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Abstract

Given a partial description like “she opened

the hood of the car,” humans can reason about

the situation and anticipate what might come

next (“then, she examined the engine”). In this

paper, we introduce the task of grounded com-

monsense inference, unifying natural language

inference and commonsense reasoning.

We present Swag, a new dataset with 113k

multiple choice questions about a rich spec-

trum of grounded situations. To address the

recurring challenges of the annotation arti-

facts and human biases found in many exist-

ing datasets, we propose Adversarial Filter-

ing (AF), a novel procedure that constructs a

de-biased dataset by iteratively training an en-

semble of stylistic classifiers, and using them

to filter the data. To account for the aggres-

sive adversarial filtering, we use state-of-the-

art language models to massively oversam-

ple a diverse set of potential counterfactuals.

Empirical results demonstrate that while hu-

mans can solve the resulting inference prob-

lems with high accuracy (88%), various com-

petitive models struggle on our task. We pro-

vide comprehensive analysis that indicates sig-

nificant opportunities for future research.

1 Introduction

When we read a story, we bring to it a large body

of implicit knowledge about the physical world.

For instance, given the context “on stage, a woman

takes a seat at the piano,” shown in Table 1, we

can easily infer what the situation might look like:

a woman is giving a piano performance, with a

crowd watching her. We can furthermore infer her

likely next action: she will most likely set her fin-

gers on the piano keys and start playing.

This type of natural language inference requires

commonsense reasoning, substantially broadening

the scope of prior work that focused primarily on

On stage, a woman takes a seat at the piano. She

a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

A girl is going across a set of monkey bars. She

a) jumps up across the monkey bars.
b) struggles onto the monkey bars to grab her head.
c) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

The woman is now blow drying the dog. The dog

a) is placed in the kennel next to a woman’s feet.
b) washes her face with the shampoo.
c) walks into frame and walks towards the dog.
d) tried to cut her face, so she is trying to do something
very close to her face.

Table 1: Examples from Swag; the correct an-

swer is bolded. Adversarial Filtering ensures that

stylistic models find all options equally appealing.

linguistic entailment (Chierchia and McConnell-

Ginet, 2000). Whereas the dominant entailment

paradigm asks if two natural language sentences

(the ‘premise’ and the ‘hypothesis’) describe the

same set of possible worlds (Dagan et al., 2006;

Bowman et al., 2015), here we focus on whether a

(multiple-choice) ending describes a possible (fu-

ture) world that can be anticipated from the situa-

tion described in the premise, even when it is not

strictly entailed. Making such inference necessi-

tates a rich understanding about everyday physical

situations, including object affordances (Gibson,

1979) and frame semantics (Baker et al., 1998).

A first step toward grounded commonsense in-

ference with today’s deep learning machinery is to

create a large-scale dataset. However, recent work

has shown that human-written datasets are suscep-

tible to annotation artifacts: unintended stylistic

patterns that give out clues for the gold labels (Gu-

rurangan et al., 2018; Poliak et al., 2018). As a

result, models trained on such datasets with hu-
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man biases run the risk of over-estimating the ac-

tual performance on the underlying task, and are

vulnerable to adversarial or out-of-domain exam-

ples (Wang et al., 2018; Glockner et al., 2018).

In this paper, we introduce Adversarial Filtering

(AF), a new method to automatically detect and

reduce stylistic artifacts. We use this method to

construct Swag: an adversarial dataset with 113k

multiple-choice questions. We start with pairs of

temporally adjacent video captions, each with a

context and a follow-up event that we know is

physically possible. We then use a state-of-the-

art language model fine-tuned on this data to mas-

sively oversample a diverse set of possible nega-

tive sentence endings (or counterfactuals). Next,

we filter these candidate endings aggressively and

adversarially using a committee of trained mod-

els to obtain a population of de-biased endings

with similar stylistic features to the real ones. Fi-

nally, these filtered counterfactuals are validated

by crowd workers to further ensure data quality.

Extensive empirical results demonstrate unique

contributions of our dataset, complementing exist-

ing datasets for natural langauge inference (NLI)

(Bowman et al., 2015; Williams et al., 2018)

and commonsense reasoning (Roemmele et al.,

2011; Mostafazadeh et al., 2016; Zhang et al.,

2017). First, our dataset poses a new challenge

of grounded commonsense inference that is easy

for humans (88%) while hard for current state-of-

the-art NLI models (<60%). Second, our pro-

posed adversarial filtering methodology allows for

cost-effective construction of a large-scale dataset

while substantially reducing known annotation ar-

tifacts. The generality of adversarial filtering al-

lows it to be applied to build future datasets, en-

suring that they serve as reliable benchmarks.

2 Swag: Our new dataset

We introduce a new dataset for studying physically

grounded commonsense inference, called Swag.1

Our task is to predict which event is most likely to

occur next in a video. More formally, a model is

given a context c = (s,n): a complete sentence

s and a noun phrase n that begins a second sen-

tence, as well as a list of possible verb phrase sen-

tence endings V = {v1, . . . ,v4}. See Figure 1 for

an example triple (s,n,vi). The model must then

select the most appropriate verb phrase vî ∈ V .

