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SVR-CMT Algorithm for Null Broadening and Sidelobe Control

Fulai Liu, Yifan Wu*, †, Han Duan†, and Ruiyan Du

Abstract—Minimum variance distortionless response (MVDR) beamformer is an adaptive beamform-
ing technique that provides a method for separating the desired signal from interfering signals. Unfor-
tunately, the MVDR beamformer may have unacceptably low nulling level and high sidelobes, which
may lead to significant performance degradation in the case of unexpected interfering signals such as
the rapidly moving jammer environments. Via support vector machine regression (SVR), a novel beam-
forming algorithm (named as SVR-CMT algorithm) is presented for controlling the sidelobes and the
nullling level. In the proposed method, firstly, the covariance matrix is tapered based on Mailloux co-
variance matrix taper (CMT) procedure to broaden the width of nulls for interference signals. Secondly,
the equality constraints are modified into inequality constraints to control the sidelobe level. By the
ε-insensitive loss function for the sidelobe controller, the modified beamforming optimization problem is
formulated as a standard SVR problem so that the weight vector can be obtained effectively. Compared
with the previous works, the proposed SVR-CMT method provides better beamforming performance.
For instance, (1) it can effectively control the sidelobe and nullling level, (2) it can improve the output
signal-to-interference-and-noise ratio (SINR) performance even if the direction-of-arrival (DOA) errors
exist. Simulation results demonstrate the efficiency of the presented approach.

1. INTRODUCTION

Beamforming technique is an important part of array signal processing. It is widely used in wireless
communications [1], microphone array signal processing [2] and radar [3]. A typical, representative
beamformer, known as minimum variance distortionless response (MVDR) or Capon beamformer [4],
minimizes array output power and maintains a distortionless mainlobe response toward the desired
signal. Unfortunately, the conventional MVDR beamformer may have unacceptably low and narrow null
level in the direction of interference signal or high sidelobes in the case of low sample support. Moreover,
it is possible that the mismatch occurs between adaptive weights and data due to the perturbation of the
interference location when the antenna platform vibrates or interference moves quickly, which may lead
to the nulls shift from the directions of the interference. In adaptive array systems, the aforementioned
problems may contribute to performance degradation under the scenarios of unexpected interference
signals.

To improve the robustness of the beamformer against unexpected interference signals, several null
broadening approaches have been proposed. The null broadening method is initially proposed by
Mailloux [5] and Zatman [6], which utilizes a grid of virtual and equal-power interference signals to
replace the original interference. The null broadening method proposed by Mailloux and Zatman can
be generalized by the concept of covariance matrix taper (CMT) [7]. In [8], a multi-parametric quadratic
programming method is presented to control the null level of adaptive antenna array. The proposed
algorithm can guarantee that the nulling level is strictly below the prescribed threshold. Recently, a
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large number of null broadening approaches [9–12] are proposed to improve the robustness against the
mismatch scenarios. For example, in [9], the proposed algorithm utilizes the projection technique to
preprocess the received data. And then, the diagonal loading (DL) method is used to get the new
covariance matrix. It turns out that this approach can effectively broaden the null width and enhance
the null depth even if the number of snapshots is limited. However, the choice of diagonal loading factor
is a confusing problem. If the diagonal loading factor is extremely small, the improvement may seem
to be minor, and it cannot suppress the effect of the noise. While if the loading factor is excessively
large, it may lead to the fact that the nulls become shallow, which contributes to the degradation of
the output signal-to-interference-and-noise ratio (SINR). A robust null broadening method based on
uncertainty set and projection technique is presented in [11] to improve the robustness against array
calibration errors. The presented method can be robust even though the calibration errors exist and its
computational complexity is relatively low. In [12], a novel null broadening algorithm based on nulls
optimization is proposed. The presented method can broaden the nulls efficiently as well as guarantee
the gain of the desired signal. Unfortunately, all the methods mentioned above may not control the
sidelobe level efficiently.

