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Abstract

In this paper, we study a theory of gravity called mimetic f(R,T ) in the presence of
swampland dS conjecture. For this purpose, we introduce several inflation solutions of
the Hubble parameter H(N) from f(R,T ) = R + δT gravity model, in which R is Ricci
scalar, and T denotes the trace of the energy-momentum tensor. Also, δ and N are the
free parameter and a number of e-fold, respectively. Then we calculate quantities such
as potential, Lagrange multiplier, slow-roll, and some cosmological parameters such as
ns and r. Then we challenge the mentioned inflationary model from the swampland dS
conjecture. We discuss the stability of the model and investigate the compatibility or
incompatibility of this inflationary scenario with the latest Planck observable data.
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1 Introduction

The inflationary scenario was proposed to study the expansion of the universe. It expresses
how the formation of large scale structures and tries to answer problems such as fine-tuning,
horizon, and flatness [1–3] concerning different conditions and conjectures such as slow-roll,
constant-roll, etc. Large-scale and coherent structures of the universe and CMB anisotropies
are explained in such a way that the exponential growth of pre-inflationary density fluctua-
tions over a brief period, i.e., approximately (10−33s) can lead to the possibility of creating this
structures [4–7]. It has recently been proven that a scalar field called ”Inflaton” is responsible
for inflation [1]. Of course, many potentials for inflation have been studied consistently with
observable data. Their cosmological applications have been discussed in detail [8–12]. Modified
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theories of gravity have always been of interest to researchers in inflation because they do not
need to consider the dark matter and dark energy in the face of several cosmological issues
such as late-time cosmic acceleration and have been very useful [13, 14]. We also remark that
in addition to the scalar field in the cosmological inflation scenario, other types of modified
gravitational theories have been examined that are consistent with observable data and have
discussed various kinds of cosmological consequences such as f(R), f(R, T ), f(G )gravity, also
in braneworld models and so on [15–20]. We noted that mimetic gravity is an organized Weyl
symmetric augmentation of Einstein gravity connected by a singular disformal transformation
and explains the evolution of the universe, so that Integrated study from primordial inflation
to the late-time acceleration. This mimetic gravity has been investigated in the inflation and
solutions of black holes, late-time acceleration, cosmology, and the rotation curves of worm-
holes, so for further study, you can see in Ref.s. [21–28]. Considering the above concepts, the
main purpose of this article is to investigate the solutions of cosmic inflation in the framework
of mimetic f (R, T ) gravity with Lagrange multiplier and the potential for the monitoring of
swampland conjectures. We first introduce some inflation solutions of the Hubble parameter
H(N) and calculate quantities such as potential and Lagrange multiplier and two important
cosmological parameters such as ns and r, which are called the scalar spectral index and tensor
to scalar ratio, respectively. Then by considering one inflation solution of the Hubble parame-
ter, the compatibility or incompatibility of this model of the latest observable data concerning
swampland conjectures and analyze the results. This study’s exciting and unique point is the
combination of mimetic f (R, T) gravity with swampland conjectures in inflation that will have
interesting cosmological results and implications. In general, f(R, T) gravity is introduced
in [29] has had many successes in various cosmological studies such as cosmology, Big bang nu-
cleosynthesis, temporally varying physical constants, density perturbations, viscous cosmology,
inflation, late-time acceleration, baryogenesis, and redshift drift. [30–38]. Researchers recently
studied the swampland conjectures. The swampland program and the weak gravity conjecture
have been studied for many cosmological concepts such as inflation, black hole physics, energy
and dark matter, brane structure, and other cosmology concepts. These conjectures have been
used with other concepts and cosmological conditions, such as various effective theories. The
cosmological applications of these studies are well articulated. In the swampland program,
we are faced with concepts such as swampland (a set of theories incompatible with quantum
gravity) and landscape (a set of theories compatible with quantum gravity). This article also
considers the refined swampland conjecture, which we will introduce in detail in this article’s
continuation. You can see Refe.s. [39–59, 65–69]. This paper is organized as follows.
In Sec 2, we briefly explain the mimetic f(R, T ) gravity. In Sec 3, we overview mimetic f(R, T )
gravity in an inflationary scenario. In Sec 4, we study several inflation solutions of the Hubble
parameters such as H(N) are (XNa + Y N exp(bN))d, (XcN + Y Na)d and (X + Y N)d from
f(R, T ) gravity and calculate quantities such as potential, Lagrange multiplier, slow-roll, and
other cosmological parameters. In Sec 5, we consider one of the inflationary solutions of the
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Hubble parameter and study the mimetic f(R, T ) inflationary model from the swampland con-
jecture point of view. Also, we employ some exciting figures and investigate the compatibility or
incompatibility of the inflationary scenario with the latest observable data, i.e., BICEP2/Keck
Array data, Planck data, and further refining the swampland dS conjecture. In Sec 6, we dis-
cuss the stability of the model and finally, we summarize the results with future remarks in Sec
7.

2 Mimetic f(R, T ) Gravity

This section will explain the mimetic f(R, T ) gravity. This section’s main purpose is to examine
inflation from the point of view of mimetic f(R, T ) gravity. By parameterizing the metric using
the new degrees of freedom, a wide class of solutions can be created [70–77]. one can introduce
the metricgij as an auxiliary metric g̃ij with an auxiliary scalar field that is expressed in the
following form, as gij = −g̃ij∂α∂βφg̃

αβ. We can also give an explanation with respect to the
relation expressed as follows, −(g̃ij , φ)∂iφ∂jφg

ij = 1. With respect to this inflationary model,
flat FRW space, and according to the mentioned above and a Lagrange multiplier with a
mimetic potential, this model’s action is expressed in the following form [77].