1Short for Situations With Adversarial Generations.

is	put	on	top	of	the	

				vegetables.				

is	putting	vegetable	fruits.

is	using	a	red	sponge	to	add	

				eggs	and	parsley.
⋮

is	placed	in	the	oven.

The	mixer	creams	the	butter.	Sugar…

Adversarially select 

generations

Annotators filter endings

 to ensure agreement

Oversample 

endings from 

context+NP

Sugar is added to the mixing bowl.The mixer creams the butter.

LSMDC

NP VPcontext

Using video captions from

t
<latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg=">AAAC3XicdVJLb9NAEN6YVzGvFo5cLCIkxCGyERJwq6CHXhCtRGilJCrjzcRZZR/W7LhtauXaC4gTiJ/Eb+DfsEl9wAmMtNpvv3nPbF5q5TlNf3eia9dv3Ly1dTu+c/fe/QfbOw8/eVeRxL502tFxDh61sthnxRqPS0IwucajfPZuqT86RfLK2Y88L3FkoLBqoiRwoA75ZLub9tKVJJsga0BXNHJwstP5NRw7WRm0LDV4P8jSkkc1ECupcREPK48lyBkUOAjQgkE/qleVLpKngRknE0fhWE5W7N8eNRjv5yYPlgZ46td1S/JfukHFk9ejWtmyYrTyKtGk0gm7ZNl2MlaEkvU8AJCkQq2JnAKB5DCcVhZTaVbkzlqd1BK0bDMFQTlV8rzNEmqvLtpj+E9IchyWYIs2m5v2uyK9FswRbqbInZsx5D6wexj2Qvg+zOhDiQTs6Hk9BCoMnC/q5o7jOKw+W1/0Jui/6L3pZYcvu7tvmz+wJR6LJ+KZyMQrsSv2xYHoCylQfBHfxY/oc3QZfY2+XZlGncbnkWhJ9PMP9UXt7A==</latexit><latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit><latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit><latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit>

t+ 1
<latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc=">AAAC33icdVJLbxMxEHa2PMryasuRy4oICYEU7SIk6K2CHrggiiC0UhJVY2eysWKvV+PZ0rDKvRcQJxC/iN/Av8FJ98AmMJLlz9+8ZyxLoz2n6e9OtHXl6rXr2zfim7du37m7s7v30buKFPaVM45OJHg0usA+azZ4UhKClQaP5ezVUn98huS1Kz7wvMSRhbzQE62AA/Wen2SnO920l64k2QRZA7qikaPT3c6v4dipymLByoD3gywteVQDsVYGF/Gw8liCmkGOgwALsOhH9arWRfIwMONk4iicgpMV+7dHDdb7uZXB0gJP/bpuSf5LN6h48mJU66KsGAt1mWhSmYRdsmw8GWtCxWYeACjSodZETYFAcRhPK4utDGtyn1qd1AqMajM5QTnV6rzNEhqvP7fH8J+Q5DisocjbrLTtd0VmLZgj3EwhnZsxSB/YQwx7IXwTZvS2RAJ29LgeAuUWzhd1c8dxHFafrS96E/Sf9vZ72btn3YOXzR/YFvfFA/FIZOK5OBCvxZHoCyVy8UV8Fz8iGV1EX6Nvl6ZRp/G5J1oS/fwDJabuXA==</latexit><latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc="></latexit><latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc=">AAAC33icdVJLbxMxEHa2PMryasuRy4oICYEU7SIk6K2CHrggiiC0UhJVY2eysWKvV+PZ0rDKvRcQJxC/iN/Av8FJ98AmMJLlz9+8ZyxLoz2n6e9OtHXl6rXr2zfim7du37m7s7v30buKFPaVM45OJHg0usA+azZ4UhKClQaP5ezVUn98huS1Kz7wvMSRhbzQE62AA/Wen2SnO920l64k2QRZA7qikaPT3c6v4dipymLByoD3gywteVQDsVYGF/Gw8liCmkGOgwALsOhH9arWRfIwMONk4iicgpMV+7dHDdb7uZXB0gJP/bpuSf5LN6h48mJU66KsGAt1mWhSmYRdsmw8GWtCxWYeACjSodZETYFAcRhPK4utDGtyn1qd1AqMajM5QTnV6rzNEhqvP7fH8J+Q5DisocjbrLTtd0VmLZgj3EwhnZsxSB/YQwx7IXwTZvS2RAJ29LgeAuUWzhd1c8dxHFafrS96E/Sf9vZ72btn3YOXzR/YFvfFA/FIZOK5OBCvxZHoCyVy8UV8Fz8iGV1EX6Nvl6ZRp/G5J1oS/fwDJabuXA==</latexit><latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc="></latexit>

(the videos are never used)

Figure 1: Overview of the data collection process.

For a pair of sequential video captions, the second

caption is split into noun and verb phrases. A lan-

guage model generates many negative endings, of

which a difficult subset are human-annotated.

