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INVESTIGATION

Swainsonine Biosynthesis Genes in Diverse
Symbiotic and Pathogenic Fungi

Daniel Cook,* Bruno G. G. Donzelli,†,1 Rebecca Creamer,‡ Deana L. Baucom,‡ Dale R. Gardner,*

Juan Pan,§,2 Neil Moore,** Stuart B. Krasnoff,†† Jerzy W. Jaromczyk,** and Christopher L. Schardl§,3

*Poisonous Plant Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Logan,
Utah 84321, †School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, ‡Department of Entomology,
Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, New Mexico 88001, §Department of Plant
Pathology, **Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506, and ††Robert W. Holley
Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research Service, Ithaca, New York
14853

ORCID IDs: 0000-0001-8568-113X (D.C.); 0000-0002-5058-2980 (R.C.); 0000-0003-4945-8074 (N.M.); 0000-0002-9147-074X (S.B.K.); 0000-0003-
1427-4072 (J.W.J.); 0000-0003-2197-0842 (C.L.S.)

ABSTRACT Swainsonine—a cytotoxic fungal alkaloid and a potential cancer therapy drug—is produced by the

insect pathogen and plant symbiont Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed

symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glory symbiont belonging to

order Chaetothyriales. Genome sequence analyses revealed that these fungi share orthologous gene clusters, desig-

nated “SWN,” which included a multifunctional swnK gene comprising predicted adenylylation and acyltransferase

domains with their associated thiolation domains, a b-ketoacyl synthase domain, and two reductase domains. The role

of swnK was demonstrated by inactivating it in M. robertsii through homologous gene replacement to give a ∆swnK

mutant that produced no detectable swainsonine, then complementing the mutant with the wild-type gene to restore

swainsonine biosynthesis. Other SWN cluster genes were predicted to encode two putative hydroxylases and two

reductases, as expected to complete biosynthesis of swainsonine from the predicted SwnK product. SWN gene

clusters were identified in six out of seven sequenced genomes of Metarhzium species, and in all 15 sequenced

genomes of Arthrodermataceae, a family of fungi that cause athlete’s foot and ringworm diseases in humans and other

mammals. Representative isolates of all of these species were cultured, and allMetarhizium spp. with SWN clusters, as

well as all but one of the Arthrodermataceae, produced swainsonine. These results suggest a new biosynthetic

hypothesis for this alkaloid, extending the known taxonomic breadth of swainsonine producers to at least four orders

of Ascomycota, and suggest that swainsonine has roles in mutualistic symbioses and diseases of plants and animals.
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Swainsonine is known to be produced by fungal symbionts of plants

(endophytes), plant pathogens, and insect pathogens, but has not pre-

viously been reported from pathogens of humans and other mammals

(Figure 1). This indolizidine alkaloid—a mannofuranose analog—

specifically inhibits a-mannosidase II in the Golgi apparatus, disrupt-

ing the endomembrane system of the cell (Dorling et al. 1980; Tulsiani

et al. 1982; Winchester et al. 1993), and is under consideration as a

component of chemotherapeutic treatments for some cancers (Santos

et al. 2011; Li et al. 2012). Swainsonine-producing endophytes belong-

ing toAlternaria sect.Undifilum (Braun et al. 2003) can occur in certain

legumes in the related genera Astragalus, Oxytropis (“locoweeds”), and

Swainsona, in semiarid regions of Asia, the Americas, and Australia.

Wildlife and livestock that feed on these plants can exhibit toxicosis

(“locoism” or “pea struck”) characterized by weight loss, altered
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behavior, depression, decreased libido, infertility, abortion, birth de-

fects, and death. Swainsonine is also produced by a recently discov-

ered endophyte of the morning glory species, Ipomoea carnea (Cook

et al. 2013). This I. carnea endophyte (ICE) has phylogenetic affinity

to the order Chaetothyriales, but is of an undescribed species. Swain-

sonine is also produced by diverse fungi with other ecological func-

tions; namely, the plant pathogen, Slafractonia leguminicola (Alhawatema

et al. 2015), and the root-associated insect pathogen, Metarhizium rob-

ertsii, which is commonly used for organic plant protection (St. Leger and

Wang 2010). Here, we identify and demonstrate function of orthologous

swainsonine biosynthesis gene clusters (SWN) in these and other fungi,

including all available members of the Arthrodermataceae—a family of

dermatophytic human and animal pathogens.