To further control the sidelobe level, several approaches have been proposed [13–17]. A modified
MVDR beamformer is proposed by multiple additional quadratic inequality constraints outside the
mainlobe beampattern area [13]. These constraints can ensure that the sidelobe level is strictly lower
than the prescribed level. In [15], a blind beamforming algorithm based on the l1 norm sparse constraint
on the whole beam pattern is presented to suppress the sidelobe level. This method can effectively lower
the sidelobe level and improve the SINR performance. This approach adds the sparse constraint equally
on both the mainlobe and the sidelobe. However, the constraint should encourage dense distribution
in the mainlobe and sparse distribution in the sidelobe. To further enhance the sidelobe control
performance, a mixed norm constraint is proposed in [16]. The presented approach uses l1 norm to
encourage the sparse distribution on the sidelobe and l∞ norm to encourage the dense distribution on
the mainlobe. Recently, a novel sidelobe control method based on support vector machine regression
(SVR) is widely used in the array signal processing.

The theory of SVR is initially introduced by Vapnik [17] based on the principle of structural
risk minimization and is applied in a number of communications problems such as wireless sensor
networks [18] and digital image processing [19]. Due to its improved generalization capabilities, it is
widely employed in the array signal processing problems to control the sidelobe levels [20–24] and
the antenna array synthesis problems [25–28]. The SVR-based beamforming algorithm is initially
proposed [20] to improve the performance of MVDR. It utilizes the Vapnik insensitive function to serve
as a penalty term to penalize the sidelobe level. The solution of the weight vector can be obtained via
the quadratic programming (QP) technique. However, the computational complexity is not attractive.
In [21], the iterative re-weighted least square (IRWLS) [29, 30] method is utilized to solve the SVR-based
beamforming problem in order to save the computational cost. The SVR method is then used in [22]
to suppress the sidelobe level of the Bayesian beamformer. An improved diagonal loading algorithm
based on SVR is presented in [24]. These SVR-based approaches turn out to have a relatively low
sidelobe level. Moreover, these methods can be robust under the steering vector mismatch scenarios.
Another application of SVR is to deal with the antenna synthesis problems. It can be employed to
perform a specific radiation pattern that meets the predefined requirements [25]. Because of its high
accuracy, it can be a powerful method to design the array antenna. In [26], a novel three-dimensional
(3D) antenna array modelling and synthesis technique based on SVR is presented. This technique can
develop accurate two-dimensional (2D) and 3D models in the synthesis schemes with low complexity. A
new accurate synthesis method based on the combination of the Methods of Moments (MoM) and SVR
is presented in [27]. It combines the advantages of the SVR and MoM, and improves the performance
of the SVR-based approach when there is a lack of training data.

This paper presents a novel beamforming algorithm for null broadening and sidelobe control.
Initially, the covariance matrix is tapered based on Mailloux CMT algorithm to broaden the width
of nulls for interference signals. Then, the original beamforming problem is formulated as a standard
SVR problem to control the sidelobe level, which can be solved effectively through IRWLS procedure.
This paper is organized as follows. Section 2 presents the data model and the conventional MVDR
solution. The formulation of the proposed algorithm based on SVR is discussed in Section 3. In
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Section 4, simulation results are presented to verify the performance of the proposed approach. Section 5
concludes the paper.

2. DATA MODEL

Consider a receiving array with M isotropic elements. The received data x(t) ∈ CM×1 of the antenna
array at time t is given by

x(t) = a(θ0)s0(t) +
J∑

j=1

a(θj)sj(t) + n(t) (1)

where J stands for the number of interference signals. The signal and interference directions-of-arrival
(DOAs) are θ0 and θj (j = 1, 2, . . . , J), respectively, with corresponding steering vectors a(θ0) and
a(θj). s0(t) and sj(t) are the signal and interference, respectively. n(t) = [n1(t), . . . , nM (t)]T with
ni(t) representing the additive Gaussian noise of the ith sensor and the superscripts (·)T denoting the
transpose.

Let Rxx ∈ CM×M denote the theoretical covariance matrix of the array snapshot vector. Assume
that Rxx is a positive definite matrix and it can be written as follows

Rxx = σ2
sa(θ0)a(θ0)H +

J∑
j=1

σ2
j a(θj)a(θj)H + σ2

nI (2)

where σ2
s , σ2

j and σ2
n are the powers of the uncorrelated signals, interference and the noise. (·)H denotes

the conjugate transposition, and I is the identity matrix of M dimension.
The classical MVDR beamformer [4] is described as follows

min
w

wHRxxw subject to wHa(θ0) = 1 (3)

where w ∈ CM×1 is the weight vector of the array, and its solution wMVDR can be expressed as

wMVDR =
R−1

xx a(θ0)
aH(θ0)R−1

xx a(θ0)
. (4)

In practice, the exact covariance matrix is not available and is replaced by the sample covariance
matrix R̂xx, which can be expressed as follows

R̂xx =
1
N

N∑
l=1

x(l)x(l)H (5)

where N presents the number of snapshots.