Overview Our corpus consists of 113k multi-

ple choice questions (73k training, 20k valida-

tion, 20k test) and is derived from pairs of con-

secutive video captions from ActivityNet Cap-

tions (Krishna et al., 2017; Heilbron et al., 2015)

and the Large Scale Movie Description Chal-

lenge (LSMDC; Rohrbach et al., 2017). The two

datasets are slightly different in nature and allow

us to achieve broader coverage: ActivityNet con-

tains 20k YouTube clips containing one of 203 ac-

tivity types (such as doing gymnastics or playing

guitar); LSMDC consists of 128k movie captions

(audio descriptions and scripts). For each pair

of captions, we use a constituency parser (Stern

et al., 2017) to split the second sentence into noun

and verb phrases (Figure 1).2 Each question has a

human-verified gold ending and 3 distractors.

3 A solution to annotation artifacts

In this section, we outline the construction of

Swag. We seek dataset diversity while minimizing

annotation artifacts, conditional stylistic patterns

such as length and word-preference biases. For

many NLI datasets, these biases have been shown

to allow shallow models (e.g. bag-of-words) ob-

tain artificially high performance.

To avoid introducing easily “gamed” patterns,

we present Adversarial Filtering (AF), a generally-

applicable treatment involving the iterative refine-

ment of a set of assignments to increase the en-

tropy under a chosen model family. We then dis-

cuss how we generate counterfactual endings, and

2We filter out sentences with rare tokens (≤3 occur-
rences), that are short (l ≤ 5), or that lack a verb phrase.
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Algorithm 1 Adversarial filtering (AF) of negative sam-
ples. During our experiments, we set Neasy = 2 for refining
a population of N− = 1023 negative examples to k = 9, and
used a 80%/20% train/test split.

while convergence not reached do

• Split the dataset D randomly up into train-

ing and testing portions Dtr and Dte.

• Optimize a model fθ on Dtr.

for index i in Dte do

• Identify easy indices:

Aeasy
i = {j ∈ Ai : fθ(x

+

i ) > fθ(x
−
i,j)}

• Replace N easy easy indices j ∈ Aeasy
i

with adversarial indices k 6∈ Ai satisfying

fθ(x
−
i,k) > fθ(x

−
i,j).

end for

end while

finally, the models used for filtering.

3.1 Formal definition

In this section, we formalize what it means for

a dataset to be adversarial. Intuitively, we say

that an adversarial dataset for a model f is one

on which f will not generalize, even if evaluated

on test data from the same distribution. More for-

mally, let our input space be X and the label space

be Y . Our trainable classifier f , taking parameters

θ is defined as fθ : X → R
|Y|. Let our dataset

of size N be defined as D = {(xi, yi)}1≤i≤N , and

let the loss function over the dataset be L(fθ,D).
We say that a dataset is adversarial with respect

to f if we expect high empirical error I over all

leave-one-out train/test splits (Vapnik, 2000):

I(D, f) =
1

N

N∑

i=1

L(fθ⋆
i
, {(xi, yi)}), (1)

where θ⋆i = argmin
θ

L(fθ,D \ {(xi, yi)}), (2)

with regularization terms omitted for simplicity.

3.2 Adversarial filtering (AF) algorithm

In this section, we outline an approach for gen-

erating an adversarial dataset D, effectively max-

imizing empirical error I with respect to a fam-

ily of trainable classifiers f . Without loss of

generality, we consider the situation where we

have N contexts, each associated with a single

positive example (x+i , 1)∈X ×Y , and a large

population of context-specific negative examples

(x−i,j , 0)∈X ×Y , where 1≤j≤N− for each i. For

instance, the negative examples could be incorrect

relations in knowledge-base completion (Socher

et al., 2013), or all words in a dictionary for a

single-word cloze task (Zweig and Burges, 2011).

Our goal will be to filter the population of neg-

ative examples for each instance i to a size of

k≪N−. This will be captured by returning a set

of assignments A, where for each instance the as-

signment will be a k-subset Ai = [1 . . . N−]k.

The filtered dataset will then be:

DAF = {(xi, 1), {(x
−
i,j , 0)}j∈Ai

}1≤i≤N (3)

Unfortunately, optimizing I(DAF , f) is difficult

as A is global and non-differentiable. To address

this, we present Algorithm 1. On each iteration,

we split the data into dummy ‘train’ and ‘test’

splits. We train a model f on the training portion

and obtain parameters θ, then use the remaining

test portion to reassign the indices of A. For each

context, we replace some number of ‘easy’ nega-

tives in A that fθ classifies correctly with ‘adver-

sarial’ negatives outside of A that fθ misclassifies.

This process can be thought of as increasing

the overall entropy of the dataset: given a strong

model fθ that is compatible with a random subset

of the data, we aim to ensure it cannot generalize

to the held-out set. We repeat this for several it-

erations to reduce the generalization ability of the

model family f over arbitrary train/test splits.