MATERIALS AND METHODS

Biological materials

The source and culture conditions forAlternaria oxytropis (=Undifilum

oxytropis) are described in Reyna et al. (2012). The source and culturing

conditions for the Ipomoea carnea endophyte (ICE) are described in

Cook et al. (2013). Slafractonia leguminicola (=Rhizoctonia leguminicola)

ATCC 26280 was obtained from the American Type Culture Collection

(ATCC), and cultured as described by Alhawatema et al. (2015). All

Metarhizium species were obtained from the ARSEF Collection of

Entomopathogenic Fungi. All the dermatophytes were obtained from

ATCCwith the exception ofTrichophyton rubrum, which was obtained

from Theodore C. White at the University of Missouri-Kansas City.

Genome sequencing and analysis

Fungal DNA was prepared using the ZR Fungal/Bacterial DNA Mini-

Prepkit (ZymoResearch, Irvine,CA).Genomesequencingandassembly

wasperformedat theAdvancedGeneticTechnologiesCenter (AGTC)of

the University of Kentucky. The ICE genome was sequenced by pyro-

sequencing(RocheDiagnostics/454LifeSciencesCorp.)of shearedDNA

fragments. A total of 1,334,638 pyrosequencing reads gave 995,708,063

bases, ofwhichNewbler 2.8 (RocheDiagnostics/454 Life SciencesCorp.)

aligned 1,284,087 reads totaling 949,835,583 aligned bases, to give an

assembly of 32,767,887 bp in 307 contigs, with N50 = 380,768 bp.

Genomes of A. oxytropis and S. leguminicolawere sequenced on the

MiSeq platform (Illumina, San Diego, CA). For A. oxytropis a total of

40,814,896 pairedMiSeq reads gave 8,826,667,915 bases, of which CLC

Genomics Workbench 8.0.2 (Qiagen, Valencia, CA) matched 39,668,025

reads totaling 8,584,276,934 aligned bases, and paired 25,326,112 reads

with an average paired read length = 426 bp, to give a genome

assembly of 112,671,691 bp in 57,645 scaffolds, with N50 = 3841 bp.

For S. leguminicola, a total of 27,839,555 paired MiSeq reads gave

6,027,678,056 bases, of which CLCGenomicsWorkbench 8.0.2 (Qiagen)

aligned 27,189,730 reads totaling 5,880,240,986 aligned bases, and

paired 25,491,776 reads with an average paired read length = 228 bp,

to give a genome assembly of 49,495,572 bp in 24,662 scaffolds, with

N50 = 18,922 bp.

Chemical analysis

All isolates were grown on potato dextrose agar and were inoculated

from an actively growing culture at a single point, and grown for 14 d in

the dark. TheMetarhizium species were grown at 25�, and the derma-

tophytes were grown at 29�. Cultures were air-dried and extracted with

2% acetic acid. Swainsonine was analyzed by LC-MS using methods

described by Gardner and Cook (2016).

Genetic manipulations of Metarhizium robertsii

Adouble crossover gene replacement construct (Figure 2), targeting the

swnK gene, was assembled using two gene-specific DNA fragments

(flank A and flank B) intercalated by the bar selection marker, which

confers resistance to glufosinate ammonium (Donzelli et al. 2016).

Gene-specific DNA fragments were produced by standard PCR reac-

tions using primers listed in Supplemental Material, Table S3 in File S1,

and M. robertsii ARSEF 2575 genomic DNA as the template. The

bar selection marker was amplified from the pBARKS1 derivative

pUCAPbarNOSII (Pall and Brunelli 1993; Donzelli et al. 2012) using

primers indicated in Figure 2 and Table S3 in File S1. These three

fragments were assembled into pBDU vector by the USER method

(Nour-Eldin et al. 2006; Geu-Flores et al. 2007; Donzelli et al. 2012).

A swnK complementation vector was produced by cloning a 9277 bp

PCR product that included 1675 bp of the swnK promoter region, the

entire swnK coding region (7467 bp) and 121 bp of the 39UTR region,

into pBDUN binary vector. The pBDUN vector is a pPK2 (Covert et al.