S =

∫ √−gd4x

(
Lm − V (φ) + λ(gij∂iφ∂jφ+ 1) + f

(
R(gij, T )

))
, (1)

where R, T , Lm are Ricci scalar, the trace of the energy-momentum tensor and matter La-
grangian, respectively. The field equation with respect to equation (1) and the metric gij which
is given by,

1

2
gij(λ(g

αβ∂αφ∂βφ+ 1)− V (φ)) +
1

2
gijf(R, T ) +∇i∇jfR − RijfR

− λ∂iφ∂jφ+
1

2
Tij − fT (Tij +Πij)− gij⊔⊓fR = 0,

(2)

where Πij = gαβ
δTαβ

δgij
and ⊔⊓ = ∇i∇i, ∇i, are the d’Alembertian operator and covariant deriva-

tive, also fR and fT denote partial derivatives of f(R, T ) with respect to R and T , respec-
tively [77]. The energy-momentum tensor for the cosmos filled with perfect fluid is expressed
in the following form.

Tij = pmgij + (pm + ρm)vivj , (3)

where pm, ρm and vi are the pressure and energy density and the four velocity, respectively.
Also the scalar curvature R can be expressed as R = 6(2H2 + Ḣ) and T = ρ− 3p, If assumed
Lm = −pm, one can obtain [77],
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1

2
gij

(
λ(gαβ∂αφ∂βφ+ 1)− V (φ)

)
+

1

2
gijf(R, T ) +∇i∇jfR −RijfR

− λ∂iφ∂jφ+
1

2
Tij − fT (Tij + pmgij)− gij⊔⊓fR = 0.

(4)

With respect to equations (1), (2) and the auxiliary scalar field φ, we will have,

−V ′(φ)− 2∇i(λ∂iφ) = 0, (5)

prime represents the derivative concerning φ, and with respect to equations (1), (2), and the
Lagrange multiplier λ, we arrive,

gij∂iφ∂jφ = −1. (6)

The Friedmann equations for the FRW background with the presumption that the scalar field
depends on t is given by the following equation [77].

6(Ḣ +H2)fR − f(R, T )− 6H
dfR
dt

− λ(φ̇2 + 1)− 2fTpm + V (φ) + ρm(2fT + 1) = 0, (7)

f(R, T )− 2(Ḣ + 3H2)fR + pm(4fT + 1 + 4H
dfR
dt

)− λ(φ̇2 + 1) + 2
d2fR
dt2

− V (φ) = 0, (8)

6Hλφ̇− V ′(φ) + 2
d(λφ̇)

dt
= 0, (9)

φ̇2 − 1 = 0, (10)

where the dot represents the time derivative. By assuming the φ = φ(t) the equation (7) convert
to,

−2(Ḣ + 3H2)fR + f(R, T ) + 4H
dfR
dt

+ 2
d2fR
dt2

− V (t) + pm(4fT + 1) = 0. (11)

So the mimetic potential in f(R, T ) which is given by
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V (t) = f(R, T ) + 4H
dfR
dt

+ 2
d2fR
dt2

+ pm(4fT + 1)− 2(Ḣ + 3H2)fR. (12)

According to the above concepts, by selecting appropriate models from f(R, T ) gravity, one
can reconstruct the mimetic potential in equation (12). We can also solve equation (7) with
respect to the Lagrange multiplier that we will have.

λ(t) = 3(Ḣ +H2)fR − 1

2
f(R, T )− 3H

dfR
dt

+ ρm(fT +
1

2
) +

1

2
V (t)− fT pm. (13)

3 Inflation Setup

After an overview of mimetic f(R, T ) gravity, now in this section, we want to study the effect of
several different inflation models within the mimetic f(R, T ) gravity structure and compare it
with the latest Planck observable data [?,79]. Hence we choose the simplest form of the f(R, T )
gravity model, i.e., f(R, T ) = R + δT . Then we introduce ns, r and slow-roll parameters in
this structure [77]. these parameters can be easily expressed in terms of the number of e-folds
using the following equations, so

d

dt
= H(N)

d

dN
,

d2

dt2
= H(N)

dH

dN
+H2(N)

d2

dN2
. (14)

So the slow-roll parameters in terms of N , which is given by,

ǫ = − H(N)

4H ′(N)
(
6H′(N)

H(N)
+ H′′(N)

H(N)
+ (H

′(N)
H(N)

)2

H′(N)
H(N)

+ 3
)2, (15)

η = −(

1
2
(H

′(N)
H(N)

)2 + 9H′(N)
H(N)

+ 3H′′(N)
H(N)

+ 3H′′(N)
H′(N)

− 1
2
(H

′′(N)
H′(N)

)2 + H′′(N)
H′(N)

2(H
′(N)

H(N)
+ 3)

), (16)

where primes represent a derivative of N. The scalar spectral index and tensor-to-scalar ratio
which is given by,

ns = 1 + 2η − 6ǫ, r = 16ǫ. (17)

One can consider the ns and r restrictions resulted from the marginalized joint 68% and 95%
CL regions of the Planck 2018 in compound with BK14+BAO data, viz ns = 0.9649± 0.0042
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at 68% Cl, and r < 0.1 at 95% CL and from BICEP2/Keck Array BK14 recent data r < 0.056
at 95% CL [?]. The exact value of the mimetic potential and Lagrange multiplier can also
be determined according to equation (14) and employ the mimetic f(R, T ) gravity. In the
following, we introduce several inflation solutions of the Hubble parameter H(N) and use the
method expressed in these two sections. We obtain the exact values for each cosmological
parameter, mimetic potential, and Lagrange multiplier. Then, we examine these results from
the swampland conjecture perspective and compare them with observable data.

4 Several inflation solutions of Hubble parameters

This section considers three impressive solutions of Hubble parameters named models I, II, and
III, respectively.

4.1 Model I

For the first inflation model, the Hubble rate is given by the following function of the number
of e-folds:

H(N) = (XcN + Y Na)d, (18)

where X, Y, c, a and d are free parameters and N is the number of e-folding. the ǫ, η, ns and r
are calculated as shown in Appendix A (Eq.s(53-56)).

By determining each of these free parameters’ values, we confirm the correspondence of each
of these inflation scenarios with the observable data. According to the mentioned point, we
consider the values of each of these free parameters in this form.

Y = 50, X = −1, c = 1, a = −0.0005, d = 1.