3.3 Generating candidate endings

To generate counterfactuals for Swag, we use an

LSTM (Hochreiter and Schmidhuber, 1997) lan-

guage model (LM), conditioned on contexts from

video captions. We first pretrain on BookCorpus

(Zhu et al., 2015), then finetune on the video cap-

tion datasets. The architecture uses standard best

practices and was validated on held-out perplex-

ity of the video caption datasets; details are in the

appendix. We use the LM to sample N−=1023
unique endings for a partial caption.3

Importantly, we greedily sample the endings,

since beam search decoding biases the generated

endings to be of lower perplexity (and thus easily

distinguishable from found endings). We find this

process gives good counterfactuals: the generated

endings tend to use topical words, but often make

little sense physically, making them perfect for our

task. Further, the generated endings are marked

as “gibberish” by humans only 9.1% of the time

(Sec 3.5); in that case the ending is filtered out.

3To ensure that the LM generates unique endings, we split
the data into five validation folds and train five separate LMs,
one for each set of training folds. This means that each LM
never sees the found endings during training.
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Figure 2: Test accuracy by AF iteration, under the

negatives given by A. The accuracy drops from

around 60% to close to random chance. For effi-

ciency, the first 100 iterations only use the MLP.

3.4 Stylistic models for adversarial filtering

In creating Swag, we designed the model family

f to pick up on low-level stylistic features that we

posit should not be predictive of whether an event

happens next in a video. These stylistic features

are an obvious case of annotation artifacts (Cai

et al., 2017; Schwartz et al., 2017).4 Our final clas-

sifier is an ensemble of four stylistic models:

1. A multilayer perceptron (MLP) given LM per-

plexity features and context/ending lengths.

2. A bag-of-words model that averages the word

embeddings of the second sentence as features.

3. A one-layer CNN, with filter sizes ranging from

2-5, over the second sentence.

4. A bidirectional LSTM over the 100 most com-

mon words in the second sentence; uncommon

words are replaced by their POS tags.

We ensemble the models by concatenating their fi-

nal representations and passing it through an MLP.

On every adversarial iteration, the ensemble is

trained jointly to minimize cross-entropy.

The accuracies of these models (at each itera-

tion, evaluated on a 20% split of the test dataset

before indices of A get remapped) are shown in

Figure 2. Performance decreases from 60% to

close to random chance; moreover, confusing the

perplexity-based MLP is not sufficient to lower

performance of the ensemble. Only once the other

stylistic models are added does the ensemble ac-

curacy drop substantially, suggesting that our ap-

proach is effective at reducing stylistic artifacts.

4A broad definition of annotation artifacts might include
aspects besides lexical/stylistic features: for instance, certain
events are less likely semantically regardless of the context
(e.g. riding a horse using a hose). For this work, we erred
more conservatively and only filtered based on style.

Imagine that you are watching a video clip. The clip has
a caption, but it is missing the final phrase. Please choose
the best 2 caption endings, and classify each as:

• likely, if it completes the caption in a reasonable way;
• unlikely, if it sounds ridiculous or impossible;
• gibberish if it has such serious errors that it doesn’t
feel like a valid English sentence.

Example: Someone is shown sitting on a fence and talking
to the camera while pointing out horses. Someone

• stands in front of a podium. (likely, second best)
• rides a horse using a hose. (unlikely)
• is shown riding a horse. (likely, best)
• , the horse in a plaza field. (gibberish)

Figure 3: Mechanical Turk instructions (abridged).

3.5 Human verification

The final data-collection step is to have humans

verify the data. Workers on Amazon Mechani-

cal Turk were given the caption context, as well

as six candidate endings: one found ending and

five adversarially-sampled endings. The task was

twofold: Turkers ranked the endings indepen-

dently as likely, unlikely, or gibberish, and se-

lected the best and second best endings (Fig 3).

We obtained the correct answers to each con-

text in two ways. If a Turker ranks the found end-

ing as either best or second best (73.7% of the

time), we add the found ending as a gold exam-

ple, with negatives from the generations not la-

belled best or gibberish. Further, if a Turker ranks

a generated ending as best, and the found ending

as second best, then we have reason to believe that

the generation is good. This lets us add an addi-

tional training example, consisting of the gener-

ated best ending as the gold, and remaining gen-

erations as negatives.5 Examples with ≤3 non-

gibberish endings were filtered out.6

We found after 1000 examples that the annota-

tors tended to have high agreement, also generally

choosing found endings over generations (see Ta-

ble 2). Thus, we collected the remaining 112k ex-

amples with one annotator each, periodically veri-

fying that annotators preferred the found endings.

4 Experiments

In this section, we evaluate the performance of

various NLI models on Swag. Recall that models

5These two examples share contexts. To prevent biasing
the test and validation sets, we didn’t perform this procedure
on answers from the evaluation sets’ context.