2001) derivative carrying the nourseothricin resistance gene driven by

the Aspergillus nidulans trpC promoter and compatible with the USER

cloning method. Both gene replacement and gene complementation

vectors were mobilized into Agrobacterium tumefaciens EHA105 by

electroporation. Agrobacterium tumefaciens-mediated transformation

Figure 1 Swainsonine and swainsonine producers in their natural
environments. (A) Structure of the indolizidine alkaloid, swainsonine.
Atoms indicated in blue are known or predicted to be derived from
pipecolic acid, and those in red frommevalonic acid. (B) Clinical symptoms
of ringworm caused by Trichophyton benhamiae (Nenoff et al. 2014)
(photograph provided by Dr. Pietro Nenoff, Laboratory for Medical Micro-
biology, Mölbis, Germany, and Dr. Ina Schulze, Markkleeberg near Leip-
zig, Germany). (C) Insect larva mummified byMetarhizium sp. White fungal
mycelium is visible over the surface of the larva. (D) Scanning electron
micrograph of ICE on the adaxial leaf surface. Arrows show masses of
fungal hyphae (micrograph from Aziza Noor, New Mexico State Univer-
sity). (E) Confocal micrograph of endobiotic A. oxytropis (micrograph
from Aziza Noor). Arrows indicate endobiotic hyphae.
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of M. robertsii ARSEF 2575 was conducted as described (Moon et al.

2008) with themodification that selection of complemented transform-

ants was with nourseothricin at 500 mg/liter.

Identification of M. robertsii ARSEF 2575 transformants carrying

the bar gene at the targeted locus was conducted by PCR using primers

SW-T2F and SW-T2R, annealing immediately outside the targeted re-

gion, in conjunction with primers ptrpc80R and bar848F, annealing

within the bar selection cassette (Figure 2 and Table S3 in File S1).

Single conidial progenies derived from putative homologous integrants

were tested by PCR with primers SW-T3F and SW-T3R for integration

of the complementation fragment in transformants displaying resis-

tance to both glufosinate ammonium and nourseothricin.

Virulence tests

Assays were conducted on Drosophila suzukii flies. Conidia (spores) of

each respectiveM. robertsii strain were suspended in water with 0.01%

Silwet L77 to give 2 ☓ 107 conidia/ml. Batches of 48 adult females

were dipped in the conidial suspension, and then incubated at 25�,

15 hr:9 hr light:dark cycle for 10 d. Treated insects were provided

with preservative-free diet which was replaced every 24–48 hr. Differ-

ences in survival rates among treatments were quantified using survival

analysis and Cox’s proportional hazards in JMP PRO 11 (SAS Institute

Inc., Cary, NC).

Data availability

Biological materials are available upon request. Figure S1 in File S1

shows the survival curves generated from two independent virulence

assays where D. suzukii was used as the insect host. Table S1 in File S1

lists SWN gene homologs and swainsonine production in fungal cul-

tures. Table S2 in File S1 shows results of assays for effects of swainso-

nine on virulence ofM. robertsii onD. suzukii. Table S3 in File S1 shows

sequences of oligonucleotide primers used in this study. Sequence data

are available at GenBank and the accession numbers are listed in Table

S1 in File S1.

RESULTS
Swainsonine precursors include pipecolic acid (Guengerich et al. 1973),

an analog of the amino acid proline, and mevalonic acid (Clevenstine

et al. 1979), a common building block for polyketides. Therefore, we

hypothesized that amultifunctional enzymewith an amino-acid adeny-

lylation (A) domain, an acyltransferase domain (AT), a b-ketoacyl

synthase (KS) domain, and two phosphopantetheine-binding/thiolation

domains (T) would catalyze the condensation of these two precursors.

Based on studies of Harris et al. (1988a,b) with isotopically labeled

precursors, we expected that additional domains or enzymes would be

required for several reduction steps and two hydroxylations. Consid-

ering that genes for any particular specialized (secondary) metabolite

tend to be closely linked in genomes of filamentous fungi (Spatafora

and Bushley 2015), we used comparative genomics to identify orthol-

ogous clusters of genes for appropriate biosynthetic enzymes in the

known swainsonine-producing fungi.

