
SWAMI: A Framework for Collaborative Filtering
Algorithm Development and Evaluation

Danyel Fisher, Kris Hildrum, Jason Hong, Mark Newman, Megan Thomas, and Rich Vuduc
Dept. of EECS, CS Division, University of California, Berkeley

{danyelf,hildrum,jasonh,newman,mct,richie}@cs.berkeley.edu

ABSTRACT
We present a Java-based framework, SWAMI (Shared
Wisdom through the Amalgamation of Many Interpre-
tations) for building and studying collaborative filter-
ing systems. SWAMI consists of three components: a
prediction engine, an evaluation system, and a visual-
ization component. The prediction engine provides a
common interface for implementing different prediction
algorithms. The evaluation system provides a stan-
dardized testing methodology and metrics for analyz-
ing the accuracy and run-time performance of predic-
tion algorithms. The visualization component suggests
how graphical representations can inform the develop-
ment and analysis of prediction algorithms. We demon-
strate SWAMI on the EachMovie data set by compar-
ing three prediction algorithms: a traditional Pearson
correlation-based method, support vector machines, and
a new accurate and scalable correlation-based method
based on clustering techniques.

1. INTRODUCTION
The goal of the SWAMI project is to create an open,
extensible framework for designing and evaluating algo-
rithms for collaborative filtering. Collaborative filtering
systems have been built to help users get recommen-
dations on content like newsgroup postings [9], music
albums [10], movies [2], and jokes [7], to name a few.
However, comparing approaches can be difficult since
different developers often use different data sets and
evaluation methodologies; the most notable systematic
comparison appears in [3]. To overcome this difficulty,
SWAMI (implemented in Java) provides common inter-
faces for supplying data sets and prediction algorithms
to an evaluator. The evaluator benchmarks the predic-
tion algorithms against one another, reporting metrics
which help developers gauge prediction accuracy and
performance.

We show how we used the framework to study and eval-
uate three very different prediction algorithms, includ-
ing one new highly accurate, scalable method, on the
full EachMovie [1] data set (see Section 4). We also
describe our use of both old and new evaluation met-
rics, as well as the use of visualization in our study. We
believe our system will enable investigators to develop
new algorithms, as well as tune existing implementa-
tions. SWAMI’s design encourages developers to add
extensions, in the hopes of fostering new and insightful
analyses of both algorithms and data sets. A full report
and detailed discussion of the software architecture1 can
be found elsewhere [5].

2. THE PREDICTION TASK
The basic algorithmic task is to predict the rating that
a user will give to an item, given that user’s other rat-
ings and the set of ratings given by all other users of
the system. Below, we describe the Pearson correla-
tion method, the support vector method, and a Pear-
son correlation method that uses clustering to improve
scalability and accuracy.2

2.1 Simple Pearson Predictor
Herlocker, et al. [8] propose the following general form
for computing a prediction pu,m for user u and item m:

pu,m = v̄u + κ
X
i 6=u

w(u, i)(v̄u − vi,m) (1)

where vi,m is the explicit vote (i.e., rating) given by user
i on item m, v̄u is user u’s mean vote, w(u, i) ∈ [−1, 1] is
a weighting that reflects the similarity between users u
and i, and κ is a normalizing constant. The sum can be
taken over all other users or restricted to some sensible
neighborhood to improve run-time performance and/or
accuracy.3 The most widely used weight is the Pearson-
correlation: w(u, i) =

P
k

(vu,k−v̄u)
σu

(vi,k−v̄i)
σi

where the
sum is over the items on which both u and i voted,
and σu is the standard deviation of votes by user u on
1The SWAMI software is available for download at
http://guir.cs.berkeley.edu/projects/swami.
2The latter two expand the set of techniques applied to
EachMovie, which include vector similarity-based methods,
graphical models [3], and boosting [6].
3Based on both our own experiments on EachMovie and
suggestions in [8], we chose neighborhoods of size fifty.

the items {k}. We applied an additional linear penalty
to the weight if the number of items rated in common
was below some pre-determined threshold4 [8]. The ma-
trix of weights among all users (or movies) is the user
(movie) correlation matrix. This Simple Pearson Pre-
dictor (SPP) is the most commonly used technique due
to its simplicity. The primary disadvantage is poor pre-
diction time (O(n) for n users) since the sum in equa-
tion (1) accesses all users in the database even when
restricted to a neighborhood.