6To be data-efficient, we reannotated filtered-out exam-
ples by replacing gibberish endings, as well as generations
that outranked the found ending, with candidates from A.
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Label distribution by
ending type

Inter-annotator
agreement

Labels Found end Gen. end α ppa

Best 53.5% 9.3%
0.43 72%Second Best 20.2% 15.9%

Neither 26.3% 74.8%

Likely 80.3% 33.3%
0.39 64%Unlikely 19.0% 57.5%

Gibberish 0.7% 9.1%

Table 2: Annotators tend to label the found ending

as likely and within the top 2 (column 2), in other

cases the example is filtered out. Both label groups

have high inter-annotator agreement, in terms of

Krippendorff’s α and pairwise percent agreement.

for our dataset take the following form: given a

sentence and a noun phrase as context c = (s,n),
as well as a list of possible verb phrase endings

V = {v1, . . . ,v4}, a model fθ must select a verb

î that hopefully matches igold:

î = argmax
i

fθ(s,n,vi) (4)

To study the amount of bias in our dataset, we

also consider models that take as input just the

ending verb phrase vi, or the entire second sen-

tence (n,vi). For our learned models, we train

f by minimizing multi-class cross-entropy. We

consider three different types of word representa-

tions: 300d GloVe vectors from Common Crawl

(Pennington et al., 2014), 300d Numberbatch vec-

tors retrofitted using ConceptNet relations (Speer

et al., 2017), and 1024d ELMo contextual repre-

sentations that show improvement on a variety of

NLP tasks, including standard NLI (Peters et al.,

2018). We follow the final dataset split (see Sec-

tion 2) using two training approaches: training on

the found data, and the found and highly-ranked

generated data. See the appendix for more details.

4.1 Unary models

The following models predict labels from a single

span of text as input; this could be the ending only,

the second sentence only, or the full passage.

a. fastText (Joulin et al., 2017): This library mod-

els a single span of text as a bag of n-grams, and

tries to predict the probability of an ending being

correct or incorrect independently.7

b. Pretrained sentence encoders We consider

two types of pretrained RNN sentence encoders,

SkipThoughts (Kiros et al., 2015) and InferSent

7The fastText model is trained using binary cross-entropy;
at test time we extract the prediction by selecting the ending
with the highest positive likelihood under the model.

(Conneau et al., 2017). SkipThoughts was trained

by predicting adjacent sentences in book data,

whereas InferSent was trained on supervised NLI

data. For each second sentence (or just the end-

ing), we feed the encoding into an MLP.

c. LSTM sentence encoder Given an arbitrary

span of text, we run a two-layer BiLSTM over it.

The final hidden states are then max-pooled to ob-

tain a fixed-size representation, which is then used

to predict the potential for that ending.

4.2 Binary models

The following models predict labels from two

spans of text. We consider two possibilties for

these models: using just the second sentence,

where the two text spans are n,vi, or using the

context and the second sentence, in which case the

spans are s, (n,vi). The latter case includes many

models developed for the NLI task.

d. Dual Bag-of-Words For this baseline, we treat

each sentence as a bag-of-embeddings (c,vi). We

model the probability of picking an ending i using

a bilinear model: softmaxi(cWv
T
i ).

8

e. Dual pretrained sentence encoders Here, we

obtain representations from SkipThoughts or In-

ferSent for each span, and compute their pairwise

compatibility using either 1) a bilinear model or 2)

an MLP from their concatenated representations.

f. SNLI inference Here, we consider two mod-

els that do well on SNLI (Bowman et al., 2015):

Decomposable Attention (Parikh et al., 2016) and

ESIM (Chen et al., 2017). We use pretrained ver-

sions of these models (with ELMo embeddings)

on SNLI to obtain 3-way entailment, neutral, and

contradiction probabilities for each example. We

then train a log-linear model using these 3-way

probabilities as features.

g. SNLI models (retrained) Here, we train ESIM

and Decomposable Attention on our dataset: we

simply change the output layer size to 1 (the po-

tential of an ending vi) with a softmax over i.

4.3 Other models

We also considered the following models:

h. Length: Although length was used by the ad-

versarial classifier, we want to verify that human

validation didn’t reintroduce a length bias. For this

baseline, we always choose the shortest ending.

i. ConceptNet As our task requires world knowl-

edge, we tried a rule-based system on top of the

8We also tried using an MLP, but got worse results.
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Ending only 2nd sentence only Context+2nd sentence
found only found+gen found only found+gen found only found+gen

Model Val Test Val Test Val Test Val Test Val Test Val Test

misc

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Length 26.7 27.0 26.7 27.0
ConceptNet 26.0 26.0 26.0 26.0

U
n

ar
y

m
o

d
el

s fastText 27.5 26.9 29.9 29.0 29.2 27.8 29.8 29.0 29.4 28.0 30.3 29.8

Sentence
encoders

SkipThoughts 32.4 32.1 32.2 31.8 33.0 32.4 32.8 32.3
InferSent 30.6 30.2 32.0 31.9 33.2 32.0 34.0 32.6

LSTM
sequence
model

LSTM+GloVe 31.9 31.8 32.9 32.4 32.7 32.4 34.3 33.5 43.1 43.6 45.6 45.7
LSTM+Numberbatch 32.4 32.6 32.3 31.9 31.9 31.9 34.1 32.8 39.9 40.2 41.2 40.5
LSTM+ELMo 43.6 42.9 43.3 42.3 47.4 46.7 46.3 46.0 51.4 50.6 51.3 50.4