The genome of ICE (Cook et al. 2013) was sequenced and annotated

to model its genes. Inferred protein sequences from this genome and

the published genome ofM. robertsii ARSEF 23 (Gao et al. 2011) were

searched by hidden Markov models (HMM) with InterProScan to

identify putative functional domains. The sequences were also submit-

ted as BLASTp queries against fungal protein sequences in the non-

redundant GenBank database. Results were displayed in a modified

GBrowse version 1.70 for visual inspection to identify any gene models

with similar structures that included A, AT, KS, and T domains, which

were then compared by reciprocal best-BLASTp between the two

genomes. The results indicated that ICE andM. robertsii shared orthol-

ogous candidate genes, one of which, with an appropriate multi-

domain structure, was designated swnK (Figure 3). Genes closely linked

with swnK were also inspected for putative functions, and com-

pared by best-BLASTp analysis to identify shared genes of the putative

swainsonine-biosynthesis gene cluster, designated SWN (GenBank ac-

cessions KY365740 and JELW01000031.1). In addition to swnK, the

SWN clusters included swnN and swnR, putatively encoding reductases

of different Rossmann-fold families, and swnH1 and swnH2, putatively

encoding related 2-oxoglutarate-dependent nonheme-iron dioxyge-

nases. There were no widely shared regulatory genes in the orthologous

SWN clusters, although several of the clusters have adjacent genes that

may be regulatory.

As a definitive test of the role of swnK in swainsonine biosynthesis,

we disrupted this gene in M. robertsii ARSEF 2575 by introducing the

selectable bar gene for bialaphos resistance in place of a segment that

Figure 2 Tests for swnK gene knockouts and complemented strains of
M. robertsii ARSEF 2575. (A) Domain structure of SwnK (see text and
caption of Figure 3) mapped over the length of the gene. (B) Scale
map of sequences cloned into the double crossover gene replacement
construct (white), which flank the segment targeted for replacement
(black). (C) Map of the ∆swnK mutation in which the target region is
replaced with the bar gene. Labeled arrows indicate primers used for
PCR screens (see Table S3 in File S1). (D) Electrophoretic analysis of
PCR products generated with primers SW-T3F and SW-T3R and tem-
plate DNAs from ∆swnK, ectopic integrant controls G11 and G24,
∆swnK/swnK complemented strains C5, C12, C18, and C19, and un-
transformed wild type (WT). PCR on intact and bar-disrupted loci is
expected to generate products of 1240 and 1850 bp, respectively.
Lane M contains molecular size markers.
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Figure 3 Structures of SWN gene clusters in representatives of five orders of fungi with diverse ecological roles. Taxa are listed by order, family, genus,
species, and strain, and the scale on eachmap indicates the position of the gene cluster on the scaffold (supercontig) or contig indicated. Predicted functions of
the gene products are: SwnA, an aromatic amino transferase; SwnH1 and SwnH2, 2-oxoglutarate- and Fe(II)-dependent dioxygenases; SwnN, an NmrA-like,
NADB Rossmann-fold reductase; SwnR, an NADB Rossmann-fold reductase; SwnT, a transmembrane transporter; and SwnK, a multifunctional protein with
adenylylation (A), phosphopantetheine-binding/thiolation (T), b-ketoacyl synthase (KS), acyltransferase (AT), reductase (SDR), and thioester reductase (SDR e1)
domains. SWN genes and swnK domains are color-coded, flanking genes are shown in gray, and swnT of ICE is represented as a likely pseudogene.

1794 | D. Cook et al.



included the T domain adjacent to the A domain (Figure 2). The

resulting ∆swnK mutant failed to produce swainsonine at detectable

levels. This mutant was then complemented by reintroduction of wild-

type swnK, restoring swainsonine production in several independent

transformants (Table 1). Most of the complemented transformants

produced higher levels of swainsonine in culture than did the wild-type

strain.

