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Abstract

Background: Identifying periodically expressed genes across different processes (e.g. the cell and metabolic cycles,

circadian rhythms, etc) is a central problem in computational biology. Biological time series may contain (multiple)

unknown signal shapes of systemic relevance, imperfections like noise, damping, and trending, or limited sampling

density. While there exist methods for detecting periodicity, their design biases (e.g. toward a specific signal shape)

can limit their applicability in one or more of these situations.

Methods: We present in this paper a novel method, SW1PerS, for quantifying periodicity in time series in a

shape-agnostic manner and with resistance to damping. The measurement is performed directly, without

presupposing a particular pattern, by evaluating the circularity of a high-dimensional representation of the signal.

SW1PerS is compared to other algorithms using synthetic data and performance is quantified under varying noise

models, noise levels, sampling densities, and signal shapes. Results on biological data are also analyzed and compared.

Results: On the task of periodic/not-periodic classification, using synthetic data, SW1PerS outperforms all other

algorithms in the low-noise regime. SW1PerS is shown to be the most shape-agnostic of the evaluated methods, and

the only one to consistently classify damped signals as highly periodic. On biological data, and for several

experiments, the lists of top 10% genes ranked with SW1PerS recover up to 67% of those generated with other

popular algorithms. Moreover, the list of genes from data on the Yeast metabolic cycle which are highly-ranked only

by SW1PerS, contains evidently non-cosine patterns (e.g. ECM33, CDC9, SAM1,2 and MSH6) with highly periodic

expression profiles. In data from the Yeast cell cycle SW1PerS identifies genes not preferred by other algorithms,

hence not previously reported as periodic, but found in other experiments such as the universal growth rate response

of Slavov. These genes are BOP3, CDC10, YIL108W, YER034W, MLP1, PAC2 and RTT101.

Conclusions: In biological systems with low noise, i.e. where periodic signals with interesting shapes are more likely

to occur, SW1PerS can be used as a powerful tool in exploratory analyses. Indeed, by having an initial set of periodic

genes with a rich variety of signal types, pattern/shape information can be included in the study of systems and the

generation of hypotheses regarding the structure of gene regulatory networks.

Keywords: Periodicity, Gene expression, Time series, Sliding windows, Persistent homology

*Correspondence: joperea@math.duke.edu
1Department of Mathematics, Duke University, Science Dr, 27708 Durham, NC,

USA
2Institute for Mathematics and its Applications (IMA), University of Minnesota,

Minneapolis, MN, USA

Full list of author information is available at the end of the article

© 2015 Perea et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0645-6-x&domain=pdf
mailto: joperea@math.duke.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Perea et al. BMC Bioinformatics  (2015) 16:257 Page 2 of 12

Background
Previous Work

Many methods are available for detecting periodicity in

time series data [1, 2], and many have been successfully

applied in the task of identifying periodic gene expres-

sion. Most of these algorithms can be classified into three

broad classes, based on how/if they use reference patterns.

In particular: approaches which use sinusoidal curves as

a base for comparison, user-defined shape templates, and

those that do not use a reference pattern. We provide a

brief description below.

Methods in the first class determine the period and

measure the strength of periodicity by comparing the

input time series to sinusoidal curves with different peri-

ods. This includes algorithms which transform a time

series into the frequency domain, as with the discrete

Fourier transform, and those that fit sinusoidal curves to

the target signal. The method introduced in [3] uses a

Fourier-based approach and a measure of amplitude (as

an indicator of regulation strength) to generate a score, as

well as a permutation test to asses significance. COSOPT

[4] compares a signal to cosine curves with different

phases and periods to measure their correspondence, and

then uses empirical resampling to compute significance.

Lomb-Scargle [5, 6] uses a variation of the discrete Fourier

transform to handle unevenly sampled data, and returns a

significance score.

Other methods compare the signal to reference curves

that are specified by the user. The method of Luan and

Li [7], for example, generates a spline function to repre-

sent the pattern of known periodic genes, and then uses

this shape model to score other signals. JTK_CYCLE [8]

determines increasing or decreasing patterns of the obser-

vations in both a reference curve and the signal, and

then measures the statistical significance of correlation

between them.

Other methods, by way of contrast, do not use a set pat-

tern to identify signals of interest, but instead attempt to

discover patterns that exist in the data. Address Reduc-

tion [9] measures the algorithmic compressibility of the

signal; a signal that is more compressible indicates there is

a pattern and it might be of biological interest. It is worth

noting that non-compressibility does not imply periodic-

ity. An instance of Persistent Homology [10] pairs, in a

subtle way, minima and maxima of a time series. This can

be used to measure periodicity: if there is only one mini-

mum and maximum pair, it is considered to be a perfect

oscillation. Additional oscillations in the time series will

create more minimum-maximum pairs, indicating a less

perfect curve.

A comparative study of the Lomb-Scargle, Persistent

Homology, JTK_CYCLE and de Lichtenberg methods was

undertaken in [1]. One of their main conclusions is that

curve shape has considerable impact on the scoring of

biological signals; this is specially relevant in exploratory

settings where the shapes of interest produced by a partic-

ular periodic process are not known.