B
in

ar
y

m
o

d
el

s

DualBoW
DualBoW+GloVe 31.3 31.3 31.9 31.2 34.5 34.7 32.9 33.1
DualBoW+Numberbatch 31.9 31.4 31.6 31.3 35.1 35.1 34.2 34.1

Dual
sentence
encoders

SkipThoughts-MLP 34.6 33.9 36.2 35.5 33.4 32.3 37.4 36.4
SkipThoughts-Bilinear 36.0 35.7 34.7 34.5 36.5 35.6 35.3 34.9
InferSent-MLP 32.9 32.1 32.8 32.7 35.9 36.2 39.5 39.4
InferSent-Bilinear 32.0 31.3 31.6 31.3 40.5 40.3 39.0 38.4

SNLI
inference

SNLI-ESIM 36.4 36.1 36.2 36.0
SNLI-DecompAttn 35.8 35.8 35.8 35.7

SNLI
models
(retrained)

DecompAttn+GloVe 29.8 30.3 31.1 31.7 47.4 47.6 48.5 48.6
DecompAttn+Numberbatch 32.4 31.7 32.5 31.9 47.4 48.0 48.0 48.3
DecompAttn+ELMo 43.4 43.4 40.6 40.3 47.7 47.3 46.0 45.4
ESIM+GloVe 34.8 35.1 36.3 36.7 51.9 52.7 52.5 52.5
ESIM+Numberbatch 33.1 32.6 33.0 32.4 46.5 46.4 44.0 44.6
ESIM+ELMo 46.0 45.7 45.9 44.8 59.1 59.2 58.7 58.5

Human

1 turker 82.8
3 turkers 85.1
5 turkers 88.0
Expert 85.0

Table 3: Performance of all models in accuracy (%). All models substantially underperform humans,

although performance increases as more context is provided (left to right). We optionally train on found

endings only, or found and human-validated generated endings (found+gen).

ConceptNet knowledge base (Speer et al., 2017).

For an ending sentence, we use the spaCy depen-

dency parser to extract the head verb and its de-

pendent object. The ending score is given by the

number of ConceptNet causal relations9 between

synonyms of the verb and synonyms of the object.

j. Human performance To benchmark human

performance, five Mechanical Turk workers were

asked to answer 100 dataset questions, as did an

‘expert’ annotator (the first author of this paper).

Predictions were combined using a majority vote.

4.4 Results

We present our results in Table 3. The best model

that only uses the ending is the LSTM sequence

model with ELMo embeddings, which obtains

43.6%. This model, as with most models stud-

ied, greatly improves with more context: by 3.1%

when given the initial noun phrase, and by an ad-

9We used the relations ‘Causes’, ‘CapableOf’, ‘Re-
ceivesAction’, ‘UsedFor’, and ‘HasSubevent’. Though their
coverage is low (30.4% of questions have an answer with ≥1
causal relation), the more frequent relations in ConceptNet,
such as ‘IsA’, at best only indirectly relate to our task.

ditional 4% when also given the first sentence.

Further improvement is gained from models

that compute pairwise representations of the in-

puts. While the simplest such model, Dual-

BoW, obtains only 35.1% accuracy, combining In-

ferSent sentence representations gives 40.5% ac-

curacy (InferSent-Bilinear). The best results come

from pairwise NLI models: when fully trained on

Swag, ESIM+ELMo obtains 59.2% accuracy.

When comparing machine results to human re-

sults, we see there exists a lot of headroom.

Though there likely is some noise in the task, our

results suggest that humans (even untrained) con-

verge to a consensus. Our in-house “expert” an-

notator is outperformed by an ensemble of 5 Turk

workers (with 88% accuracy); thus, the effective

upper bound on our dataset is likely even higher.

5 Analysis

5.1 Swag versus existing NLI datasets

The past few years have yielded great advances in

NLI and representation learning, due to the avail-

ability of large datasets like SNLI and MultiNLI
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Figure 4: Top: Distribution of the 40 top verbs in the union of SNLI and Swag. Our dataset shows a

greater variety of dynamic verbs, such as “move”, as well as temporal verbs such as “start” and “come.”

“Continue” is cut off for SNLI (it has frequency 6 · 10−5). Bottom: CDF for verbs in SNLI and Swag.

(Bowman et al., 2015; Williams et al., 2018). With

the release of Swag, we hope to continue this

trend, particularly as our dataset largely has the

same input/output format as other NLI datasets.

We observe three key differences between our

dataset and others in this space:

First, as noted in Section 1, Swag requires a

unique type of temporal reasoning. A state-of-the-

art NLI model such as ESIM, when bottlenecked

through the SNLI notion of entailment (SNLI-

ESIM), only obtains 36.1% accuracy.10 This im-

plies that these datasets necessitate different (and

complementary) forms of reasoning.

