and 0.702 for AAP, BCPred, and SVMTriP,

respectively. The AUC value of SVMTriP is significantly higher

than those from the other two methods; the p-values of

comparison against AAP and BCPred are 2.1761025 and

1.5861025, respectively.

Top weighted tri-peptides
The prediction model relies on the occurring-frequency

distribution of tri-peptides in the tri-peptide space, i.e. all

combinations of any three amino acids. In Table 3, tri-peptides

with top 20 weights in the optimal SVM model of 20AA-length

epitopes are listed. All of the top ranked tri-peptides contain

Glutamine or Proline, whereas the occurring frequencies of

Glutamine and Proline in known linear epitopes (20AA) are only

8.1% and 6.84%, respectively. In the background of over all

proteins, the occurring frequencies of Glutamine and Proline are

3.84% and 3.44% [22], which is not significantly different to the

values in linear epitopes. However, the distribution patterns of the

combined amino acids are quite different between epitopes and

non-epitope peptides. Therefore, the tri-peptides containing

Glutamine or Proline may play an important role in epitope

recognition by B-cell antibodies. The algorithm of SVMTriP

successfully utilized this difference to distinguish linear epitopes

from other parts of protein peptides.

Tendency of prediction between virus and human
proteins

Independent test of different epitope prediction methods is

challenging because of the limited number of known epitopes. In

this study, we devise an alternative independent test method. In

the training set, most epitopes are from virus or bacteria, and their

corresponding antibodies are mainly human antibodies. A basic

property of the human immune system is the capability to

distinguish any pathogenic agents, viral or bacterial, from the

innate structures of the human being. All known B-cell epitopes in

the training set came from the response of whole immune system,

including the response of CD4 T helper cells. In order to simulate

the human immune system, a successfully trained epitope

prediction method should act the same, i.e. be able to distinguish

pathogenic proteins from human proteins. In other words, the

virus proteins should be preferentially more highly scored than

human proteins by a successful prediction algorithm. To

implement this test, 105 20AA-length peptides are collected from

virus and human proteins: 56104 peptides are randomly selected

from 391,466 virus proteins and others from 81,967 human

proteins in the Refseq protein database [23]. AAP, BCPred, and

SVMTriP are applied to these virus and human peptides, and top-

ranked peptides are returned. The fractions of virus peptides in

different numbers of returned peptides are shown in Figure 2. In
Table 1. Performance of SVMTriP models with different
epitope lengths.

Length (AA) Sn (%) P (%) F-measure AUC

10 68.562.5 55.561.5 0.61560.020 0.674

12 67.563.5 57.062.0 0.62060.030 0.681

14 64.864.9 56.562.5 0.60560.030 0.689

16 63.565.5 57.163.0 0.60160.045 0.685

18 79.061.9 54.161.1 0.64160.015 0.666

20 80.162.1 55.261.0 0.69360.060 0.702

doi:10.1371/journal.pone.0045152.t001

Figure 1. ROC curves for AAP, BCPred, and SVMTriP.
doi:10.1371/journal.pone.0045152.g001

Table 2. Performance of different linear B-cell epitope
prediction methods.

Methods Sn (%) P (%) F-measure AUC

AAP* 59.860.9 58.566.5 0.59060.040 0.667

BCPred* 54.067.1 60.562.5 0.57260.055 0.667

SVMTriP 80.162.1 55.261.0 0.69360.060 0.702

*The results for AAP [14] and BCPred [15], are obtained by the software
implemented locally.
doi:10.1371/journal.pone.0045152.t002

SVMTriP: A Method to Predict Antigenic Epitopes
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most cases, the three methods returned more virus peptide than

human peptides within the top-ranked peptides. SVMTriP,

however, selected higher percentage of virus peptides than both

AAP and BCPred. For example, in total 400 top-ranked peptides

returned by SVMTriP, 90.5% of them, i.e. 362, are virus peptides.

There are 47.8% (191), 56.5% (226) virus peptides returning by

AAP and BCPred, respectively. This indicates the exceptional

ability of SVMTriP to distinguish epitopic and non-epitopic

peptides.

Discussion

Prediction with tri-peptide propensity alone
The propensity of tri-peptide alone is tested and the result is

shown in Table 4. The prediction sensitivity and precision are

56.5% bad 61.0%, respectively, similar to those of AAP, which is

based on bi-peptide propensity and yielded a sensitivity of 59.8%

and precision of 58.5% for the same test set. This result indicates

that combining similarity scores is essential for the tri-peptide

model to achieve a better performance.