3. ALGORITHM FORMULATION

In this section, the Mailloux CMT algorithm is initially utilized to widen the nulling extent. Then, the
constraints are modified to control the sidelobe level. The objective function is further modified in order
to ensure the existence of the admissible solution. The modified optimization problem is formulated
as a standard SVR problem so that the sidelobe level is controlled effectively and the solution of the
weight vector can be obtained efficiently.

3.1. Null Broadening

Assume that the narrowband interference signals impinging on the array are uncorrelated with each
other as well as with the spatially white noise. According to [5], the terms in the covariance matrix Rxx

are given by Rmn =
∑J

j=1 σ2
j e

j2π/λ(pym−pyn) sin θj + σ2
nδmn, where pym and pyn stand for the location of

the element. δmn is a Kronecker delta function. According to [5], we construct a cluster of q equal-power
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incoherent signals around each original interfering signal to produce a notch of width W in each of the
interference directions. In this case, the additional sources can be summed in closed form, as geometric

sum and can be written as
∑K−1

2

k=−K−1
2

(σ2
j /K)ej2π/λ(pym−pyn)[sin θj+kδ] = sin(KΛmn)

K sin(Λmn)σ
2
j e

j2π/λ(pym−pyn) sin θj ,

where Λmn = π(pym−pyn)δ
λ and δ = W

K−1 . Therefore, each element in the covariance matrix can be

rewritten as R̄mn = Rmn
sin(KΛmn)
K sin(Λmn) . In matrix form, the Mailloux CMT can be expressed as

R̄xx = Rxx ◦ T (6)

where “◦” denotes Hadamard product, that is multiplying the corresponding elements of the two
matrixes, and the form of matrix T can be written as T = (tmn)M×M = ( sin(KΛmn)

K sin(Λmn))M×M .
The CMT method can be expressed as the following optimization problem

min
w

wHR̄xxw subject to wHa(θ0) = 1. (7)

The solution of the problem in Eq. (7) can be expressed as

wCMT =
R̄−1

xx a(θ0)
aH(θ0)R̄−1

xx a(θ0)
(8)

where R̄xx is the tapered covariance matrix given by Eq. (6).

3.2. Sidelobe Control Based on SVR

The SVR is utilized to control the sidelobe level. Before the SVR is applied, all the variables mentioned
above have to be transformed into real variables and the optimization problem also needs to be modified.
The transformation of the original optimization problem into the standard SVR procedure can be shown
as follows.

3.2.1. Data Preprocessing

a. Definition of the beamformer output: Consider a grid of DOAs θi, i = 1, . . . , P , which sample
the beampattern in [−90◦, 90◦]. Define an angular mainlobe beamwidth 2Δ centered at the assumed
DOA θs. Using this sampled grid of DOAs, the desired beamformer output can be expressed as follows

di =
{

0, if |θi − θs| > Δ
1, if |θi − θs| ≤ Δ.

(9)

This definition takes into account a possible signal mismatch error up to Δ degrees. Thus, when
the steering vector mismatch scenarios take place, the performance of the beamformer will not degrade
seriously.

b. Real Variables Preprocessing: To utilize the proposed algorithm, all the complex variables
mentioned above need to be modified into real variables. To this end, the array output power can be
written as w̃HR̃xxw̃H = wHR̄xxw, where w̃ ∈ R2M×1 and R̃xx ∈ R2M×2M can be expressed as follows

w̃T =
[

Re(wT ) Im(wT )
]

(10)

R̃xx =
[

Re(R̄xx) −Im(R̄xx)
Im(R̄xx) Re(R̄xx)

]
. (11)

Similarly, the beamformer output for each DOA can be rewritten in terms of real variables as
wHa(θi) = w̃T ã(θi) + jw̃T ã′(θi) in which θi, i = 1, 2, . . . , P is the candidate DOAs which sample
pattern in [−90◦, 90◦]. ã(θi) and ã′(θi) ∈ R2M×1 are given by

ã(θi)T =
[

Re(a(θi)T ) Im(a(θi)T )
]

ã′(θi)T =
[

Im(a(θi)T ) −Re(a(θi)T )
]
. (12)

Define the real variables ā(i), and d̃i as follows

ā(i) =
{

ã(θi), i = 1, 2, . . . , P
ã′(θi), i = P + 1, P + 2, . . . , 2P

(13)
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and

d̃i =
{

Re(di), i = 1, 2, . . . , P
Im(di), i = P + 1, P + 2, . . . , 2P.