Hence, the two cosmological parameters, i.e., the scalar spectral index and the tensor-to-scalar
ratio for these free parameters,

r = 0.000152005, ns = 0.966221,

which correspond to the observable data [79]. It can be noted that after examining each of
these cosmological parameters and comparing them with observable data, the values of mimetic
potential and the Lagrange multiplier responsible for producing the inflationary model (18) can
also be given according to the equations (18), (12), (13) and (14) in mimetic f(R, T) gravity.
So we will have
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V =− (−2 + 3(−1 + δ)δ)d(Y Na +XcN)−1+d(Y Naa+XNcN log(c))(Y Na +XcN)d

N(1 + δ)(1 + 3δ)

+
3(1 + δ)(Y Na +XcN)2d

1 + 3δ
− δ(−3 + ρ),

(19)

λ =
1

2

(
− 3dδ2(Y Na +XcN)−1+d(Y Naa +XNcN log(c))(Y Na +XcN)d

N(1 + 4δ + 3δ2)

− 3(2 + 5δ)(Y Na +XcN)2d

1 + 3δ
− 3 + δ + (2 + δ)ρ

)
.

(20)

4.2 Model II

This part follows a similar process to the last detail; hence we consider another inflationary
model in which the Hubble rate describes the cosmological evolution.

H(N) = (XNa + Y NebN )d, (21)

where X, Y, b, a and d are free parameters. The slow-roll and spectral parameters of model II
are obtained as shown in Appendix B (Eq.s(57-60)). Now, we consider the free parameters for
the second inflation model as

Y = 25, X = −1.5, b = −0.025, a = −0.09, d = 0.1.

Hence, the scalar spectral index and the tensor-to-scalar ratio obtain

ns = 0.965577, r = 0.0155542,

which correspond to the observable data [79]. like model I, the values of mimetic potential and
the Lagrange multiplier are calculated as

V =− 1

N(1 + δ)(1 + 3δ)

(
XNa(Y NeNb +XNa)−1+2d

[
9N(−1 + δ)(1 + 2δ)(1 + δ)

+ a
(
− 4 + δ

(
− 5 + δ(11 + 6δ)

))
d

]
+ Y NebN(Y ebN +XNa)−1+2d

(
9N(−1 + δ)(1 + δ)

× (1 + 2δ) + (1 +Nb)
(
− 4 + δ

(
− 5 + δ(11 + 6δ)

))
d

)
+Nδ(1 + δ)(1 + 3δ)ρ

)
,

(22)
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λ =− 3Y 2N2e2Nb(−1 + δ)− 3X2N2a(−1 + δ)− 6AY eNbN1+a(−1 + δ)

− (Y NebN +XNa)d
(
XaNa−1 + Y eNb(1 +Nb)

)
(−3 + δ)d

− 1

2N(1 + δ)(1 + 3δ)
(Y eNbN +XNa)−1+2d(−2 + 5δ)

×
[
XNa(3N(1 + δ) + a(2 + 3δ)d) + Y NeNb

(
3N(1 + δ) + (1 +Nb)(2 + 3δ)d

)]

+ ρ+
δρ

2
.

(23)

4.3 Model III

In the final inflation model, we consider a subclass of the cases studied above, where the
following Hubble parameter describes the cosmological evolution. In this model, X , Y , and d
are constants parameters. the important point, i.e., the constants parameter are Y < 0, X > 0.
So, we have |Ḣ| ≪ H2 during the inflationary duration, which causes X

Y
≫ N , such that the

Hubble parameter is roughly constant (de Sitter) during the inflation. After inflation finishes,
the second sentence evolves important, and the Hubble rate decays.

H(N) = (X + Y N)d. (24)

We can investigate The slow-roll parameter in equations (15) and (16) in the following form.

ǫ = − Y d(6X + Y (−1 + 6N + 2d))2

4(X + Y N)(3X + Y (3N + d))2
, (25)

η =
Y
(
Y + 8Y N +X(8− 26d)− 2Y d(−2 + 13N + 3d)

)

4(X +NY )(3X + Y (3N + d))
. (26)

The scalar spectral index and the tensor-to-scalar ratio in equations (17) are obtained as,

ns =1 +
3Y d(6X + Y (−1 + 6N + 2d))2

2(X + Y N)(3X + Y (3N + d))2

+
Y
(
Y + 8Y N +X(8− 26d)− 2Y d(−2 + 13N + 3d)

)

2(X + Y N)(3X + Y (3N + d))
,

(27)
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r = −16
Y d(6X + Y (−1 + 6N + 2d))2

4(X + Y N)(3X + Y (3N + d))2
. (28)

Like the previous part, we determine these free parameters, i.e.,

X = 0.75, Y = −0.00699999, d = 0.2.

So, the scalar spectral index and the tensor-to-scalar ratio obtain respect to these free param-
eters.

ns = 0.964569, r = 0.06836,

where correspond to the observable data [79]. Also, the mimetic potential and the Lagrange
multiplier are calculated as

V =
−9(X + Y N)−1+2d(X + Y N)(−1 + δ)(1 + 2δ)(1 + δ) + Y

(
4 + δ(5− δ(11 + 6δ))

)
d

(1 + δ)(1 + 3δ)
− δρ,

(29)

λ =
(X + Y N)−1+2d(−3(X + Y N)(1 + δ)

(
− 4 + δ + 6δ2

)
+ Y

(
10 + δ

(
18− δ(5 + 6δ)

))
d

2(1 + δ)(1 + 3δ)

+ (2 + δ)ρ.

(30)