Our Contribution

SW1PerS, the algorithm introduced here, was designed

to help overcome the limitations posed by: Signal-shape

biases in the rankings of algorithms which use prede-

termined templates, the effects of damping in periodic-

ity estimation, and the difficulty of interpreting scores

derived from p-values. In a nutshell, SW1PerS transforms

the input time series into a high-dimensional set of points

(also referred to as a point cloud) and interprets period-

icity of the original signal as “circularity" of this set. When

constructing this point cloud one uses a local normal-

ization process geared toward diminishing the effects of

damping. A more in depth description will be presented

in the Methods section.

We compare SW1PerS (SW) to existing algorithms,

specifically: Lomb-Scargle (LS), de Lichtenberg (DL),

JTK_CYCLE (JTK), and Persistent Homology (PH). The

first test evaluates their performance on separating peri-

odic from non-periodic signals in a synthetic data set.

Their biases for different signal shapes is also analyzed.

We then examine how the algorithms behave when

applied to real data from different periodic processes and

species: the cell cycle in yeast, the metabolic cycle in yeast,

and circadian rhythms in mouse.

Results
Synthetic data description

The synthetic data used in this paper attempts to capture

characteristics found in biological time series, but was

generated with known parameters so that results across

algorithms could be compared. The periodic shapes

included can be seen in Fig. 1; please refer to the supple-

ments (table S1) for the equations which generate these

curves.

The periods and amplitudes were fixed, but the phase

shifts were allowed to vary from 0 to the length of the

period. The period length was 100 (time units) and the

signals covered 200 units of time, so each signal spans

two cycles. One thousand signals were generated for each

signal shape.

Four noise models were applied to the set of signals,

each at five different levels: Gaussian Additive with stan-

dard deviation SD equal to 0, 12, 25, 37 and 50, Laplacian

Additive with spread b at 0, 8.49, 17.68, 26.16, and 35.36,

Gaussian Multiplicative with SD equal to 0, 0.12, 0.25,

0.37 and 0.5, and Laplacian Multiplicative with b =
{0, 0.08, 0.18, 0.26, 0.35}. The standard deviation SD for

additive (resp. multiplicative) Gaussian noise and the

spread b for additive (resp. multiplicative) Laplacian noise

were matched (SD =
√
2b) so the distributions would
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Fig. 1 Periodic and Non-Periodic signals in the synthetic data. Signals

are shown with additive Gaussian noise with SD = 0, 25, 50. Please

refer to an electronic version for colors

have the same variance. Given the shapes of the distribu-

tions, this results in the Laplacian noise model producing

signals with more accentuated outliers, as compared to

the less extreme behavior of the Gaussian noise. The addi-

tive andmultiplicative variances were notmatched to each

other.

Synthetic Data Analysis

In what follows we present our results on the synthetic

data. The first analysis of performance is howwell an algo-

rithm can distinguish between periodic and non-periodic

signals for several noise models, levels of noise and tem-

poral sampling density. The second explores signal shape

bias for each method. For this study JTK, LS, DL, PH

and SW1PerS were set to scan for periodicity at a period-

length equal to the true period.

Receiver Operating Characteristic (ROC) curves pro-

vide a succinct visualization of the classification accuracy

furnished by a scoring scheme. In a nutshell, each point

(F ,T) in the ROC curve records the proportion of signals

which have been correctly (T) and incorrectly (F) classi-

fied as periodic for a particular choice of score cut-off. The

ROC curve is formed as this choice is varied. It follows

that the area under curve (AUC) is an explicit numeri-

cal summary for the classification accuracy of a scoring

scheme: a value of 1 for the AUC implies a perfect classi-

fier, while a value of 0.5 corresponds to random classifica-

tion. We report in Figs. 2 and 3 the AUCs obtained on the

synthetic data for all algorithms under consideration. The
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Fig. 2 AUC’s showing the algorithms’ performance on identifying

periodic signals for different signal shapes, additive Gaussian noise

levels (standard deviation = {0,12,25,37, 50}), and number of samples

(= {50, 25, 17}). Please refer to an electronic version for colors

ROC curves for each number of samples, noise model,

noise level, and shape can be found in the supplements

(Figures S3-S14).

The first thing to notice (see Figs. 2 and 3) is that at

the low sampling (17 time points) and low noise regime

(SD = 0 to 12 in the additive Gaussian model, SD = 0 to

0.12 in the multiplicative, b = 0 to 8.49 in the additive

Laplacian and b = 0 to 0.08 in the multiplicative), SW has

the best performance among the evaluated algorithms in

the task of identifying periodic and non-periodic signals.

Moreover, as the number of samples increases and the

noise level is kept constant (SD = 0), SW continues to be at

the top even as the other algorithms improve their scores.

This is due to signals like the contracting cosine and the

exponential trend, for Fourier-based methods; e.g. Lomb-

Scargle and de Lichtenberg. Indeed, for these types of

signals the spectral density will not be as concentrated at

a single frequency. This, even when there is a clear repeat-

ing pattern, which methods like SW and JTK correctly

identify.