(14)

Based on the definition of the real variables, the objective function can be rewritten as
min w̃T R̃xxw̃.

3.2.2. Optimization Problem Modification for Sidelobe Control

a. Constraints Modification: The constraints of the conventional nulling broadening problem are
equations. However, the sidelobe level is not attractive. To further control the sidelobe level, the
constraints are modified as |w̃T ā(i) − d̃i| ≤ ε i = 1, 2, . . . , 2P , where ε defines the set of admissible
beamformer solutions. In this paper, any beamformer whose outputs over the specified grid of DOAs
are within an ε-band around the desired array output is an admissible solution. Among all admissible
beamformers, the one with minimum output power would be the optimal solution of the problem.

b. Objective Function Modification: However, even if the number of inequality constraints is
moderate, the set of admissible beamformers is likely to be empty. To solve this problem, a set of slack
positive variables ξi, ξ̃i are introduced and the optimization problem is modified as follows

min L(w̃, ξ, ξ̃) =
1
2
w̃T R̃xxw̃ + C

2P∑
i=1

[
(ξi)m + (ξ̃i)m

]

subject to

⎧⎪⎨
⎪⎩

w̃T ā(i) − d̃i ≤ ε + ξi

−w̃T ā(i) + d̃i ≤ ε + ξ̃i

ξi, ξ̃i ≥ 0 (i = 1, 2, . . . , 2P )
(15)

where C ≥ 0 is a regularization constant, which sets a tradeoff between the output power term and a
term that penalizes mismatches larger than ε. On the other hand, the exponent m can either be 1 or
2, which corresponds to linear (m = 1) and quadratic (m = 2) penalty, respectively. The optimization
problem (15) can be reformulated to standard SVR problem based on the following lemma.

Lemma [31] The optimal solution of the problem in Eq. (15) is equivalent to the standard SVR
problem, which can be expressed as follows

min J(w̃) =
1
2
w̃T R̃xxw̃ + C

2P∑
i=1

Lm
ε (ui) (16)

where ui = |d̃i − w̃T ā(i)|. The Lm
ε (u) is a piecewise function whose value equals to |u − ε|m only if the

condition |u| ≥ ε is satisfied. Otherwise, its value equals to 0.
Remarks. 1) According to the support vector machine terminology, the regularization term Lm

ε is
the Vapniks ε-insensitive loss function (the value of m can either be 1 or 2). To sum up, the procedure
can be interpreted as a regression problem for which the parameter ε defines the maximum gain level
outside the mainlobe beampattern and therefore serves as a sidelobe control parameter.

2) The optimal solution of problem in Eq. (15) is equivalent to that of the problem in Eq. (16).
The problem in Eq. (16) is a standard SVR problem, so it can be solved by the well-established QP
method or IRWLS procedure. To reduce the computational complexity, the IRWLS method is selected
to solve it.

3.2.3. Solution Based on IRWLS

The IRWLS procedure for solving SVR is initially introduced in [29]. Basically, the IRWLS procedure
employs a quadratic approximation of the SVR loss function, which is shown to converge to true
SVR solution. Initially, we perform a first-order Taylor series expansion of Lm

ε (u), leading to
J(w) = 1

2w̃
T R̃xxw̃+C

∑2P
i=1[L

m
ε (uk

i )+
dLm

ε (u)
du

∣∣∣
uk

i

(ui−uk
i )], where uk

i = |d̃i−w̃T
k ā(i)| is the ui at the kth

iteration and w̃k is the beamforming solution at the kth iteration. Then, a quadratic approximation
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is constructed by imposing J(w̃k) = J2(w̃k) and ∇w̃J(w̃k) = ∇w̃J2(w̃k) where ∇w̃ is the gradient
operator with respect to the vector w̃