5 Mimetic f(R, T ) in RSC Perspective

In this section, we examine one of the inflation solutions of the Hubble parameter H(N),i.e.,
model (iii) from the swampland conjecture point of view and compare their results with observ-
able data [79]. Researchers have recently studied swampland conjectures as an exciting subject
for examining cosmological structures such as black holes, dark matter, dark energy, inflation,
etc. Also their cosmological implications have been thoroughly reviewed [55–59, 65–69]. But a
significant point to note about swampland conjectures is that it still struggles with many prob-
lems, For example, the discrepancy between single-field slow-roll inflation and swampland dS
conjecture. [65] Of course, solutions have always been proposed to solve the existing problems
and contradictions, such as considering a Gauss-Bonnet term to calculate the slow-roll param-
eters, which leads to resolving the mentioned contradiction [65]. Therefore, they are always
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looking for a deeper study and matching the mentioned conjectures with different concepts of
cosmology with other approaches. One of these techniques is, in fact, the correction of conjec-
tures themselves. For example, a new conjecture called further refined swampland dS conjecture
has recently been introduced, which has been able to answer many contradictions in various
studies of cosmology [60, 61]. Of course, swampland conjectures, in many cases, are in good
agreement with the concepts, and the latest observable data, including the warm inflation [62].
Also, recently, many efforts have been made to generalize the swampland program. Many con-
jectures have been added to it, including gravitino swampland conjecture [63]. Of course, one
of the most important motivations in the study of different concepts of cosmology according to
the swampland conjectures can be pointed out in the inflation, for example, by examining dif-
ferent types of inflation models in various frameworks and also other types of modified theories
of gravity such as f(R), f(R, T), f(G), etc., according to the structure of swampland conjectures
and analysis of results and their comparison with the latest observable data can achieve a new
classification of inflation models. It is even possible to determine the best model from many
models through these adaptations. But despite all the above explanations, this statement is
still incomplete, and as we mentioned, it still faces serious problems and challenges [40–49].
Therefore, this article intends to challenge a kind of inflation model with recent conjectures.
Of course, the swampland program, which has recently emerged from string theory, has been
introduced to answer a long-standing problem, quantum gravity. Among the conjectures used
in this program, we can mention distance conjecture, dS conjecture, weak gravity conjecture,
and TCC [50–59, 65]. In this statement, we also use concepts such as the landscape, that is, a
set of theories consistent with quantum gravity, and a broader area surrounding the landscape,
which expresses a set of approaches that are not compatible with quantum gravity and consid-
ered as swampland. Therefore, one introduced a series of mathematical formulations to present
these conjectures, such as the dS swampland conjecture. The satisfaction of these equations
shows the compatibility of the models with the introduced conjectures. In other words, the
swampland program expresses a series of conventions and criteria that the adherence of differ-
ent theories to these criteria leads to their compatibility with quantum gravity. These concepts
provide very powerful tools for examining the compatibility of different cosmological concepts
and structures with the ideas mentioned and the latest observable data [64] The dS swamp-
land conjecture mentioned in the following equation is always used in many cosmic concepts,
different types of phenomenological models, string theory, etc., by expressing the constraint on
potential [50–59, 65]. Also, these conjectures about different types of the most important cos-
mology parameters, such as scalar spectrum index and tensor to scalar ratio, which are among
the most important cosmological parameters in studying different inflation models, have had
interesting results. In this article, we intend to challenge them with new restrictions. One of
the most important motivations in these studies could be to find models consistent with these
conjectures, which in some way leads to compatibility with quantum gravity, which may be
used to consider new solutions to study quantum gravity. Of course, these arguments are the-
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oretical, profoundly consistent with some concepts, and related to the latest observable data.
This article considers the refined swampland conjecture, which is expressed in the following
form.

|∇V | ≥ C1

Mp
V,

min∇∂V ≤
V

− C2

M2
pl

V, (31)

The above equations for the V > 0, which is given by

√
2ǫV ≥ C1, or ηV ≤ −C2,

where C1 and C2 are both positive constants of the order of O(1). We consider the mimetic
potential of inflation solution of the Hubble parameter H(N) in equation (24), and with respect
to the mimetic potential (29) and the scalar field as a function of N that is defined as dN

dt
=

H(N) and φ = t, one can obtain,

V (φ) =− δρ+
1

(1 + δ)(1 + 3δ)

((
(X + Y )1−d − Y (−1 + d)φ

1

1−d

)
−1+2d

×
[
Y
(
4 + δ

(
5− δ(11 + 6δ)

))
d− 9(−1 + δ)(1 + δ)(1 + 2δ)

×
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

])
.

(32)

Other cosmological quantities and parameters can also be reconstructed in this way. According
to equation (32), the first and second derivatives of the potential and swampland dS conjecture
are calculated as shown in Appendix C (Eq.s(61-64)). We use a specific process to examine
a series of constraints and compare them to observable data [79]. Using the condition as
dN
dt

= H(N) and φ = t, we rewrite equations (27) and (28) and then we invert these equations
as (φ − ns) and (φ − r). The descriptions and reconstructed values of these two cosmological
parameters are expressed as

ns = 1 +

24Y d
(
(X + Y )1−d − Y (−1 + d)φ

) 3

−1+d

[
Y − 2Y d− 6

(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

]2

(3 + Y d
(
(X + Y )1−d − Y (−1 + d)φ

) 1

−1+d

)2

+

Y
(
(X + Y )1−d − Y (d− 1)φ

) 1

−1+d

(
8− 26d+ Y (1 + 4d− 6d2)

(
(X + Y )1−d − Y (d− 1)φ

) 1

d−1

)

2

(
3 + Y d

(
(X + Y )1−d − Y (−1 + d)φ

) 1

d−1

) ,

(33)

12



and

r = −
4Y d

(
(X + Y )1−d − Y (−1 + d)φ

) 3

−1+d
(
Y − 2Y d− 6

(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d
)2

(
3 + Y b

(
(X + Y )1−d − Y (−1 + d)φ

) 1

−1+d
)2

.

(34)
Here, we examined one of the inflation solutions of the Hubble parameter H(N) and studied
the mimetic f(R, T ) inflationary model from the swampland conjectures point of view. We
investigated this inflationary scenario’s compatibility or incompatibility with the latest observ-
able data, i.e., Planck data and BICEP2/Keck Array data. For this purpose, the limitations
of the swampland conjecture were determined in terms of two cosmological parameters. ns

and r are obtained for all the considered inflation models according to the selected values for
free parameters. They were consistent with Planck’s observable data [79]). We obtained these
two cosmological parameters in terms of φ. By placing each of these structures as (φ − ns)
and (φ − r) in equations (63) and (64), new structures are formed, i.e., (C1 − ns), (C2 − ns),
(C1− r) and (C2− r). Then, we draw some figures for these structures with respect to Planck’s
observable data and validated values of free parameters for (model III). The plots of C1 and C2

in terms of ns are depicted in FIGS. 1(a) and 2(a).
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Figure 1: The plot of C1 and C2 in terms of ns

