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Abstract

This paper proposes a procedure for the estimation of discrete Markov de-
cision models and studies its statistical and computational properties. Our
Nested Pseudo-Likelihood method (NPL) is similar to Rust’s Nested Fixed
Point algorithm (NFXP), but the order of the two nested algorithms is
swapped. First, we prove that NPL produces the Maximum Likelihood Es-
timator under the same conditions as NFXP. Our procedure requires fewer
policy iterations at the expense of more likelihood-climbing iterations. We fo-
cus on a class of in…nite-horizon, partial likelihood problems for which NPL
results in large computational gains. Second, based on this algorithm we
de…ne a class of consistent and asymptotically equivalent Sequential Pol-
icy Iteration (PI) estimators, which encompasses both Hotz-Miller’s CCP
estimator and the partial Maximum Likekihood estimator. This presents
the researcher with a ”menu” of sequential estimators re‡ecting a trade-o¤
between …nite-sample precision and computational cost. Using actual and
simulated data we compare the relative performance of these estimators. In
all our experiments the bene…ts in terms of precision of using a 2-stage PI
estimator instead of 1-stage (i.e., Hotz-Miller) are very signi…cant. More
interestingly, the bene…ts of MLE relative to 2-stage PI are small.



1 Introduction

The computational cost of estimating discrete choice dynamic programming models

remains an important constraint which has limited their range of applications.1 There

are at least two features that make the estimation of these models substantially more

costly than just solving the corresponding dynamic programming problem once. First,

observable and unobservable time-invariant individual heterogeneity in preferences or

technology imply that the model has to be solved for each type of individual in the

sample (e.g., for each combination of sex, cohort, region, family background, etc.).

And second, the nested solution-estimation algorithms that are used to obtain the

maximum likelihood estimator require one to solve the dynamic decision problems of

all types of individuals as many times as the number of iterations needed in the search

for parameter estimates. This computational constraint has substantial implications

for empirical work. The model speci¯cation has to be very parsimonious in terms of

state variables and time-invariant explanatory variables. In some contexts, this can

lead to important misspeci¯cations.

Recent research has resulted in some important developments in the techniques

for the solution of dynamic programming models. Rust (1997a, 1997b) shows that

randomization and low discrepancy methods in the discretization of the state space

can break the curse of dimensionality in the solution of these models. In other related

work, Keane and Wolpin (1994, 1996) recently developed a method which combines

interpolation and simulation techniques for the solution and estimation of discrete

choice dynamic programming models. The emphasis of our paper is not in the algo-

rithms for the solution of dynamic programs, but in the procedure that searches for

the maximum likelihood estimator.

The contribution of our paper is twofold. First, we propose a new estimation

procedure which we call Nested Pseudo-Likelihood algorithm (NPL). Our procedure

is in the spirit of Rust's (1987, 1988) Nested Fixed Point algorithm (NFXP), but it is

di®erent in that the nesting of the two algorithms (likelihood climbing and ¯xed point)

1See Eckstein and Wolpin (1989), Rust (1994), and Miller (1997) for excellent surveys on the
estimation of these models and their empirical applications.

1



is swapped. We show that this algorithm produces the maximum likelihood estimator

(MLE) under the same conditions as NFXP. However, our nested algorithm does

not require repeated solution of the dynamic programming problems. For a widely

used class of problems, the computational cost of our procedure is of the same order

of magnitude as solving the dynamic programming problems only once. Therefore,

as the dimension of the state space increases our nested algorithm produces ML

estimates at a much smaller computational cost than NFXP.

Second, we show that when non-parametric estimates of conditional choice prob-

abilities are used as initial guesses of our NPL algorithm, this procedure yields a

sequence of consistent and asymptotically equivalent estimators. In particular, in a

partial likelihood context Hotz and Miller's estimator is obtained as a by-product

of the ¯rst iteration. Based on this result we de¯ne a class of Policy Iteration (PI)

estimators which encompasses both Hotz and Miller's and MLE. The advantage of

our nested pseudo-likelihood algorithm is therefore not just a reduction of the compu-

tational cost of maximum likelihood estimation. It also presents the researcher with

a 'menu' of sequential estimators re°ecting a trade-o® between computational cost

and precision in ¯nite samples.