J2(w̃) =
1
2
w̃T R̃xxw̃ + C

2P∑
i=1

[
Lm

ε (uk
i ) +

dLm
ε (u)
du

∣∣∣
uk

i

(u2
i ) − (uk

i )
2

2uk
i

]
=

1
2
w̃T R̃xxw̃ +

1
2

2P∑
i=1

fm
i u2

i + bi (17)

where bi denotes all the terms that do not depend on w̃. On the other hand, the weights fm
i depend

on the particular penalty function: for the linear (m = 1) Vapniks ε-insensitive loss function, they are
shown to be

f1
i =

C

uk
i

dL1
ε(u)
du

=

⎧⎨
⎩

0, if uk
i < ε

C

uk
i

, if uk
i ≥ ε

(18)

and for the quadratic loss function (m = 2)

f2
i =

⎧⎨
⎩

0, if uk
i < ε

2C(uk
i − ε)

uk
i

, if uk
i ≥ ε.

(19)

As can be seen, the new quadratic cost function is a regularized least-squares cost function. Thus,
its minimum value can be obtained by imposing ∇w̃J2(w̃) = 0

∇w̃J2(w̃) = R̃xxw̃ −
2P∑
i=1

fm
i

(
d̃i − w̃T ā(i)

)
ā(i) = 0. (20)

Equation (20) can be expressed in matrix form as

∇w̃J2(w̃) = R̃xxw̃ −ΦTDf D̃ + ΦTDfΦw̃ = 0 (21)

where Φ = [ā(1), ā(2), . . . , ā(2P )]T ∈ R2P×2M , D̃ = [d̃1, d̃2, . . . , ˜d2P ]T ∈ R2P×1, Df =
diag(fm

1 , fm
2 , . . . , fm

2P ) ∈ R2P×2P , 0 ∈ R2M×1 is a column vector filled with 0. By solving Eq. (21),
the weight vector can be expressed as follows

w̃ = [R̃xx + ΦTDfΦ]−1ΦTDf D̃. (22)
The line search technique [32] is applied to speed up the convergence of the IRWLS algorithm,

which is aimed to seek a descending direction as pk = w̃s − w̃k, with ws being the minimum at each
iteration of the weighted least-squares problem in Eq. (22). Then, the coefficients are modified along
that direction as

w̃k+1 = w̃k + λkpk (23)
where λk ∈ [0, 1] is the step size. Initially, the λk is set equal to 1, but if J(w̃k+1) ≥ J(w̃k), then it is
iteratively reduced until observing a strict decrease in the function J2(w̃).

Once the new beamformer w̃k+1 is obtained, we calculate the error terms as ui = |d̃i − w̃T
k+1ā(i)|

and update fm
i until the algorithm achieves the prescribed convergence threshold δ. The whole IRWLS

procedure is given in Table 1.

3.2.4. Summary of the Proposed Algorithm

The procedure of the proposed algorithm can be summarized as follows.
SVR-CMT Algorithm
(1) Collect data and estimate the covariance matrix R̂xx by Eq. (5) and the tapered covariance

matrix R̄xx by Eq. (6).
(2) Compute the desired beamformer output di based on Eq. (15).
(3) Transform the complex variables including R̄xx, di and a(θi) into the real variables based on

Eqd. (11)–(14) and obtain R̃xx, d̃i and ā(i). Meanwhile, prepare a 2M × 1 empty matrix for the weight
vector w̃.

(4) Obtain the weight vector w̃ according to the IRWLS procedure given by Table 1, and transform
the w̃ to the complex variables w by Eq. (10).
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Table 1. The IRWLS procedure.

Initialization: choose ε, C, and m ∈ {1, 2}. Set k = 0, w̃0 = 0, u0
i = di and calculate fm

i .
Repeat
Calculate w̃ as (22) and set λk = 1.
Calculate w̃k+1 = w̃k + λk(w̃s − w̃k) as (23).
while J(w̃k+1) ≥ J(w̃k) do
reduce λk and calculate again w̃k+1.
end while
Set k = k + 1
Compute uk

i with the obtained solution.
Update fm

i using (18) for m = 1 or (19) for m = 2.
until Convergence when |J(w̃k+1) − J(w̃k)| ≤ δ