Prediction with tri-peptide similarity alone
The tri-peptide similarity scores can be calculated with either

Blosum62 or PAM160 matrixes. The performance of two different

matrices for the tri-peptide model is evaluated with the same

procedure of the five-fold cross-validation for 20AA-length

epitopes. The results are shown in Table 4. Without the propensity

score, using Blosum62 matrix shows similar performance as using

the PAM160. However, when combined with the propensity score,

Blosum62 matrix leads to a higher prediction performance.

Discrete tri-peptide subsequence models
We also implement a method that uses the space of tetra-

peptide subsequence with one mismatch, i.e. discrete tri-peptide

subsequences. For this case, the subsequences are considered in

patterns like A_AA or AA_A, where ‘A’ represents the amino acid

residue to be considered, and ‘_’ represents the residue position

that will be ignored in the comparison. The number of SVM

attributes is still 203, which is identical to that of the tri-peptide

model. Interestingly, without considering propensity scores, the

subsequence models of A_AA and AA_A patterns have similar

sensitivity and precision with the tri-peptide model. However, the

combination of similarity and propensity of the tri-peptide model

significantly enhances the performance, while addition of the

propensity does not increase sensitivity or precision for A_AA and

AA_A patterns. The result is shown in Table 4. This finding

indicates that the propensity is more important for the tri-peptide

model than the discrete tri-peptide subsequence model.

Conclusion
The performance for linear B-cell epitope prediction is

improved by concurrently using similarity and propensity of the

Figure 2. Tendency test for BCPred, AAP, and SVMTriP. Three bars at the same point on the x-axis are the results for APP (blue), BCPred
(green), and SVMTriP (red), respectively. In the same bar, the light part is for the number of returned human peptide, and the dark part is for virus. For
example, at the point of 400 returned peptides, the dark part in the red bar is 362, which means that 362 viral peptides are return in all 400 peptides
by SVMTriP, and the light red part represents 38 human peptides.
doi:10.1371/journal.pone.0045152.g002

Table 3. Weights of tri-peptides in the optimal SVM model.

Tri-Peptide Rank
Weight
Score* Tri-Peptide Rank

Weight
Score*

QQP 1 503251.79 GQQ 11 121677.62

PQQ 2 488627.71 QPY 12 116598.60

QPQ 3 367386.40 YPQ 13 113237.37

QPF 4 246462.39 QQF 14 81709.59

FPQ 5 234868.65 PYP 15 79191.37

PQP 6 231353.73 FQQ 16 77357.97

QGQ 7 153161.76 PPP 17 76320.05

PFP 8 151840.02 QPP 18 64756.05

QQQ 9 128930.20 QFP 19 63814.16

QQG 10 122291.90 PPQ 20 63173.33

*Weight scores are calculated by the formula w =g a ixi. Here a is dual
representation of the decision boundary; and xi (i = 0, 1, 2…n) is vector
described in SVM model. Both a i and xi are available in model file.
doi:10.1371/journal.pone.0045152.t003

SVMTriP: A Method to Predict Antigenic Epitopes
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tri-peptide model. Combination of similarity and propensity gives

rise to an excellent performance for the tri-peptide model, but does

not for the discrete tri-peptide subsequence model. SVMTriP

finally achieved the AUC value of 0.702 and, at the point with the

maximal F-measure, Sn = 80.1% and P = 55.2%. Further more,

SVMTriP is capable of distinguishing virus peptides from human

ones, and hence, has a higher chance to correctly predict linear B-

cell epitopes. The web server, trained models, and all datasets are

available at http://sysbio.unl.edu/SVMTriP.

Materials and Methods

Datasets
The dataset is constructed by extracting non-redundant linear

B-cell epitopes from IEDB [9], because it is frequently updated

and has a large number of linear epitopes. Total of 65,456 B-cell

linear epitopes are downloaded from IEDB (version June 11th,

2012). The identical epitopes and those possibly related to T-cell

are removed. The full-length sequences of corresponding epitopes

are also collected. The various lengths of epitope sequences,

including 10AA, 12AA, 14AA, 16AA, 18AA, and 20AA, are

extracted by trimming the long experimental measured epitopes or

attaching more amino acid residues to both ends of short epitopes

according to the full-length sequences. For a given length, epitope

sequences with $30% similarity, measured by BLAST [24], are

clustered together and only one of them is kept as an epitope

sequence in the dataset. Finally, the dataset for each length has a

total of 4925 non-redundant epitope sequences. For the negative

dataset, the same numbers of equal-length sub-sequences are

extracted from the non-epitopic segments in the corresponding

antigen sequences.