Classification results deteriorate across the board as

noise increases, with DL being the most resilient – spe-

cially in high-sampling conditions, and SW performing on

par with the others. It is worth noting the similarity in

spacing and ordering (with respect to signal shape) of the

AUC scores between algorithms. This can be interpreted

as follows: for all the evaluated methods classification is
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Fig. 3 AUC’s showing the algorithms’ performance on identifying periodic signals for different signal shapes, noise models, noise levels (SD and b)

and number of samples. Please refer to an electronic version for colors

more accurate for simpler signals (e.g. cosines and square

waves) but as shape patterns become more intricate (e.g.

contracting cosine and double peaked) correct classifica-

tion in the presence of noise is more difficult. Indeed,

periodicity (interpreted as the repetition of patterns) is

more severely affected in complicated signal shapes when

random additive noise increases.

If we now turn our attention to Fig. 3, we see a very sim-

ilar picture to what we have described so far. That is, even

with Laplacian noise, which tends to add more accentu-

ated outliers, the relative performance of the algorithms

tends to be similar. This can be interpreted as follows: the

algorithms presented here are stable, for the most part,

for the noise models under consideration. The exception

is PH, as can be seen from the figures.

In summary: For the noise models considered here,

SW1PerS is the best performer in the no-noise/all-

samplings and small-noise/low-sampling regimes. de

Lichtenberg is the most successful in the medium to high

noise regime.What we will show next is that SW1PerS has

better ranking properties, in that it has a greater richness

of signal types at the top of its score distributions.

In our second analysis, we examined how biased each

algorithm was toward each signal shape. This can be

visualized by plotting the distribution, as a histogram, of

periodicity scores for all instances of all signal shapes in

the synthetic data (Fig. 4). When one shape consistently

receives better scores than all others, the algorithm is

biased towards this shape. For JTK and LS, we can see

a strong bias for cosine signals, which receive the best

scores (Fig. 4). DL groups most exemplars at an interme-

diate level, except for peak2 and contracting signals which

receive worse scores, and the trended signals which are

distributed across a wide range. For SW1PerS, there is a

mixture of cosine, cosine 2, cosine damped, and square

signals near the top of the rankings. These are followed

closely by peaked and sawtooth signals. The plots of score

distributions for each algorithm, number of samples, noise

level, and shape can be seen in the supplement (Figures

S15-S34). As the noise level increases, these divisions by

shape become further blurred. In summary, SW1PerS is

the method with the most shape variation for signals

scored as highly periodic, and the only one to include

damped shapes at the top of its rankings.

Methods such as JTK and LS base their score on p-

values. This has a subtle drawback: increasing the number

of samples on a periodic curve causes the p-values to

become more significant, muddling comparisons across

experiments with different numbers of time points. Since

SW1PerS ignores the number of samples in its measure

of periodicity, it is more amenable to inter-experiment

queries.

Significance Analysis

Using synthetic data we have shown that SW1PerS is a

powerful method for quantifying periodicity in time series

data. And though the score it produces does not have the

subtle drawbacks of methods based on p-values, it is still

important to assess its statistical significance.
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Fig. 4 Biases for curve shapes for each algorithm (rows). Distributions

of scores are by shape with no noise (Gaussian noise SD=0). The x-axis

shows the log of the scores, ranging from the lowest (best score) to

the highest (worst score) returned by the algorithm. The y-axis shows

the number of signals receiving the score. Please refer to an

electronic version for colors

In what follows we will present a permutation analysis

of the SW1PerS score, in order to quantify the probabil-

ity that observed good scores are due to chance alone.

In particular, we compute the empirical probability that a

permuted version of a signal gets a better score than the

original one. The setup is described below.

For permutation testing we use signals with 25 time

points and Gaussian additive noise of 12. One signal was

selected for each shape. This set of one signal per shape

was then subjected to permutation testing. For permu-

tation testing, each original signal was permuted using

python’s "random.shuffle" method to create a sam-

ple, of size N, of permuted versions. This process was

repeated R times. Each one of the permuted signals, along

with the original ones, were then run through SW1PerS.

For each sample of size N, the p-value was computed as

the proportion of permuted signals with SW1PerS score

better than or equal to that of the original version.

The number N of permuted signals was tested at

increasing orders of magnitude: 1000, 10,000, 100,000.

The number of repetitions Rwas set to 5. The convergence

of the p-values for 5 (= R) repetitions and 100,000 (=
N) permutations was sufficient for analysis. In particular,

the standard deviation of the computed p-values for 5

repetitions, across all shapes, was less than 0.0023.

We report in Table 1 the mean p-values, across the

5 repetitions, along with their computed standard devi-

ations for all signal shapes. The low p-values, save for

the most challenging signal types, suggests that assign-

ing a good score with SW1PerS by chance alone is

highly unlikely. Figure S35 (supplements) depicts his-

tograms of the distributions of scores for the permuted

signals.