As shown in figure (1), the restriction of swampland conjectures is determined in terms of the
scalar spectral index, which used the validated values for the free parameters for this inflation
model obtained in the previous section. As you can see, the acceptable values are specified for
the scalar spectral index and the constant coefficient of swampland conjectures (C1) and (C2).
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Figure 2: The plot of C1 and C2 in terms of r

In literature, the constants swampland conjecture, (C1) and (C2) are the positive value of unit
order. You can see these issues in the figures. The validated values for the (C1) and (C2) are
shown in the figures. (C2) values is less than the (C1). Similarly, the swampland conjecture’s
limitations for this inflation model in terms of the tensor-to-scalar ratio are also shown in figure
(2). The validated values for this cosmological parameter and the constant coefficients of the
swampland conjecture are well specified. We also benefited from the accepted values of free
parameters for this inflation model. Other restrictions can also be considered below. Another
type of constraint is the study of changes in two cosmological parameters, i.e., the tensor-
to-scalar ratio in terms of the scalar spectral index with respect to mimetic f(R, T ) gravity.

Another limitation is shown in figure (3) about the changes in the two cosmological param-
eters, namely the tensor-to-scalar ratio in terms of the scalar spectral index. The allowable
range of both parameters is well specified in this plot. The critical point is to examine these
changes according to the validated values for the mentioned inflation model and compare them
with observable data. One can discuss all these limitations concerning other mimetic f(R, T )
gravity and other models as f(G) gravity and compare the results of these studies. It can lead
to exciting developments and even determine which theories are more concrete and more in
line with observable data. Also, to confirm our arguments about the swampland conjecture
and the calculations performed, we consider the observable data such as r, ns,C1, C2 and the
constant parameters that are determined for each model in this paper. We study new restric-
tions by forming a function as f ≥ C2

1C
2
2 and determine the allowable range of the swampland

component, and specify the Cis that can be acceptable for the model.
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Figure 3: The plot of r in term of ns
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Figure 4: The resulting constraints for C1 and C2 with respect to r, and ns and constant param-
eters. According to the calculations performed in the text, the allowable range for this model
pick for the vertical axis contains values smaller than 1.26911× 10−6 in terms of a permissible
range for the horizontal axis, i.e., the interval [0, 1]. This allowable area is determined as a
small window in the figure4

In general, as shown in figure 4, the allowable range for the swampland conjecture is deter-
mined according to the observable data r, ns and the constant parameters. That is, it can be
concluded that Ci ≤ 1.26911×10−6(the allowable range for these calculations is in a small win-
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dow in figure 4). can be the allowable values for this model, which can be another confirmation
of the alignment of the model about the swamp conjectures.

5.1 further refining swampland conjecture

According to the explanations we provided about recent conjectures and the equations men-
tioned in the previous section, we can use further refining swampland conjecture conditions to
examine any effective low-energy theory of gravity concerning Mp = 1. [61, 82]. A new con-
jecture that a combination of two relations in equation (31) called further refining swampland
conjecture was introduced by Andriot, and Roupec, which is expressed as. [60].

(
Mp

∇V

V

)q

− aM2
p

min∇j∇jV

V
≥ b a+ b = 1, a, b > 0, q > 2.

The above equations can also be rewritten in terms of slow-roll parameters in the following
form.

(
2ǫV

)q/2 − aηV ≥ b.

In connection with the recent conjecture, some works have been done in the literature, which
you can see for more review in [61, 82]. With respect to the above equations, we will have,

(F1)
q

2 − aF2 ≥ b, (35)

where the parameters a, b and q are free parameters. Also F1 and F2 are defined as follows

F1 =
|dV (φ)/dφ|

V (φ)
=

√
2ǫV , F2 =

d2V (φ)/dφ2

V (φ)
= ηV . (36)

Now, we rewrite F1 and F2 in the slow-roll region according to the parameters r and ns,
the tensor-to-scalar ratio, and the spectral index of the primordial curvature power spectrum,
respectively.

F1 =
√
2ǫV =

√
r

8
, F2 = ηV =

1

2
(ns − 1 +

3r

8
). (37)

Here, we examine whether these three inflation models within the mimetic f(R; T) gravity
structure can satisfy further refining swampland dS conjecture.

5.1.1 Model I

For the first model The scalar spectral index and the tensor-to-scalar ratio, are obtained ns =
0.966221 and r = 0.000152005. By placing these values in Equation (37), we find

F1 =
√
2ǫV =

√
r

8
= 0.00436, F2 = ηV =

1

2
(ns − 1 +

3r

8
) = −0.01686. (38)
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Considering the refined swampland conjecture (31), we find

C1 ≤ 0.00436, C2 ≤ 0.01686, (39)

since C1 and C2 are not unit orders (C1 = C2 6= O(1)), they contradict the refined swampland
conjecture. We now examine the first model by further refining the swampland conjecture. By
placing the equation (38) into (35), we obtained

(0.00436)q + 0.01686a ≥ 1− a , or (0.00436)q ≥ 1− 1.01686a. (40)

We can find a to satisfy the condition

1

1.01686
[1− (0.00436)q] ≤ a < 1, q > 2, (41)

therefore, further refining the swampland conjecture can be satisfying. Equation (40) holds for
all values of q > 2 with respect to a < 1

1.01686
= 0.98342. We can give an example for a, b, q

variables that met for this model. By selecting q = 2.1, and using relations (40) and (41) we have
0.98340 ≤ a < 0.98342 and by investigating the a = 0.98341, we obtain b = 1− a = 0.01659.