Exhaustive BLASTp and tBLASTn searches of published genome

sequences revealed SWN-cluster orthologs in five different orders of

filamentous Ascomycota (Figure 3 and Table S1 in File S1). These

included the Arthrodermataceae (order Onygenales), which are skin

pathogens that cause ringworm and athlete’s foot in humans and other

mammals. All Arthrodermataceae possessed swnH1, swnH2, swnK,

swnN, and swnR, but in the Trichophyton species swnR was present

in a separate locus (Figure 3 and Table S1 in File S1). In two of the

Trichophyton genome sequences, swnR was not annotated, but their

apparently complete swnR gene orthologs could be identified by

tBLASTn. (These are listed in Table S1 in File S1 by their nucleotide

sequence accessions AOKT01000327.1 and LHPM01000018.1.) Repre-

sentatives of six species of Arthrodermataceae—namely, Arthroderma

otae (=Microsporum canis), Nannizzia gypsea (=Microsporum gypseum),

Trichophyton benhamiae (=Arthroderma benhamiae), Trichophyton

interdigitale, Trichophyton equinum (=Trichophyton tonsurans), and

Trichophyton rubrum—were cultured and tested for swainsonine,

and all except Ar. otae produced the alkaloid. Considering that symbi-

otic fungi such as Epichloë species tend to express alkaloids only in their

hosts and not in culture (Chujo and Scott 2014), it is possible that

Ar. otae produces swainsonine only in its host, or that it requires other

culture conditions. SWN clusters were also identified in all sequenced

isolates of Metarhizium species except Metarhizium album ARSEF

1941. Cultures of all eight available isolates of sixMetarhizium species,

but not ofM. album, produced detectable levels of swainsonine (Table

S1 in File S1), showing a strong correlation of SWN cluster presence

and swainsonine production.

Whole genome shotgun sequencing was also conducted on the

genomes of the clover black patch pathogen, Slafractonia leguminicola

(Alhawatema et al. 2015), and the endophyte, Alternaria oxytropis

(Pryor et al. 2009), both of which are known swainsonine producers

in the order Pleosporales. Putative orthologs of swnK, swnN, swnR,

swnH1, and swnH2 were identified in both, but not necessarily on

shared scaffolds. In the A. oxytropis genome assembly, the apparent

orthologs were on three scaffolds, but scaffold ends overlapped within

coding sequences of swnN and swnH1 to permit manual assembly

of the entire cluster (Figure 3; GenBank accession KY365741). For

S. leguminicola (GenBank accessions KY365742–KY365746), swnK,

swnN, swnR, and swnT assembled uniquely and apparently completely

on separate scaffolds, swnH1 and swnH2 assembled together in a scaf-

fold as convergently transcribed genes, similar to the arrangement in

A. oxytropis. Therefore, there was no evidence for or against clustering of

SWN genes in S. leguminicola. Also like A. oxytropis, no swnA ortholog

was found in S. leguminicola.

S. leguminicola produces two distinct indolizidines, swainsonine

and slaframine, of which the latter causes slobbers in livestock that

graze infected legume foliage (Harris et al. 1988b; Croom et al. 1995).

Given the structural similarity of swainsonine and slaframine, a second

swnK homolog was expected in S. leguminicola. In fact, two swnK

paralogs were identified (GenBank accessions KY365747 and

KY365748), both encoding proteins with the SwnK domain structure.

The paralogs had similar levels of divergence from each other and

from SwnK, with 53.1–55.4% identity to SwnK of S. leguminicola,

A. oxytropis, M. robertsii, and ICE. In contrast, SwnK orthologs all

shared.70% identity with each other. Presumably one SwnK paralog

is involved in biosynthesis of slaframine, and conceivably the other is

involved in biosynthesis of a related alkaloid yet to be identified.

The genes designated swnA and swnTwere present in SWN clusters

of some but not all swainsonine producers. (Figure 3 and Table S1 in

File S1). SwnA was a putative aminotransferase, and SwnT was related

to a transmembrane choline transporter. Orthologs of swnT were pre-

sent in all except the two endophytes, ICE, which had a swnT pseudo-

gene, and A. oxytropis, which completely lacked swnT. It is noteworthy

that an orthologous swnT gene was present in S. leguminicola, which is

in the same order asA. oxytropis, indicating that the gene was lost in an

ancestor of the endophyte A. oxytropis. The possibility deserves further

investigation that loss of swnT is related to evolution of mutualistic

symbionts, perhaps by altering the localization of swainsonine.

BLASTp searches of sequenced genomes also revealed gene clusters

orthologous to SWN in Pseudogymnoascus sp. VKM F-4515 from per-

mafrost soil (Figure 3), and in a recently published genome from a

fungus designated fungal sp. No.14919 (Table S1 in File S1). As in

the Arthrodermataceae, Metarhizium species, A. oxytropis and ICE,

these species had apparent swnK orthologs closely linked to swnH1,

swnH2, swnN, and swnR. In fungal sp. No.14919 the arrangement of

these genes, plus a swnT ortholog, was similar to that in Metarhizium

robertsiiARSEF 23 (Figure 3). Pseudogymnoascus sp. VKM F-4515 and

fungal sp. No.14919 had distinct additional genes for putative biosyn-

thetic enzymes adjacent to the cluster. It seems likely that these two

species also produce swainsonine or a related metabolite.