Biological Data Sets

We examined the results of the algorithms on data sets

from three microarray experiments (Additional file 2).

These experiments were designed to measure periodic

gene expression of different processes in different organ-

isms which, as we will show, feature signal shapes which

deviate from the usual cosine-like curves.

The wild-type data (WT) from [11] shows periodic gene

expression during the cell division cycle (CDC) in bud-

ding yeast, S. cerevisiae. A population of wild-type cells

Table 1 Computed mean p-values and standard deviations,

across 5 repetitions, for each signal type

Type Shape Mean p-value Std

Periodic Cos 0.00005 0.000012

Cos 2 0.003354 0.000313

Peak 0.010792 0.000363

Trend Lin 0.009752 0.00035

Trend Exp 0.161562 0.001052

Damp 0.006814 0.000177

Saw 0.00027 0.000035

Square 0.00001 0.00001

Contract 0.262642 0.002222

Non-periodic Flat 0.54663 0.002278

Line 0.935736 0.001094

Exp Decay 0.897834 0.000586

Sigmoid 1 0
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were synchronized and samples were taken at 16 minute

intervals. The period for the cell cycle in this experiment

is estimated to be approximately 95 minutes, and the data

sets cover a recovery period and roughly two cell cycles.

This data set contains 15 samples, but only the last 13

were used in order to omit a stress response. There are

two replicates, WT1 and WT2.

The yeast metabolic cycle (YMC) data of [12] are from

S. cerevisiae that were grown to a high density, briefly

starved and then given low concentrations of glucose.

Samples were taken at variable intervals of 23-25 minutes.

We evened the sample intervals by changing the times to

every 24 minutes. The yeast metabolic cycle is estimated

to be approximately 300 minutes; this data set covers

approximately three cycles and contains 36 samples.

The mammal circadian rhythm data from [13] is from

wild-type mice that were synchronized by entraining

them to an environment with 12 h light and 12 h dark

for one week. They were then placed into total darkness.

Samples were taken from the liver every hour. The period

of the circadian rhythm is approximately 24 hours, and

this data set covers two circadian cycles and contains 48

samples.

For the yeast cell cycle, the data has a low sampling den-

sity of 13 samples for two periods (6.5 samples per cycle).

Additionally, the data is damped. The yeast metabolic

cycle data has a higher sampling density of 36 samples

for three periods (12 samples per cycle). For the circadian

rhythm, the data has a higher sampling density of 48 sam-

ples for two periods (24 samples per cycle) and the data

appear noisier than the yeast cell cycle data.

Biological Data Analysis

Each data set was run through the LS, JTK, DL, and SW

algorithms (Parameters in Table S3). We omitted PH from

further analysis, as it did not perform as well as the oth-

ers on the synthetic data. Comparing these algorithms is

challenging; unlike in the synthetic data there is no ground

truth; the algorithms return p-values or scores that can

be difficult to compare directly, and their score distri-

butions are difficult to interpret (Figures S39-S41). We

evaluate the performance of SW on biological data, rela-

tive to the other algorithms, based on its ability to: find

periodic shapes which the other algorithms also identify;

find uncommon signals that have nonstandard periodic

shapes; and to recover signals of genes that are believed

to be part of a given periodic process. In addition, we

report sets of genes from overlapping periodic processes

found with SW1PerS. We present next the results of these

analyses.

Finding common periodic signals.

One of the goals in developing SW was that it would be

more shape agnostic, and therefore able to detect a larger

range of periodic shapes in the data. SW should, however,

recover results from the top of the other algorithm’s lists,

which have been shown to detect periodic signals.

First, we take the top 10 % and 20 % of results by rank

from each algorithm and compare their overlaps (Table 2).

Complete Venn diagrams (Figures S42-S44) and tables

of percent overlap (Tables S4-S6) can be found in the

supplements.

We also quantify the ability of each algorithm to iden-

tify genes in sets of consensus. For this analysis, a set of

consensus is a list of probes which appear in the top 10 %

of at least 3 different algorithms. We report in Table 3

the number, and percentage, of consensus genes that each

algorithm is able to discover in its top 10 % of rankings.

We do this for each one of the biological data sets.

As shown, SW has the highest percentage of probes

(90 %) in the consensus for the yeast cell cycle. SW has

second highest percentage (93 % compared to 94 % for LS)

in the yeast metabolic cycle. In the mammal circadian set,

SW has 82 % in the consensus set, while the other algo-

rithms have higher percentages (88-97 %). These analyses

suggest that SW1PerS is able to identify a large portion of

genes labeled as highly periodic, even when the labelling

process has been done with very different algorithms.

Finding uncommon periodic signals.

To determine if SW finds unusual periodic shapes that

other algorithms might overlook, we next examine sig-

nals ranked highly only by SW. To this end, we study the

sets of signals that are in the top 10 % of SW’s rankings,

but not in the top 10 % for any other algorithm (Addi-

tional file 3). These sets include 151 probes of a total

5900 yeast cell cycle probes on the microarray, 179 of

9335 yeast metabolic probes, 1029 of 45101 mammal cir-

cadian probes. The yeast metabolic cycle data, with higher

sampling and three cycles, shows interesting examples

(Fig. 5).