5.1.2 Model II

For the second model, the scalar spectral index and the tensor-to-scalar ratio, are obtained
ns = 0.965577 and r = 0.0155542. By placing these values in equation (37), we find

F1 =
√
2ǫV =

√
r

8
= 0.044094, F2 = ηV =

1

2
(ns − 1 +

3r

8
) = −0.014295. (42)

Considering the refined swampland conjecture (31), we find

C1 ≤ 0.044094, C2 ≤ 0.014295, (43)

C1 and C2 are not constants of the order of O(1), so they contradict the refined swampland
conjecture. We now examine model II by the further refining swampland conjecture. By placing
the equation (42) into (35), we obtained

(0.044094)q + 0.014295a ≥ 1− a or (0.00436)q ≥ 1− 1.014295a. (44)

We can find a to satisfy the recent further conjecture

1

1.014295
[1− (0.044094)q] ≤ a < 1, q > 2. (45)

Like the previous model, further refining swampland conjecture can be satisfying met for model
II. Equation (44) holds for all values of q > 2 with respect to a < 1

1.014295
= 0.985906. We can

give an example for a, b, q variables that met for this model. By selecting q = 2.1, and using
relations (44) and (45) we have 0.984503 ≤ a < 0.985906. By choosing the a = 0.985013, we
will have b = 1− a = 0.014987.
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5.1.3 Model III

We follow the similar route, so with respect to ns = 0.964569, r = 0.06836 and by placing these
values in equation (37), we find

F1 =
√
2ǫV =

√
r

8
= 0.092439, F2 = ηV =

1

2
(ns − 1 +

3r

8
) = −0.004898. (46)

So, we obtain
C1 ≤ 0.092439, C2 ≤ 0.004898, (47)

where C1 = C2 6= O(1), so they are in contradiction with the refined swampland conjecture. We
now examine the model by the further refining swampland conjecture. By placing the equation
(46) into (35), we obtained

(0.092439)q + 0.004898a ≥ 1− a or (0.092439)q ≥ 1− 1.004898a. (48)

To satisfy the conjecture we obtain the a

1

1.004898
(1− (0.092439)q) ≤ a < 1, q > 2, (49)

here, further refining swampland conjecture can be satisfying. Equation (48) holds for all values
of q > 2 with respect to a < 1

1.01686
= 0.995126. We can give an example for the a, b, q variables.

By selecting q = 2.1, and using relations (48) and (49) we have 0.988424 ≤ a < 0.995126. Also
by obtaining the a = 0.992156, we will have the b = 1− a = 0.007844.

6 Stability

Here, we check the stability of the model for one case of mimetic gravity, namely, model III.
However, following the same analysis, one can check the stability of the rest two cases as well.
In general, there are different ways to study the stability of a model. In cosmology, the stability
of different methods is examined, e.g., Refs. [17, 80, 81]. However, we use the speed of sound
method to evaluate the stability of our considered model. Generally, stability studied by the
method of sound speed is described by

C2
s =

dP

dρ
> 0. (50)

It means the stability conditions occur when C2
s is positive. To plot the diagram, we need to

obtain the energy density and pressure so that we will have:

ρ =

(
X + Y

(
(X + Y )1−d + Y t(1− d)

) d
1−d

)2d

1 + 4δ + 3δ2

(
3 + 3δ −

Y dδ
(
(X + Y )1−d − Y t(−1 + d)

) 1−d
d

(X + Y )

)
,

(51)

18



and

P =− 1

−δ2 + (1 + 2δ)2

[
(3 + 3δ)

(
X + Y

((
(X + Y )1−d − Y t(−1 + d)

) 1

1−d

)d
)2d

+ Y (2 + 3δ)

(
X + Y

((
(X + Y )1−d − Y t(−1 + d)

) 1

1−d

)d
)

−1+2d

d

]
.

(52)
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Figure 5: square of sound speed versus cosmic time.

As shown in figure 5, the stability of our model is evident throughout the evolution of the
universe, and this stability is apparent at all times. In the stability figures, the unit of cosmic
time is usually referred to as billion years. In fact, if we consider the cosmic time coordinates as
billion years, we find that our model as a whole is a stable model at all times. For a physically
viable model, the sound speed should be positive and less than the speed of light (C = 1).
Thus the condition 0 ≤ C2

s ≤ 1 validates the acceptability of the model. Figure 5 shows that a
specific constant value is obtained for large values of t
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7 Conclusion

The mimetic f(R, T ) gravity model is examined from the swampland conjecture point of view.
For this purpose, we introduced several inflation solutions of the Hubble parameter such as
(XNa+Y N exp(bN))d, (XcN +Y Na)d and (X+Y N)d in f = R+δT gravity model. Then, we
calculated quantities such as potential and Lagrange multiplier, slow-roll, and other cosmologi-
cal parameters. We also studied the scalar spectrum index and the tensor to the scalar ratio for
each model separately. Also, by adjusting the free parameters of each model, acceptable values
for these two crucial cosmological parameters, namely ns and r, were determined, which also
corresponded to the latest observable data such as Planck data and BICEP2/Keck Array data.
Then, we selected the third model to examine the compatibility of the mimetic f (R, T) infla-
tionary model with the recently introduced refined swampland dS conjecture. We calculated
the refined swampland dS conjecture concerning the potential and its first and second-order
derivatives. Since the study of each of the first and second components of the swampland con-
jecture viz C1 and C2 in terms of two important cosmological parameters, namely ns and r, can
be significant, so according to the mentioned equations, we created structures such as C1,2−ns

and C1,2 − r. By plotting some figures, we determined the allowable range related to each
of these cosmological parameters and the components of the swampland conjecture. We also
studied a new constraint that is formed according to the combination of two components of the
swampland as a function f ≥ C2

1C
2
2 and we determined the allowable range of the swampland

component that specifies the Ci that can be acceptable for the model. Thus the virtual range
is specified as Ci ≤ 1.26911× 10−6. The allowable range for these calculation of model III was
in a small window in figure 4. Then, we challenged the future refining swampland conjecture
with these models. We determined all models contradict with swampland ds conjuncture since
their coefficients are not unite order,i.e., C1 = C2 6= O(1). Then by adjusting the free param-
eters of recent farther refining swampland conjecture viz a, b, q, we showed compatibility of all
models with it. In addition to the above calculations, we also had to check the stability of the
model. Therefore, we studied the stability of model III for the mimetic f(R, T) gravity. We
concluded that the stability of our model is evident throughout the evolution of the universe,
and this stability is apparent at all times. Given the above concepts, such a construction of
inflation models can be challenged with other swampland conjectures such as TCC. one can
study additional limitations, which could be an idea for a more in-depth study of future work.
Of course, this will be interesting to study perturbations of these models in full detail, which
is the subject of future work.
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8 Appendix A: The slow-roll and spectral parameters

(model I)