We employed ∆swnK, swnK-complemented strains, and wild-type

M. robertsii to test the role of swainsonine in pathogenicity to the insect,

D. suzukii. Survivorship curves indicated no significant reduction in

virulence for the ∆swnK strain (Figure S1 and Table S2 in File S1). In

fact, in most tests swainsonine-producing strains exhibited slightly less

virulence than did the knockout strain.

DISCUSSION
Our comparative genomic analysis proved fruitful in revealing a gene

cluster that was common among swainsonine producers, and that

included a ketide synthase gene (which we designated swnK) with

n Table 1 Results of molecular genetic tests for the role of swnK in swainsonine biosynthesis

Strain Genotype Comment Swainsonine Concentration (mg/g Dry Mass 6 SD)

ARSEF 2575 WT Wild-type strain 653 6 119
∆swnK ∆swnK swnK disruption mutant Not detected
G11 WT + bar Ectopic transformant 620 6 103
G24 WT + bar Ectopic transformant 633 6 81
C5 ∆swnK + swnK Complemented mutant 1268 6 470
C12 ∆swnK + swnK Complemented mutant 1141 6 497
C18 ∆swnK + swnK Complemented mutant 145 6 46
C19 ∆swnK + swnK Complemented mutant 2573 6 1408
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appropriate domains for the first steps of swainsonine biosynthesis.

Subsequent inactivation of swnK in M. robertsii, followed by comple-

mentation of the ∆swnK mutant, provided for confirmation that this

gene was required for swainsonine production. The arrangement of

domains in the inferred SwnK polypeptide sequence, together with

published results of isotope labeling experiments (Harris et al.

1988b), suggested biosynthetic roles for SwnK, as well as for the SwnR

and SwnN reductases, and the SwnH1 and SwnH2 hydroxylases

encoded by nearby genes (Figure 4). Based on the presence and posi-

tions in SwnK of the two reductase domains, SDR (b-ketoacyl reduc-

tase) and SDR e1 (thioester reductase) (Figure 2 and Figure 4), we

predict that the intermediate released from this enzyme has a hydroxyl

group instead of the keto group proposed by Harris et al. (1988b). This

intermediate should cyclize to generate a C3=N+4 iminium ion that

we propose to be reduced by the action of SwnR or SwnN, giving

1-hydroxyindolizidine, which has been reported from the locoweed

species,Astragalus oxyphysus (Harris et al. 1988a). Subsequent oxygen-

ations must occur at carbons 2 and 8, consistent with predicted activ-

ities of SwnH1 and SwnH2. Furthermore, Harris et al. (1988b) present

strong evidence for epimerization at carbon 9, suggesting a second

iminium ion intermediate, C9=N+4, perhaps generated by the action

of SwnH1 or SwnH2. Thus, the presence of the two putative reductase

genes, swnN and swnR, is consistent with a requirement to reduce both

a C3=N+4 and a C9=N+4 iminium ion in the proposed pathway.

The diversity of fungi that produce swainsonine suggests multiple

ecological roles for the alkaloid among symbionts andparasites of plants

and animals. So far, indications have been surprising. In the case of

locoweeds, grazing mammals can develop a preference despite the

devastating cytotoxic and neurological effects of swainsonine (Ralphs

et al. 1990; Pfister et al. 2003). Thus, the alkaloid does not seem to deter

these herbivores. Also, our tests of M. robertsii on the insect model,

D. suzukii, indicate that swainsonine does not contribute, and may

actually moderate, virulence. It is possible that swainsonine may have

a deterrent or toxic effect on other herbivores or other microbes, and

that it may have a role in maintaining some stable symbioses of fungi

with host plants. Furthermore, the ubiquity of SWN genes in the

Arthrodermataceae raises the possibility that swainsonine has a role

in the etiology of skin infections by these dermatophytic fungi—an

important consideration for veterinary and human medicine.
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