All signals in this figure are listed in the 3,656 probes

(39 % of all probes on the array) identified as periodic in

[12]. They use an autocorrelation function with a period

determined by Lomb-Scargle. These signals are ranked

very highly by SW, are not necessarily highly periodic

Table 2 Percentage of overlap from the top 10 % and 20 % of

probes as ranked by the algorithms

Data Cell Cycle Met. Cycle Circ. Rhy.

Top # 590 1180 933 1866 4510 9020

Top % 10 % 20 % 10 % 20 % 10 % 20 %

SW∩DL 51 % 59 % 36 % 56 % 64 % 68 %

SW∩LS 52 % 60 % 67 % 78 % 67 % 59 %

SW∩JTK 51 % 59 % 60 % 73 % 67 % 66 %

All 26 % 42 % 23 % 42 % 53 % 55 %
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Table 3 Number and percentage of probes in the top 10 % of

rankings from each algorithm that are in a consensus set. That is,

those which appear in the top 10 % of rankings for at least three

algorithms

Data Set Alg #Consensus %Consensus

Yeast Cell Cycle sw 316 0.90

Consensus: 353 dl 289 0.82

ls 298 0.84

jtk 311 0.88

Yeast Met. Cycle sw 553 0.93

Consensus: 596 dl 345 0.58

ls 563 0.94

jtk 541 0.91

Mammal Circadian sw 3090 0.82

Consensus: 3767 dl 3330 0.88

ls 3640 0.97

jtk 3636 0.97

according to the other algorithms under consideration,

and have shapes which are very unusual. Notice that a rep-

etition across three periods makes it highly unlikely for

these shapes to be artifacts.

Finding signals that are part of a periodic process.

To determine if the algorithms recover genes associated

with periodic processes, we examine their rankings of

genes associated with the yeast cell cycle and the circadian

rhythm. The lists of genes were created from previous

studies that locate the binding sites of genes known to be

part of the given periodic process.

For the yeast cell cycle, the ChIP-chip data of [14]

includes nine known cell cycle transcription factors:

Mbp1, Swi4, Swi6, Mcm1, Fkh1, Fkh2, Ndd1, Swi5, and

Ace2. From this data set, we selected a list of 141 genes as

Fig. 5 Some example shapes in the yeast metabolic cycle data found

in the top 10 % of SW results, but not in the top % listed (first column)

of any of the other algorithms. The columns are: gene symbol; rank

from SW, DL, LS, and JTK; amplitude; and the plot of the time series.

Ties in the rank are averaged. The amplitude is the maximum

minimum. The plots are normalized from the minimum to the

maximum of the signal. For a full listing of genes in the top 10 % of

one algorithm but not in the top 10 % the others, see supplemental

files “top_genes”

targets of these transcription factors. For the mouse cir-

cadian rhythm, the Chip-Seq data of [15] includes seven

known circadian transcription factors: BMAL1, CLOCK,

NPAS2, PER1, PER2, CRY1, and CRY2. From this data

set, we selected 361 genes as targets of these transcription

factors. See Methods for our inclusion criteria.

Promoter binding does not guarantee functional regu-

lation and therefore some targets may not be periodically

expressed in response to binding by a cell cycle or circa-

dian rhythm transcription factor. However, for including

genes in our periodic process list, we are willing to accept

the cost of including false positives in exchange for the

benefit of not using other periodicity detection methods

to determine inclusion. The rankings of these genes are

visualized with a histogram to show how periodic the

algorithms consider them (Fig. 6).

For the yeast cell cycle, SW and DL pick the highest

number of binding targets at the top of their rankings,

with DL selecting the most. Within the top 10 % of the

rankings, DL finds 53 % of the genes, SW 24 %, LS 22 %,

and JTK 19 %. For the mammal circadian data, the dis-

tributions for the top rankings are more similar; SW and

the other algorithms find 50-55 % of the gene list within

the top 10 % of their rankings. We find that these results

Fig. 6 Distribution of genes identified as targets of transcription

factors involved in periodic processes. The yeast cell cycle list comes

from ChIP-chip experiments and the mammal circadian rhythm data

comes from ChIP-Seq experiments
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are relatively stable across different cutoffs, as shown in

Tables 4 and 5.

In contrast with SW, LS and JTK have pushed a larger

portions of these genes to the lowest rank. See supplement

for a comparison of rankings for yeast cell cycle (Figure

S45) and mammal circadian rhythm (Figure S46) for a

selected set of known genes.

Discovery of signals frommultiple processes.

To determine if SW finds genes involved in multiple pro-

cesses in budding yeast, we compared cell cycle genes

preferred by SW with results from other experiments in

yeast. To create the list of genes that SW prefers, we

selected the top 10 % of ranked results from SW that

were not in the top 10 % of ranked results for the yeast

cell cycle (WT1) on either DL, JTK or LS. This results in

151 probes with 148 unique systematic names. To filter

out probes that are potentially more noise than signal, we

compared the replicatesWT1 andWT2 using a combined

score from SW and JTK (see Supplements, section 8). A

cutoff of 0.05 yielded a list of 77 probes.