By placing equation (18) into the equations (15) and (16), we will have

ǫ = −
{(

Nd(Y Na +XcN)1−d(Y Na +XcN)−3d

(
d(Y Na +XcN)−2+2d(Y N−1+aa +XcN log(c))2

+ (Y Na +XcN)−2+d

[
(−1 + d)(Y N−1+aa+XcN log(c))2

+ (Y Na +XcN)
(
Y N−2+aa(−1 + a) +XcN log(c)2

)]
(Y Na +XcN)d

+ (Y Na +XcN)−1+d(Y N−1+aa+XcN log(c))(Y Na +XcN)d
)2)/(

4(Y Naa +XNcN log(c))

[
3 + d(Y Na +XcN)−1+d(Y N−1+aa+XcN log(c))(Y Na +XcN)−d

]2)}
,

(53)
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η =−
{(

−
[(

(Y Na +XcN)−4+2d(Y Na +XcN)2−2d

[
(−1 + d)(Y N−1+aa +XcN log(c))2

+ (Y Na +XcN)
(
Y N−2+a(−1 + a)a +XcN log(d)2

)]2)/(
2
(
Y N−1+aa +XcN log(c)

)2)
]

+ 4(Y Na +XcN)−2+d(Y Na +XcN)1−d
/(

Y N−1+aa+XcN log(c)
)

×
[
(−1 + d)

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)
(
Y N−2+a(−1 + a)a +XcN log(c)2

)]

+
1

2
d2(Y Na +XcN)−2+2d

(
Y N−1+aa +XcN log(c)

)2

(Y Na +XcN)−2d + 3d(Y Na +XcN )−2d

×
[
(−1 + d)

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)
(
Y N−2+a(−1 + a)a +XcN log(c)2

)]

× (Y Na +XcN)−d + 9d(Y Na +XcN)−1+d
(
Y N−1+aa +XcN log(c)

)
(Y Na +XcN)−d

)/

2

[
3 + d(Y Na +XcN)−1+d

(
Y N−1+aa +XcN log(c)

)
(Y Na +XcN)−d

]}
.

(54)

With respect to equations (19), (20), and (17), the scalar spectral index and tensor-to-scalar
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ratio are calculated in the following form.

ns − 1 =− 2

{(
−
[(

(Y Na +XcN)−4+2d(Y Na +XcN)2−2d

[
(−1 + d)

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)
(
Y N−2+a(−1 + a)a +XcN log(c)2

)]2)/(
2
(
Y N−1+aa+XcN log(c)

)2)
]

+ 4(Y Na +XcN)−2+d(Y Na +XcN)1−d
/(

Y N−1+aa+XcN log(c)
)

×
[
(−1 + d)

(
Y N−1+aa +XcN log(c)

)2

+ (Y Na +XcN)
(
Y N−2+a(−1 + a)a +XcN log(c)2

)]

+
1

2
d2(Y Na +XcN)−2+2d

(
Y N−1+aa +XcN log(c)

)2

(Y Na +XcN)−2d + 3d(Y Na +XcN)−2d

×
[
(−1 + d)

(
Y N−1+aa +XcN log(c)

)2

+ (Y Na +XcN)
(
Y N−2+a(−1 + a)a +XcN log(c)2

)]

× (Y Na +XcN)−d + 9d(Y Na +XcN)−1+d
(
Y N−1+aa +XcN log(c)

)
(Y Na +XcN)−d

)/

[
2

(
3 + d(Y Na +XcN)−1+d

(
Y N−1+aa +XcN log(c)

)
(Y Na +XcN)−d

)]}

+ 6

{(
Nd(Y Na +XcN)1−d(Y Na +XcN)−3d

(
d(Y Na +XcN)−2+2d

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)−2+d

[
(−1 + d)

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)

×
(
Y N−2+aa(−1 + a) +XcN log(c)2

)]
(Y Na +XcN)d + (Y Na +XcN)−1+d

×
(
Y N−1+aa+XcN log(c)

)
(Y Na +XcN)d

)2)[
4
(
Y Naa+XNcN log(c)

)
−1

/

(
3 + d(Y Na +XcN)−1+d

(
Y N−1+aa+XcN log(c)

)
(Y Na +XcN)−d

)2]}
,

(55)
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r =− 16

{(
Nd(Y Na +XcN)1−d(Y Na +XcN)−3d

[
d(Y Na +XcN)−2+2d

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)−2+d

(
(−1 + d)

(
Y N−1+aa+XcN log(c)

)2

+ (Y Na +XcN)

×
(
Y N−2+aa(−1 + a) +XcN log(c)2

))
(Y Na +XcN)d + (Y Na +XcN)−1+d

×
(
Y N−1+aa+XcN log(c)

)
(Y Na +XcN)d

]2)[
4
(
Y Naa+XNcN log(c)

)
−1/

(
3 + d(Y Na +XcN)−1+d

(
Y N−1+aa+XcN log(c)

)
(Y Na +XcN)−d

)2]}
.

(56)

9 Appendix B: The slow-roll and spectral parameters

(model II)

With respect to equation (21), (15) and (16), one can obtain

ǫ =− d

[
(X2N2a)a(−1 + 6N + 2ad) + Y 2e2NbN2

(
− 1 + 6N + 6N2b+ 2(1 +Nb)2d

)
XY eNbN1+a

×
[
N2b(6 + b) + a(−3 + a+ 4d) + 2N

(
3 + b+ a(3− b+ 2bd)

)]]2/
4N(Y eNbN +XNa)

×
[
XNaa + Y eNbN(1 +Nb)(XNa(3N + ad)) + Y NeNb(d+N(3 + bd))

]2
,

(57)
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η =− 1

4N2(Y NeNb +XNa)2
(
3 + ad

N
+ (1−a+Nb)d

NeXNa

)
{
18N(Y NeNb +XNa)

×
(
Y NeNb(1 +Nb) +XNaa

)
d+

(
Y NeNb(1 +Nb) +XNaa

)2

d2

+ 8N(Y NeNb +XNa)

(
X2N2aa(−1 + ad) + Y 2e2NbN2(−1 + (1 +Nb)2d)

)

+XY eNbN1+a
(
a2 +Nb(2 +Nb) + a(−3 + 2Nb(−1 + d) + 2d)

)}/

{
XNaa+ Y NeNb(1 +Nb) + 6d

[
X2N2aa(−1 + ad) + Y 2N2

e
2Nb(−1 + (1 +Nb)2d)

]

+XY e
NbN1+a

(
a2 +Nb(2 +Nb) + a(−3 + 2Nb(−1 + d) + 2d)

)
−
[
X2N2aa(−1 + ad)

+ Y 2N2
e
2Nb(−1 + (1 +Nb)2d) +XY eNbN1+a

(
a2 +Nb(2 +Nb)

+ a
(
− 3 + 2Nb(−1 + d) + 2d

))]2/(
XNaa+ Y NeNb(1 +Nb)

)2
}
.