4. SIMULATION RESULTS

In this section, several simulations are constructed to evaluate the performance of the proposed method.
Firstly, several evaluation indexes are defined as follows

a. The Beampattern: For the far-field signal s(t) with DOA θ and steering vector a(θ), the
array output is y(t) = wHx(t) = wHa(θ)s(t). The array response (output) is given by F (θ) = wHa(θ).
According to the definition of the beampattern function, the expression of the beampattern function is
shown as follows

G(θ) � 20lg
( |F (θ)|

max |F (θ)|
)

. (24)

b. Output SINR: For an adaptive antenna array system, the output SINR is defined as the output
signal power divided by the output interference-and-noise power. Normally, the dB is employed as the
unit of the output SINR and it is given by SINRout � 10lg wHRsw

wHRi+nw
= 10lgσ2

0 |wHa(θ0)|2
wHRi+nw

, where Rs is the
covariance matrix of the desired signal, and Ri+n is the covariance matrix of the interference-and-noise.
The signal power σ2

0 can be estimated by σ̂2
0 = wHRxxw.

In the following simulations, a uniform linear array (ULA) is exploited, which consists of ten
isotropic sensors (M = 10) equispaced by half-wavelength. The DOA θ0 of the desired signal and the
DOAs (θ1, θ2) of the two interference signals are θ0 = 0◦, θ1 = −40◦, θ2 = 40◦. The interference-to-noise
ratio (INR) is set to 35 dB for both of the interference signals unless otherwise stated. The notch width
W is assigned to 9◦, and the number of the virtual interference signals K is set to 5. Sensor noises are
simulated as spatially and temporally white Gaussian processes with zero mean and identical variances
in each sensor. For the SVR parameters, it is assumed that the uncertainty region Δ = 2◦. In addition,
the control parameters ε, C are set to 0.001 and 1, respectively. The angular range [−90◦, 90◦] is
uniformly sampled with P = 60 angles. Both the linear (L-SVR-CMT) and quadratic (NL-SVR-CMT)
scenarios are plotted in the simulation results.

4.1. Experiment A Performance in the Absence of DOA Mismatches

In the following experiments, the DOA of the desired signal is exactly estimated, which means the DOA
of the desired signal equals to the actual DOA. The beampattern, the output SINR performance versus
the changing SNR and snapshots will be discussed in the following experiments.

4.1.1. A-1 The Beampattern Performance

In this experiment, the signal-to-noise ratio (SNR) of signal-of-interest (SOI) is assigned to 5 dB. 256
snapshots are used to compute the beampatterns of CMT and SVR-CMT (including L-SVR-CMT and
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NL-SVR-CMT), which are plotted in Figure 1.
From Figure 1, we observe that when the DOA of the desired signal is exactly estimated, all

the beampatterns generate deep and wide nulls at the DOAs of interference signals and maintain a
distortionless response for the SOI. But the CMT method has a relatively high sidelobe level compared
with the proposed method. That is because in the null broadening part, several virtual interference
signals whose powers are small are used to replace the original interference, and it reduces the power of
the interference. Therefore, the sidelobe level rises, and the depth of nulls decreases. The SVR-based
algorithm can lower the sidelobe and generate deeper null levels at the DOAs of the interference. In this
experiment, L-SVR-CMT has a generally higher performance compared with NL-SVR-CMT in terms
of sidelobe level and the depth of nulls.
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4.1.2. A-2 The Output SINR versus the Changing Input SNR

In this experiment, Figure 2 shows the array SINR curves of the aforementioned beamformers, based on
500 independent trials under the hypothesis that SNRs range from −10 dB to 15 dB, and the number
of snapshots is fixed at 256. In this experiment, the INR of each interference signal is set to 30 dB.

As shown in the figure, compared with the conventional CMT method, the L-SVR-CMT has a
generally higher output SINR within the whole range of input SNR. When the input SNR > 2 dB, the
performance of NL-SVR-CMT surpasses the CMT.

4.1.3. A-3 The Output SINR versus the Changing Snapshots

In this experiment, Figure 3 gives the array SNIR curves of the aforementioned beamformers, based on
500 independent trials under the condition that the snapshots range from 25 to 1024. The input SNR
is assigned to 20 dB.