We compared this set of signals to lists of genes from

other experiments: the gene list of the yeast metabolic

cycle (YMC) from [12] and the gene lists of the positive

and negative universal growth rate response (GRR) from

[16]. The genes with universal growth rate response are

a subset of the periodically expressed genes in the yeast

metabolic cycle [16]. The percent overlap between our list

of 77 probes and these data sets are shown in Table 6.

(Supplemental figures S47-S49.)

In the overlap with the yeastmetabolic data, but not pre-

viously identified as periodic in [11], was CDC10, a com-

ponent of the septin ring [17]. Not identified in [18] or [11]

were BOP3, a potential target of Cdk1 [19]; and YIL108W

and YER034W,which are involved in the response to DNA

replication stress [20]. In the overlap with the negative

universal growth rate response, but not previously iden-

tified as periodic in [11] or [18], were MLP1, which has

a role in controlling the length of telomeres [21]; PAC2,

which is involved in microtubule functioning and chro-

mosome segregation [22]; and RTT101, which is involved

in the progression of anaphase [23]. The algorithm rank-

ings and time series for these genes are shown in Fig. 7.

Table 4 Overlap between algorithm rankings and binding data

for Yeast Cell Cycle data. The percent of probes in the top X % of

rankings for each algorithm that are in the set of bindings targets

that we compiled from the ChIP-chip data of Simon, et al, 2001

Alg 5 % 10 % 15 % 20 %

SW rank 14 24 31 35

DL rank 39 53 56 59

LS rank 9 22 35 38

JTK rank 10 19 31 40

Table 5 Overlap between algorithm rankings and binding data

for Mammal Circadian data. The percent of probes in the top X %

of rankings for each algorithm that are in the set of bindings

targets that we compiled from the ChIP-Seq data of Koike, et al,

2012. Note that the array for the circadian data set has multiple

probes for some genes and duplicates were not removed

Alg 5 % 10 % 15 % 20 %

SW rank 32 50 63 74

DL rank 41 54 69 70

LS rank 37 53 65 71

JTK rank 35 55 70 78

Discussion
The results from the synthetic data show that SW is

comparable to other popular algorithms for most signal

shapes, noise levels, and sampling densities. Additionally,

SW outperforms DL, LS, JTK, and PH on the low noise

regime and across all sampling densities. This analysis

has shown that SW1PerS performs well on data that has

shapes which occur in biological systems from different

organisms, and that it is well behaved under sampling

densities and noise levels found in microarray data sets.

SW1PerS shows less bias against damped signals, which

occur frequently for instance in the yeast cell cycle data.

The analysis of the biological data shows that SW1PerS

is able to recover many of the signals other algorithms

find, and can additionally discover non-cosine shapes that

other algorithms might exclude. We believe that finding

signals with a greater diversity of shapes well outweighs

the cost of giving higher ranks to signals that might appear

to be noise. SW also appears to detect different types of

biological processes than the other algorithms based on

GO enrichment (see Supplemental table S7-S14).

Each algorithm tested here has strengths and weak-

nesses that vary by signal shapes, noise levels, and sam-

pling rates. For SW1PerS, in particular, we have observed

the following relative strengths:

• SW1PerS, in the low noise range, has been shown to

be the most shape-agnostic algorithm out of the

methods studied here.

Table 6 Number of probes from the top 10 % of SW, not in the

top 10 % of other algorithms, filtered for noise using the

replicates, that overlap with other data sets. We also show the

numbers of these probes not identified in Orlando 2008,

Spellman 1998, and not in either of these data sets

Dataset Overlap ¬Orlando ¬Spellman ¬Either

YMC 36 (47 %) 21 (27 %) 30 (39 %) 18 (23 %)

GRR Pos 3 (4 %) 2 (3 %) 3 (4 %) 2 (3 %)

GRR Neg 13 (17 %) 8 (10 %) 12 (16 %) 8 (10 %)
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Fig. 7 Examples of genes from the yeast cell cycle data in the top 10

% of SW, not in the top % listed (first column) of other algorithms,

filtered for noise, that overlap with other data sets and have not been

identified in [11] and/or [18]. Columns are gene symbols; the rank out

of 5,900 probes for each method; and the plot of the wild-type

replicates 1 and 2. Ties in rank are averaged. The plots are normalized

from the minimum to the maximum. For a full listing of genes in the

top 10 % of one algorithm but not in the top 10 % the others, see

supplemental files “top_genes”

• SW1PerS is able to effectively estimate periodicity

even as the period length changes from oscillation to

oscillation. We saw this, for instance, with the

contracting cosine in the synthetic data.
• The score that SW1PerS returns has a geometric

interpretation, and can be compared across different

data sets.
• SW1PerS can be used on data with low temporal

resolution and uneven time spacing.
• While the algorithm requires the selection of certain

parameters (e.g. window size, embedding dimension,

etc), the theory behind the method suggests

reasonable values.
• Even though the inner-workings of the SW1PerS

algorithm are quite different from the other methods

studied here, it is able to recover – to a large extent –

what other algorithms find.