(58)

Also, ns and r, with respect to the above equations, calculate in the following form
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ns − 1 =− 1

2N2(Y NeNb +XNa)2
(
3 + ad

N
+ (1−a+Nb)d

NeXNa

)
(
18N(Y NeNb +XNa)

×
(
Y NeNb(1 +Nb) +XNaa

)
d+

(
Y NeNb(1 +Nb) +XNaa

)2

d2

+

[
8N(Y NeNb +XNa)

(
X2N2aa(−1 + ad) + Y 2e2NbN2(−1 + (1 +Nb)2d)

+XY eNbN1+a
(
a2 +NY (2 +Nb) + a

(
− 3 + 2NY (−1 + d) + 2d

)))]/

(
XNaa+ Y NeNb(1 +Nb)

)
+ 6d

(
X2N2aa(−1 + ad) + Y 2N2

e
2Nb(−1 + (1 +Nb)2d)

+XY eNbN1+a
(
a2 +NY (2 +Nb) + a(−3 + 2Nb(−1 + d) + 2d)

))
−

[
X2N2aa(−1 + ad)

+ Y 2N2e2Nb(−1 + (1 +Nb)2d) +XY eNbN1+a

(
a2 +NY (2 +Nb)

+ a(−3 + 2NY (−1 + d) + 2d)

)]2/(
XNaa+ Y NeNb(1 +Nb)

)2
)

+ 6

([
d

[
X2N2aa(−1 + 6N + 2ad)

+ Y 2e2NbN2
(
− 1 + 6N + 6N2Y + 2(1 +Nb)2d

)
XY eNbN1+a

(
N2Y (6 + b)

+ a(−3 + a+ 4d) + 2N
(
3 + b+ a(3− b+ 2bd)

))]2
]/[

4N(Y eNbN +XNa)

(
XNaa+ Y eNbN(1 +Nb)

)(
XNa(3N + ad) + Y NeNb(d+N(3 + bd))

)2
])

,

(59)

r =− 4

(
d

(
X2N2aa(−1 + 6N + 2ad) + Y 2e2NbN2

(
− 1 + 6N + 6N2b+ 2(1 +Nb)2d

)
XY eNbN1+a

[
N2b(6 + b) + a(−3 + a + 4d) + 2N

(
3 + b+ a(3 − b+ 2bd)

)])2)/[
N(Y eNbN +XNa)

(
XNaa+ Y eNbN(1 +Nb)

)(
XNa(3N + ad) + Y NeNb

(
d+N(3 + bd)

))2
]
.

(60)
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10 Appendix C: The swampland conjecture structure

According to the potential of equation (32), its first and second derivatives are calculated as
follows.

V ′(φ) =−
[
Y (X + Y )dd

((
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

)
−1+2d

(
Y
(
− 4 + δ

(
− 5 + δ(11 + 6δ)

))

(−1 + 2d) + 18(−1 + δ)(1 + δ)(1 + 2δ)
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

)
]

/

[
(1 + δ)(1 + 3δ)

(
X + Y − Y (X + Y )d(−1 + d)φ

)]
,

(61)

and

V ′′(φ) =−
[
Y 2(X + Y )2dd

((
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

)
−1+2d

(
Y
(
− 4 + δ

(
− 5 + δ(11 + 6δ)

))
(2 + d(−7 + 6d)) + 18(−1 + δ)(1 + 2δ)(1 + δ)

× (−1 + 3d)
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

)]/

[
(1 + δ)(1 + 3δ)

(
X + Y − Y (X + Y )d(−1 + d)φ

)2
]
,

(62)

by placing equations (32), (C1), and (C2) in swampland dS conjectures in equation (31), we
will have.
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−
[(

Y (X + Y )dd
((

(X + Y )1−d − Y (−1 + d)φ
) 1

1−d

)
−1+2d

(
Y
(
− 4 + δ

(
− 5 + δ(11 + 6δ)

))

(−1 + 2d) + 18(−1 + δ)(1 + δ)(1 + 2δ)
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

))/

[
(1 + δ)(1 + 3δ)

(
X + Y − Y (X + Y )d(−1 + d)φ

)]]/

− δρ+
1

(1 + δ)(1 + 3δ)

((
(X + Y )1−d − Y (−1 + d)φ

1

1−d

)
−1+2d

×
[
Y
(
4 + δ

(
5− δ(11 + 6δ)

))
d− 9(−1 + δ)(1 + δ)(1 + 2δ)

×
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

])
> C1,

(63)

−
[(

Y 2(X + Y )2dd
((

(X + Y )1−d − Y (−1 + d)φ
) 1

1−d

)
−1+2d

[
Y
(
− 4 + δ

(
− 5 + δ(11 + 6δ)

))(
2 + d(−7 + 6d)

)
+ 18(−1 + δ)(1 + 2δ)(1 + δ)

(−1 + 3d)
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

])/

(
(1 + δ)(1 + 3δ)

(
X + Y − Y (X + Y )d(−1 + d)φ

)2
)]/

− δρ+
1

(1 + δ)(1 + 3δ)

((
(X + Y )1−d − Y (−1 + d)φ

1

1−d

)
−1+2d

×
[
Y
(
4 + δ

(
5− δ(11 + 6δ)

))
d− 9(−1 + δ)(1 + δ)(1 + 2δ)

×
(
(X + Y )1−d − Y (−1 + d)φ

) 1

1−d

])
< −C2

(64)
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