Second, our use of videos results in wide cover-

age of dynamic and temporal situations Compared

with SNLI, with contexts from Flickr30K (Plum-

mer et al., 2017) image captions, Swag has more

active verbs like ‘pull’ and ‘hit,’ and fewer static

verbs like ‘sit’ and ‘wear’ (Figure 4).11

Third, our dataset suffers from few lexical bi-

ases. Whereas fastText, a bag of n-gram model,

obtains 67.0% accuracy on SNLI versus a 34.3%

baseline (Gururangan et al., 2018), fastText ob-

tains only 29.0% accuracy on Swag.12

5.2 Error analysis

We sought to quantify how human judgments dif-

fer from the best studied model, ESIM+ELMo.

We randomly sampled 100 validation questions

10The weights of SNLI-ESIM pick up primarily on entail-
ment probability (0.59), as with neutral (0.46), while contra-
diction is negatively correlated (-.42).

11Video data has other language differences; notably, char-
acter names in LSMDC were replaced by ‘someone’

12The most predictive individual words on SWAG are in-
frequent in number: ‘dotted‘ with P(+|dotted) = 77% with
10.3 counts, and P(−|similar) = 81% with 16.3 counts.
(Counts from negative endings were discounted 3x, as there
are 3 times as many negative endings as positive endings).

Reason Explanation Freq.

Situational The good ending is better in context. 53.7%
Plausibility The bad ending is implausible regard-

less of context.
14.4%

Novelty The bad ending seems redundant; it is
entailed by the context.

1.8%

Weirdness The bad ending is semantically or
grammatically malformed, e.g. ‘the
man is getting out of the horse.’

18.1%

Ambiguous Both endings seem equally likely. 12.0%

Table 4: Justifications for ranking the gold answer

over a wrong answer chosen by ESIM+ELMo.

that ESIM+ELMo answered incorrectly, for each

extracting both the gold ending and the model’s

preferred ending. We asked 5 Amazon Mechanical

Turk workers to pick the better ending (of which

they preferred the gold endings 94% of the time)

and to select one (or more) multiple choice reasons

explaining why the chosen answer was better.

The options, and the frequencies, are outlined in

Table 4. The most common reason for the turkers

preferring the correct answer is situational (52.3%

of the time), followed by weirdness (17.5%)

and plausibility (14.4%). This suggests that

ESIM+ELMo already does a good job at filtering

out weird and implausible answers, with the main

bottleneck being grounded physical understand-

ing. The ambiguous percentage is also relatively

low (12.0%), implying significant headroom.

5.3 Qualitative examples

Last, we show several qualitative examples in Ta-

ble 5. Though models can do decently well by

identifying complex alignment patterns between

the two sentences (e.g. being “up a tree” im-

plies that “tree” is the end phrase), the incorrect

model predictions suggest this strategy is insuffi-
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A waiter brings a fork. The waiter
a) starts to step away. (74.76%)
b) adds spaghetti to the table. (21.57%)
c) brings a bunch of pie to the food (2.67%)
d) drinks from the mug in the bowl. (0.98%)

He is up a tree. Someone
a) stands underneath the tree. (97.44%)
b) is at a pool table holding a cup. (1.14%)
c) grabs a flower from a paper. (0.96%)
d) is eating some cereal. (0.45%)

An old man rides a small bumper car. Several people
a) get in the parking lot. (76.58%)
b) wait in the car. (15.28%)
c) get stuck with other bumper cars. (6.75%)
d) are running down the road. (1.39%)

He pours the raw egg batter into the pan. He
a) drops the tiny pan onto a plate. (93.48%)
b) lifts the pan and moves it around to shuffle the
eggs. (4.94%)
c) stirs the dough into a kite. (1.53%)
d) swirls the stir under the adhesive. (0.05%)

Table 5: Example questions answered by the best model, ESIM+Elmo, sorted by model probability.

Correct model predictions are in blue, incorrect model predictions are red. The right answers are bolded.

cient. For instance, answering “An old man rides

a small bumper car” requires knowledge about

bumper cars and how they differ from regular cars:

bumper cars are tiny, don’t drive on roads, and

don’t work in parking lots, eliminating the alterna-

tives. However, this knowledge is difficult to ex-

tract from existing corpora: for instance, the Con-

ceptNet entry for Bumper Car has only a single

relation: bumper cars are a type of vehicle. Other

questions require intuitive physical reasoning: e.g,

for “he pours the raw egg batter into the pan,”

about what happens next in making an omelet.

5.4 Where to go next?

Our results suggest that Swag is a challenging

testbed for NLI models. However, the adversarial

models used to filter the dataset are purely stylis-

tic and focus on the second sentence; thus, subtle

artifacts still likely remain in our dataset. These

patterns are ostensibly picked up by the NLI mod-

els (particularly when using ELMo features), but

the large gap between machine and human perfor-

mance suggests that more is required to solve the

dataset. As models are developed for common-

sense inference, and more broadly as the field of

NLP advances, we note that AF can be used again

to create a more adversarial version of Swag using

better language models and AF models.