There are also weaknesses which are worth keeping in

mind:

• The implementation we have of SW1PerS has been

clocked at between 0.5sec and 1.0sec per signal, on a

laptop computer. Hence, running-time can be an

issue. We expect that as better algorithms for

computing 1-persistent homology and more

computational resources become available, this

problem can be mitigated.
• The probability distribution for the SW1PerS score,

even for the additive Gaussian noise model, has not

been described as of yet. Hence, we lack a principled

way of producing p-values. And though studying this

distribution is out of the scope of the present article,

we have used synthetic data – where the ground truth

is known – to assess the performance of SW1PerS

relative to other algorithms. In addition, permutation

tests were also performed to evaluate significance and

positive results were obtained as shown in Table 1.
• As we have observed with the synthetic data,

SW1PerS tends to degrade as noise increases, and it

does so at a faster rate than some of the other

methods studied here. Signal processing, however, is a

rich field with highly successful denoising algorithms

that can be brought to bear in this problem.
• SW1PerS does not recover the phase or period length.

Keeping all this in mind, the analyses presented here

have shown the benefits of applying SW1PerS, especially

in exploratory situations where signal shapes might not be

known and a broad set of candidates is desirable.

Conclusions
We have presented in this paper a new algorithm,

SW1PerS, for quantifying periodicity in time series data.

The algorithm has been extensively tested and com-

pared to other popular methods in the literature, using

both synthetic and biological data. Specifically, with a

vast synthetic data set spanning 14 different signal types

(10 periodic and 4 non-periodic), 4 noise models, 5

noise levels and 3 sampling densities, it was shown that

SW1PerS outperforms the other algorithms presented

here in the low-noise and low-sampling regimes. More-

over, it exhibits at the top of its rankings the most variety

in signal types, making it the most shape-agnostic and

the only one to identify damped signals as highly peri-

odic. In the biological data SW1PerS recovers, to a large

extent, what other algorithms have identified in previous

work. Moreover, it was also able to discover signals with

interesting shapes, which were overlooked by the other

methods.

By using SW1PerS along with other algorithms that

complement its strengths and lessen its weaknesses, it

can be used as a powerful tool in exploratory analyses.

Indeed, in biological systems with low noise, i.e. where

periodic signals with interesting shapes are more likely

to occur, SW1PerS can be used to identify an initial set

of periodic genes with a rich variety of signal types. Pat-

terns and shape information can then be included in the

study of systems, as well as in the generation of hypotheses

regarding the structure of gene regulatory networks.

Methods
The SW1PerS Algorithm

The way SW1PerS recognizes periodicity is simple: It

measures the existence of a distinctive pattern in the graph

of the signal, and quantifies the extent to which it repeats.

The quantification step, in contrast with other methods,

does not involve the usual measures of correlation. Instead
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we use tools from topological data analysis [24], a new

set of techniques that probe/quantify the shape of data, to

measure the circularity of a point cloud derived from the

time series.

More specifically, given a time series g0, g1, . . . , gS (e.g.

of gene expression data) measured at times t0, t1, . . . , tS,

we map the interval [ t0, tS] linearly onto [ 0, 2π ] and

apply cubic splining to obtain a continuous function g :

[ 0, 2π ]−→ R so that g(0) = g0 and g(2π) = gS. For

a fixed 0 < w < 2π , referred to as the window size,

and each time t ∈[ 0, 2π − w] we consider the graph of

g restricted to the interval [ t, t + w]. Let us use Fig. 8,

where we depict a prototypical function g with a window

of length w, as a running example.

Sliding this window (the first two words in the acronym

SW1PerS) corresponds to letting t vary from 0 to 2π − w,

and it follows that each t ∈[ 0, 2π −w] yields a snapshot, or

snippet, from g. If these snippets were arranged according

to their degree of similarity, similar snippets being closer,

then the emerging picture would be analogous to that in

Fig. 9.

The repetition of a pattern in the graph of g is thus asso-

ciated with the circular arrangement of the snippets, while

its distinctiveness corresponds to the size of the “hole”

in the middle of the arrangement. Notice that the term

“pattern” applies to any type of snippet; this is what gives

SW1PerS its shape-agnostic nature.

We formalize this construction as follows: let M be a

positive integer (usually larger than twice the number of

time points) and set τ = w
M for some window size w ∈

(0, 2π). The theory behind SW1PerS [25] implies that a

good window size should be close to 2πM
L(M+1) , where L is

the number of expected periods.