Support Vector Machine Setup
Attribute encoding. The tri-peptide subsequence space is

used to encode the SVM attributes. This kernel has a space of 203

attributes for both tri-peptide substring and propensity. The score

of i-th attribute, K(i), is defined as the tri-peptide subsequence

similarity kernel modulated by its corresponding tri-peptide

propensity. Please see Equation (1):

K ið Þ~T (i).P(i), ð1Þ

where K(i) denotes the score of the i-th attribute, T (i) denotes the

i-th tri-peptide subsequence similarity kernel, and P(i) denotes

corresponding tri-peptide subsequence propensity of i-th tri-

peptide subsequence. The tri-peptide subsequence similarity

kernel is defined as:

T ið Þ~
X

W ið Þ
6Vj , ð2Þ

where W(i) denotes the tri-peptide that represents the i-th

attribute, Vj denotes the j-th tri-peptide in the tri-peptide

subsequence space for the input sequence. The symbol ‘‘:’’

denotes getting the similarity score of any two corresponding tri-

peptide, i.e. sum of three similarity scores for three amino acid

pairs from a Blosum/PAM matrix. For example, assuming the

length of a given epitope candidate is 20 AA, the tri-peptide

subsequence similarity kernel for the i-th attribute is generated by

summing over similarity scores of the 18 pairs of tri-peptides; each

pair consists of one tri-peptide from the input sequence and the tri-

peptide represents i-th attribute from the tri-peptide subsequence

space. This subsequence kernel was previously used to predict

protein subcellular localization by Lei and Dai [25]. The

propensity of tri-peptide subsequence representing the i-th

attribute is calculated as in Equation (3):

P(i)~
f (i)

F (i)
, ð3Þ

where f(i) is the frequency of i-th type of tri-peptide in the positive

epitopes, and F(i) is the frequency of i-th type of tri-peptide in

56104 protein sequences randomly selected from the Refseq

database [23].

Training/Prediction procedure. The SVM training in this

work uses an SVM package, SVMlight, implemented by Joachims

(http://svmlight.joachims.org/) [26]. All SVM parameters are

Table 4. Comparison among the tri-peptide subsequence models with or without propensity.

Kernels Sn (%) P (%) F-measure

Tri-peptide Propensity only N.A. 56.5612.5 61.066.3 0.58460.085

Tri-peptide w./o. Propensity Blosum62 54.566.5 60.561.5 0.57360.035

PAM160 55.067.2 61.161.8 0.57860.040

w./Propensity Blosum
62*

80.1±
2.1

55.2±
1.0

0.693±
0.060

PAM160 69.3610.0 58.563.5 0.63360.050

AA_A pattern w./o. Propensity Blosum62 54.866.8 60.561.5 0.57960.040

PAM160 55.267.1 61.362.0 0.57760.045

w./Propensity Blosum62 60.565.5 57.562.5 0.58960.040

PAM160 59.565.5 57.561.5 0.58560.035

A_AA pattern w./o. Propensity Blosum62 55.568.5 60.662.2 0.58160.050

PAM160 55.268.1 60.561.5 0.57760.055

w./Propensity Blosum62 60.566.5 57.561.5 0.59060.040

PAM160 59.565.5 57.561.5 0.58560.025

*The corresponding model is defined as SVMTriP.
doi:10.1371/journal.pone.0045152.t004

SVMTriP: A Method to Predict Antigenic Epitopes
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optimized by a grid search (c = 2210,21, g = 2212,23, and

p = 225,22). For each grid point of the triplets, a five-fold cross-

validation procedure is employed to evaluate the performance of

the trained SVM model. To carry out the five-fold validation

procedure, the total of 4925 positive epitopes are split into five

groups, and any two-epitope sequences from two different groups

do not have sequence similarity more than 20%. At each triplet

point, the maximum F-measure is calculated. The optimal

parameter set has the largest value in all points by the maximum

F-measures. During the procedure of five-fold validation, five test

results are used to calculate the mean values and 95% confidence

intervals of sensitivity, precision, and the maximal F-measure.

For the application on the online server, the prediction model is

obtained by training the whole dataset with the same numbers of

positive and negative epitopes. To predict a given full-length

protein sequence, the sliding window method is employed to

obtain subsequences with variable lengths, including 10AA, 12AA,

14AA, 16AA, 18AA, and 20AA. For each subsequence, SVMTriP

calculates its score, and a positive score indicates that the

subsequence is a putative antigenic epitope.

Evaluation methods
The statistical terms, sensitivity (Sn), precision (P), and F-

measure, are defined in the following equations:

Sn~
TP

TPzFN
|100%

P~
TP

TPzFP
|100%

F~
2|P|Sn

PzSn
,

where TP, TN, FP, and FP stand for true positive, true negative,

false positive, and false negative, respectively. F-measure is used to

determine the optimal prediction results. A java program available

at http://pages.cs.wisc.edu/,richm/programs/AUC/ is used to

calculate the AUC. The online tool StAR [27,28] is used to test

whether the difference between ROC curves resulting from two

methods is statistically significant.
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