2.2 Support Vector Predictor
We can also view prediction of discrete votes as a classi-
fication task. For any item m, let users who gave m the
same vote be members of the same class. We want to
build a classifier that maps voting patterns to classes;
the support vector (SV) method is one statistical ap-
proach [11]. A user is a point whose coordinates are
his/her votes,5 labeled by class. The SV training algo-
rithm finds optimal geometric class separations given a
set of example points. The resulting classifier outputs
a class label given an new point. One advantage of the
Support Vector Predictor (SVP) is that the prediction
time depends only on the number of training samples
used, which is constant with respect to the number of
users in the system, assuming infrequent updates of the
classifier. However, training time grows as O(n2) for n
training samples. Also, we must supply data for missing
votes even if it is inappropriate for a given data set.

2.3 Clustered Pearson Predictor
SPP can be made more scalable by reducing the number
of users that are examined for similarity in equation (1),
for example, by randomly sampling the full data set.
However, we propose an alternative approach: cluster-
ing users. Our Clustered Pearson Predictor (CPP) is
based on the well-known k-means clustering algorithm
[4]. Informally, our algorithm creates a fixed number,
k, of clusters of users, and then creates composite user
profiles for each cluster from its members. Each cluster
has a “center,” which is a user from the cluster that best
correlates with other members. After clustering, a pro-
file is created for each cluster. The profile is a compos-
ite user where the vote for an item is the average rating
given to that item by members of the cluster. Predic-
tions are computed using SPP where we only consider
the k profiles generated above as potential neighbors.6

Thus, scalability is achieved since the entire user data
set has been reduced to a much smaller, constant num-
ber of composite users. Furthermore, these composites
possess a higher vote density since they are aggregations
of their cluster’s votes, which helps maintain accuracy.
However, the Clustered Pearson method suffers from a
large off-line training time requirement.

3. EVALUATION FRAMEWORK
4For EachMovie, we chose 30 votes.
5For missing votes, we use a slightly negative vote.
6We report our results on EachMovie with k = 5000.

The evaluation framework provides a standard testing
methodology for comparing the accuracy and perfor-
mance of predictors. Below, we describe its three com-
ponents: baseline predictors, test set selection, and met-
rics for analysis.

3.1 Baseline predictors
Baseline predictors [10] are fast and common “naive”
algorithms against which the accuracy of any predictor
can be compared. SWAMI provides two baseline pre-
dictors: one which returns a user’s average vote and one
which returns an item’s average vote.

3.2 Test Set Selection
Our method of selecting testing and training sets helps
developers determine (1) what minimum amount of data
is needed to achieve some desired level of accuracy, and
(2) if and when overfitting occurs. The SWAMI inter-
faces allow each algorithm to have a training phase, sep-
arate from prediction, in which to do any preprocessing
work. The evaluator builds the training set from the
full data set by randomly selecting a given percentage
of the users7 and passing all of their votes to the pre-
diction algorithm. A testing set is constructed from the
remaining users. As in Breese, et al. [3], the system
performs Given X tests: the number of votes known
per test user is set to X and we ask for predictions from
among the withheld votes. These tests are repeated
several times to improve reliability.

3.3 Metrics
We report the mean absolute error (MAE), which is
usually reported, the variance of the MAE as a measure
of predictive reliability, and the mean error which is a
rough indicator of bias. However, since MAE does not
account for predictive difficulty, we propose the follow-
ing weighted mean µ =

P
u |(vu,m− v̄u)×(vu,m−pu,m)|,

where the sum is over test users, and the first factor is
a weight that is higher when the actual vote is far from
the user’s mean vote. Finally, we report average train-
ing and testing execution times for each algorithm.

4. EVALUATION RESULTS
We compared the three predictors on the EachMovie
data set. EachMovie contains about 2.8 million votes
cast by over 60,000 users on 1648 movies. The voting
scale is 0-5 stars (integer). Our tests were performed us-
ing 20%, 40%, 60%, and 80% of the data set for training,
with the remainder for testing. In Figure 1, we report
results for 40% in the Given 5, Given 20, and Given
All-but-one scenarios.8

Among the algorithms tested, CPP proved to be both
the most accurate and the most scalable algorithm. The
results for the SPP resemble the findings of other re-
searchers: the algorithm is accurate (well surpassing
the baseline predictors) but slow (over a minute per
7This selection method can be changed easily.
8We observed that more than 40% of the data did not sig-
nificantly improve the accuracy of the algorithms.

Metrics
Abs. Wgt. Pred.