The discretized sliding window starting at t is given by

the vector

SWM,τ g(t) =

⎡

⎢

⎢

⎢

⎣

g(t)

g(t + τ)

...

g(t + Mτ)

⎤

⎥

⎥

⎥

⎦

Fig. 8 g along with a window of length w starting at t ∈[ 0, 2π − w]

Fig. 9 Arrangement of snippets according to similarity

As we let t take values in a (sufficiently dense) finite

seta T ⊂[ 0, 2π − w], the result is a collection of points

X ⊂ R
M+1 which we refer to as a sliding window point

cloud. In this cloud, viewed as a subset of RM+1, two

points are close if and only if the corresponding snippets

they discretize are similar. It follows that the extent to

which X can be thought of as sampled from a closed curve

without self-intersections (a topological circle), is in direct

correspondence with the periodicity of g asmeasured with

windows of sizew. The resulting point cloud is then point-

wise mean-centered and normalized; that is, we replace X

by

X̄ =
{

x−mean(x)
‖x−mean(x)‖ : x ∈ X

}

This ameliorates the effects of damping and trending in

the original time series, and also makes SW1PerS ampli-

tude blind.

We input X̄ into the 1-Persistent Homology algorithm

[26] using a fast implementation tailored specifically for

sliding window point-clouds (see supplements, Section 2).

From the 1-Persistent Homology computation one can

extract two numbers: 0 ≤ b ≤ d ≤
√
3, where bmeasures

the maximum distance from a point x̄ ∈ X̄ to its nearest

neighbor in X̄, and dmeasures both how circular and wide

X̄ is. This is what we alluded to as measuring the shape of

data and the size of the hole in Fig. 9. The pair (b, d) yields

a score

s(n,m) = 1 −
dn − bm

3n/2

between 0 (periodic) and 1 (not periodic) for each choice

of integers n ≥ m. For this paper we use n = m = 2, as

this pair yielded the best results on the synthetic data. We

refer the reader to [25] and Section 1 of the supplements
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for a more detailed discussion on the choice of the param-

etersM,w, the set T ⊂[ 0, 2π − w], and the mathematical

underpinnings of the method.

Dealing with Noise

We present two denoising paradigms included in the

SW1PerS pipeline; the first operates on time series, and

the second focuses on noise at the point-cloud level.

SimpleMoving Average

Can be interpreted as a discrete version of convolution

with a step function. The input for this method is an odd

integer 2k + 1, much smaller than the number of obser-

vations in the time series g0, . . . , gS. The result, a locally

averaged time series g̃0, . . . , g̃S, is obtained as follows: for

each s = 0, . . . , S we let ℓ = min{s, S − s, k} and define

g̃s :=
gs−ℓ + · · · + gs + · · · + gs+ℓ

2ℓ + 1

Simple Moving Average often yields satisfactory results

given its local nature, and that it can be applied to time

series with low time resolution (S ≥ 13). A limita-

tion, however, is that it can remove fine features and

peak-like behavior. Thus, we restrict k to values so that

gs−k , . . . , gs, . . . , gs+k does not span more than a third of

the window size w.

Mean-Shift

Has appeared numerous times in the statistics literature,

and more recently in the work of [27]. It can be seen as

a point-cloud-level version of moving average, in which

each point of the cloud is replaced by the average of those

close to it. Intuitively, this has a tightening effect. Close-

ness to a point can be defined as being among its q-th

nearest neighbors for some integer q, or by being no far-

ther than ǫ away for some constant ǫ > 0. It is the second

option we use in this paper. Since in SW1PerS the sliding

window point cloud has been pointwise mean-centered

and normalized, it follows that it lies on the surface of the

unit sphere inR
M+1. Hence we measure distance between

two such points x, y via the angle between them and deem

them to be closeb if ∡(x, y) < π
16 . Once each point has

been replaced by the average of those no more than π
16

away, we proceed to pointwise normalizing the resulting

cloud.

Availability and Supporting Data
An implementation of SW1PerS can be found at http://

cms.math.duke.edu/harer/?q=downloads.

Endnotes
aIn practice we use T = { j(2π−w)

200 |j = 0, 1, . . . ,
bThis constant was set experimentally based on

performance on the synthetic data.

Additional files

Additional file 1: Supplements. The supplements file contains detailed

information on several points discussed in this paper. In particular: 1. The

mathematics behind the SW1PerS algorithm, 2. A detailed description of

the fast 1-Persistent Homology algorithm, 3. Generating functions for the

synthetic data, 4. All ROC plots from the synthetic data analysis, 5. All score

distributions from the synthetic data analysis, 6. Histograms of score

distributions for permutation test,7. Details regarding the availability and

processing of the biological data, 8. Gene lists from ChIP-chip and ChIP-seq

data, 9. The method used for filtering noise using replicates and 10. GO

Enrichment analysis.

Additional file 2: Rankings. These three files contain the biological data

sets used in this paper, as well as the scores and rankings from all the

algorithms presented here. In addition, they include filters so that users can

re-order the probes by the score of a particular algorithm.

Additional file 3: Top genes. This zip file contains three pdf files,

associated to each one of the 3 biological data sets studied in this paper.

Each file shows the full ordered list, sparkLines included, of genes in the top

10 % of rankings according to SW1PerS and that are not present in the top

10 % of the other algorithms.
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