From Figure 3, it can be seen that the output SINR of SVR-CMT algorithm is higher than that
of CMT. That is because when the SNR is 20 dB, the desired signal dominates the covariance matrix,
thus using the covariance matrix to replace the interference-and-noise covariance matrix is not precise
enough. Thus, the performance of CMT may degenerate and it may cause the dissatisfied beampatterns,
such as the rise of sidelobe level. Fortunately, for the proposed method, the ε-insensitive function serves
as a sidelobe controller, thus it can improve the beamforming performance effectively.
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Figure 3. The output SINR versus the changing
snapshots.
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Figure 4. Beampattern under 5◦ mismatch
scenario.
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Figure 5. Output SINR versus input SNR under
5◦ mismatch scenario.
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Figure 6. Output SINR versus snapshots under
5◦ mismatch scenario.

4.2. Experiment B Performance in the Situation of DOA Mismatches

In the following experiments, the performance of the proposed method for the DOA mismatch problem
is simulated. Except for the DOA θ0, other simulation parameters are identical to those in the previous
simulations. Figure 4–Figure 6 depict the beampatterns and SINR performance of the aforementioned
methods with Δθ0 = 5◦ (assume that the desired signal arrives actually from 5◦, however, the DOA
estimation is equal to θ0 = 0◦).
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4.2.1. B-1 The Beampattern Performance

In this experiment, Figure 4 gives the beampattern of CMT and SVR-CMT. Although the CMT method
generates deep nulls in the direction of interferences, it has an unacceptable beampattern since it results
in mainlobe shifting or sidelobe rising by a big margin. Fortunately, the proposed method, especially the
L-SVR-CMT, has a generally better performance in terms of mainlobe direction and the sidelobe level.
Therefore, the presented method improves the beamforming performance when the DOA estimation is
not precise enough.

4.2.2. B-2 The Output SINR Performance

Figure 5 and Figure 6 show the output SINR versus input SNR and changing snapshots for the DOA
mismatch scenario, respectively. From Figure 5, the SINR performance of the CMT method degenerates
when the SNR is higher than 5dB. In Figure 6, its SINR is around 0 dB, and it does not increase even if
the number of snapshots increases. That is because when the mismatch scenarios take place, the CMT
method treats the desired signal as interference signal, especially in the high SNR scenarios. On the
other hand, the proposed method has a better SINR performance than that of CMT. That is because
when we define the desired beamformer response, the DOAs are sampled in [−90◦, 90◦]. Thus, even if
the DOA estimation is not precise enough, the error can be mollified by the SVR training. Therefore,
the proposed method can improve the SINR performance when the DOA estimation error exists.

To fairly evaluate the efficiency of the proposed method, its computational complexity should be
analysed. According to the previous analysis, the computational complexity of the proposed method
mainly includes: (1) the covariance matrix taper according to Equation (6), of order O(M2) generated
by Hadamard product, where M is the number of array elements; (2) the IRWLS procedure to
solve the weight vector iteratively according to Eq. (22). At each iteration, the proposed algorithm
needs to solve a linear system of 2M equations with 2M unknowns, in order to obtain Eq. (22).
Therefore, the computational complexity of the proposed method is, basically, Number of Iterations
×O((2M)3)+O(M2). According to our observation, the number of iteration is usually small. Typically,
it is no more than 2. Thus, when M � 8, the computational complexity order of the proposed method
is O(M3). The CMT procedure includes the covariance matrix inversion and covariance taper, so its
computational complexity is O(M3)+O(M2), and its order is O(M3). Thus, when M � 8, the proposed
method has the same order of computational complexity compared with CMT method, so it does not
increase the computational complexity significantly. The comparison of the computational complexity
can be seen in Table 2.

Table 2. Comparison of the computational complexity.

Methods Covariance Matrix Taper Inverse

CMT O(M2) O(M3)

SVR-CMT O(M2) O(8M3)

5. CONCLUSIONS

This paper presents an effective beamforming method based on SVR for null broadening and sidelobe
control. The original beamforming problem is formulated as a standard SVR problem so that the
beamforming can be controlled effectively, and the solution of the weight vector can be obtained
efficiently. Compared with the previous works, the proposed approach can effectively control the sidelobe
and nulling level. At the same time, it can improve the output SINR performance even if the DOA
error exists. Simulation results are presented to verify the performance of the proposed SVR-CMT
beamformer with robustness and relatively good beamforming performance.
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