Given MAE Var. Mean Time (s)
By 5 1.21 0.84 2.29 0.0

User 20 1.17 0.75 2.13 0.0
Avg. All-1 1.02 0.61 1.66 0.0

Simple 5 1.02 0.53 1.49 84.0
Pearson 20 0.88 0.46 1.35 82.9

All-1 0.89 0.65 1.29 84.2
Support 5 1.46 1.80 1.95 69.3*
Vector 20 1.25 1.45 1.54 71.2*

All-1 1.10 1.27 1.38 65.0*
Clustered 5 0.87 0.71 1.41 0.013
Pearson 20 0.91 0.67 1.47 0.017

All-1 0.77 0.57 1.08 0.021

Figure 1: Prediction algorithm accuracy (train-
ing set size: 40% of users). *SVP times include
training time (true prediction time ≈ 10 ms).

prediction). While SVP performance is disappointing,
our expanded report shows a number of instances in
which SVP does both significantly better than and sig-
nificantly worse than the others [5].

5. VISUALIZATION
We tried a number of techniques for visualizing the
EachMovie data set to create informative pictures for
both developers and end-users. Such techniques in-
cluded simple curves, views of the sparse user-by-movie
vote matrix, multidimensional scaling, geometric views
of clusters, and views of the structure of the user and
movie correlation matrices. Due to space limitations,
we show only one example of an interesting result of a
visualization experiment. As suggested in [7], we per-
formed a principal components analysis (PCA) of the
movie vote data, which amounts to computing eigen-
vectors of the movie-movie correlation matrix. Figure
2 shows the largest and smallest (in magnitude) coor-
dinates of the first eigenvector. The titles suggest a
surprising but intuitively pleasing interpretation of the
eigenvectors. The other largest eigenvectors exhibit a
similar arrangement of movies by some sense of “topic.”

High-brow to low-brow
Top 4 Il Postino (The Postman)

Mighty Aphrodite
Richard III

Eat Drink Man Woman
Bottom 4 Beverly Hillbillies

Lawnmower Man 2
The Next Karate Kid

Operation Dumbo Drop

Figure 2: Largest (top) and smallest (bottom)
coordinates of the top eigenvector.

6. CONCLUSION AND FUTURE WORK
Our main contributions are (1) the creation of a portable,
open framework for designing and evaluating collabora-
tive filtering systems, (2) a new scalable Pearson corre-
lation algorithm based on clustering, (3) a standardized
method for conducting evaluations, and (4) a demon-

stration of the utility of visualization and data analysis
techniques.

There are a number of future directions for this work.
(1) We have not yet explored the full tuning parame-
ter space to understand all of the data size, accuracy,
and performance trade-offs. (2) A more thorough un-
derstanding of which algorithms perform best on what
data is needed, possibly leading to data models and/or
hybrid predictors. (3) Continued exploration of using
PCA to understand the dimensionality of the data set
is likely to be fruitful. (4) Validation on new data sets,
such as the Jester data set [7] (in progress).

Acknowledgements
We thank Sridhar Rajagopalan, David Gibson, and Alex
Berg for much thoughtful input.

7. REFERENCES
[1] Eachmovie collaborative filtering data set, 1997.

www.research.digital.com/SRC/eachmovie.

[2] Movielens, December 1999.
www.movielens.umn.edu.

[3] J. S. Breese, D. Heckerman, and C. Kadie.
Empirical analysis of predictive algorithms for
collaborative filtering. msr-tr-98-12, Microsoft
Research, Seattle, WA, May 1998.

[4] R. Duda and P. Hart. Pattern Classification and
Scene Analysis. John Wiley and Sons, Inc., 1973.

[5] D. Fisher, K. Hildrum, J. Hong, M. Newman,
M. Thomas, and R. Vuduc. Swami project report.
www.cs.berkeley.edu/~mct/swami/paper.html.

[6] Y. Freund, R. Iyer, R. Schapire, and Y. Singer.
An efficient boosting algorithm for combining
preferences. In Proceedings of the 15th Int’l
Conference on Machine Learning, 1998.

[7] K. Goldberg. Overview of the jester system
(invited talk), November 1999.
eigentaste.berkeley.edu.

[8] J. Herlocker, J. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for
performing collaborative filtering. In Proceedings
of the 1999 Conference on Research and
Development in Information Retrieval, Berkeley,
CA, August 1999.

[9] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom,
and J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings
of the Computer Supported Collaborative Work
Conference, 1994.

[10] U. Shardanand and P. Maes. Social information
filtering: Algorithms for automating “word of
mouth”. In Proceedings of the Conference on
Computer-Human Interaction, 1995.

[11] V. N. Vapnik. Statistical Learning Theory. John
Wiley and Sons, Inc., 1998.