6 Related Work

Entailment NLI There has been a long his-

tory of NLI benchmarks focusing on linguistic

entailment (Cooper et al., 1996; Dagan et al.,

2006; Marelli et al., 2014; Bowman et al., 2015;

Lai et al., 2017; Williams et al., 2018). Re-

cent NLI datasets in particular have supported

learning broadly-applicable sentence representa-

tions (Conneau et al., 2017); moreover, models

trained on these datasets were used as components

for performing better video captioning (Pasunuru

and Bansal, 2017), summarization (Pasunuru and

Bansal, 2018), and generation (Holtzman et al.,

2018), confirming the importance of NLI research.

The NLI task requires a variety of commonsense

knowledge (LoBue and Yates, 2011), which our

work complements. However, previous datasets

for NLI have been challenged by unwanted an-

notation artifacts, (Gururangan et al., 2018; Po-

liak et al., 2018) or scale issues. Our work ad-

dresses these challenges by constructing a new

NLI benchmark focused on grounded common-

sense reasoning, and by introducing an adversar-

ial filtering mechanism that substantially reduces

known and easily detectable annotation artifacts.

Commonsense NLI Several datasets have been

introduced to study NLI beyond linguistic entail-

ment: for inferring likely causes and endings given

a sentence (COPA; Roemmele et al., 2011), for

choosing the most sensible ending to a short story

(RocStories; Mostafazadeh et al., 2016; Sharma

et al., 2018), and for predicting likelihood of a hy-

pothesis by regressing to an ordinal label (JOCI;

(Zhang et al., 2017)). These datasets are relatively

small: 1k examples for COPA and 10k cloze ex-

amples for RocStories.13 JOCI increases the scale

by generating the hypotheses using a knowledge

graph or a neural model. In contrast to JOCI where

the task was formulated as a regression task on the

degree of plausibility of the hypothesis, we frame

commonsense inference as a multiple choice ques-

tion to reduce the potential ambiguity in the labels

and to allow for direct comparison between ma-

chines and humans. In addition, Swag’s use of ad-

versarial filtering increases diversity of situations

and counterfactual generation quality.

13For RocStories, this was by design to encourage learning
from the larger corpus of 98k sensible stories.
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Last, another related task formulation is sen-

tence completion or cloze, where the task is to pre-

dict a single word that is removed from a given

context (Zweig and Burges, 2011; Paperno et al.,

2016).14 Our work in contrast requires longer tex-

tual descriptions to reason about.

Vision datasets Several resources have been in-

troduced to study temporal inference in vision.

The Visual Madlibs dataset has 20k image cap-

tions about hypothetical next/previous events (Yu

et al., 2015); similar to our work, the test portion

is multiple-choice, with counterfactual answers re-

trieved from similar images and verified by hu-

mans. The question of ‘what will happen next?’

has also been studied in photo albums (Huang

et al., 2016), videos of team sports, (Felsen et al.,

2017) and egocentric dog videos (Ehsani et al.,

2018). Last, annotation artifacts are also a re-

curring problem for vision datasets such as Vi-

sual Genome (Zellers et al., 2018) and Visual QA

(Jabri et al., 2016); recent work was done to cre-

ate a more challenging VQA dataset by annotating

complementary image pairs (Goyal et al., 2016).

Reducing gender/racial bias Prior work has

sought to reduce demographic biases in word em-

beddings (Zhang et al., 2018) as well as in image

recognition models (Zhao et al., 2017). Our work

has focused on producing a dataset with minimal

annotation artifacts, which in turn helps to avoid

some gender and racial biases that stem from elic-

itation (Rudinger et al., 2017). However, it is not

perfect in this regard, particularly due to biases

in movies (Schofield and Mehr, 2016; Sap et al.,

2017). Our methodology could potentially be ex-

tended to construct datasets free of (possibly inter-

sectional) gender or racial bias.

Physical knowledge Prior work has studied

learning grounded knowledge about objects and

verbs: from knowledge bases (Li et al., 2016), syn-

tax parses (Forbes and Choi, 2017), word embed-

dings (Lucy and Gauthier, 2017), and images and

dictionary definitions (Zellers and Choi, 2017).

An alternate thread of work has been to learn

scripts: high-level representations of event chains

(Schank and Abelson, 1975; Chambers and Juraf-

sky, 2009). Swag evaluates both of these strands.

14Prior work on sentence completion filtered negatives
with heuristics based on LM perplexities. We initially tried
something similar, but found the result to still be gameable.

7 Conclusion

We propose a new challenge of physically situated

commonsense inference that broadens the scope

of natural language inference (NLI) with com-

monsense reasoning. To support research toward

commonsense NLI, we create a large-scale dataset

Swag with 113k multiple-choice questions. Our

dataset is constructed using Adversarial Filtering

(AF), a new paradigm for robust and cost-effective

dataset construction that allows datasets to be con-

structed at scale while automatically reducing an-

notation artifacts that can be easily detected by a

committee of strong baseline models. Our adver-

sarial filtering paradigm is general, allowing po-

tential applications to other datasets that require

human composition of question answer pairs.
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