Our paper builds on and extends previous results by Hotz and Miller (1993) and

Manski (1991, 1993). These authors proposed and implemented estimation methods

that do not require the explicit solution of the dynamic programming model. Hotz

et al (1994) combined this method with a simulation-based approach to obtain an

estimator which is computationally more e±cient. However, a well known important

limitation of these estimators is their ¯nite sample properties. Because they do not

fully exploit the structure of the model, relying instead on non-parametric estimates of

conditional choice probabilities, they may be very imprecise even under the relatively

large sample sizes which are common in micro applications.2 We extend Hotz-Miller

results by showing that their procedure can be applied recursively, and that in the

limit it yields the ML estimator.

2This limitation was pointed out by Eckstein and Wolpin (1989) and Rust (1994a, 1994b), and
it has been illustrated in the context of a Monte Carlo study by Hotz et al (1994).
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In Rust's NFXP algorithm the outer algorithm is a \hill climbing" procedure that

maximizes the likelihood function. At each iteration of this outer procedure there

is an inner ¯xed point algorithm that solves the dynamic programming model given

the current value of the parameters. In our nested method the outer algorithm solves

the ¯xed point problem using a policy iteration method. Each policy iteration is

performed with updated parameter values which are obtained from the inner proce-

dure. This consists of a hill climbing algorithm which maximizes a pseudo-likelihood

function where the discrete choice probabilities depend on a pseudo-value function.

However, as the outer algorithm converges this pseudo-value function converges to the

true value function and the pseudo-likelihood function to the true likelihood function.

In some sense our algorithm exploits the following idea: why waste time obtaining

an exact solution to the dynamic programming model at each iteration if the initial

values of the structural parameters are far away from the ¯nal estimates? Why not

obtain the full solution of the model gradually, "in parallel" with the computation

of parameter estimates? The reason why our algorithm is faster than NFXP is thus

quite intuitive as long as policy iterations are computationally more expensive than

pseudo-likelihood climbing iterations. This is certainly the case for in¯nite horizon

problems when we use partial likelihood methods as suggested by Rust (1987, 1994),

even for relatively small dimensions of the state space and large sample sizes. Our

NPL algorithm reduces the number of (outer) policy iterations dramatically at the

expense of a larger number of hill-climbing iterations.

Regarding the family of K-stage Policy Iteration estimators, we analyze the trade-

o® between ¯nite sample precision and computational cost with severalmMonte Carlo

experiments based on Rust's bus replacement model. We ¯nd that the bene¯ts of

using the 2-stage PI estimator instead of 1-stage (i.e., Hotz-Miller) are very signi¯cant.

A more interesting result is that, in all our experiments, the bene¯ts of using MLE

instead of 2-stage PI are very small. This is the case even when we generate arti¯cially

very imprecise initial guesses for the conditional choice probabilities.

The rest of the paper is organized as follows. Section 2 reviews the notation and

solution methods for discrete Markov decision processes. In Section 3 we describe
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Rust's NFXP algorithm, present our alternative nested procedure, and show that it

yields the MLE. In Section 4 we introduce the class of Policy Iteration estimators

and we obtain their asymptotic properties. In Section 5 we compare the performance

of the NFXP and NPL algorithms using the bus engine dataset in Rust (1987), and

present a Monte Carlo study which illustrates the precision in ¯nite samples of the

di®erent policy iteration estimators. We conclude in Section 6 with a summary of

our results and a discussion of several ideas for further research. Proofs of Lemmas

and a detailed description of the algorithms are provided in the Appendices.

2 Discrete Markov Decision Processes

2.1 De¯nitions and notation

In this section we de¯ne a Discrete Markov Decision Process (DMDP) and we in-

troduce the notation in this paper following Rust (1994). There are two types of

variables in these models: the vector of state variables, s, and a control variable, d,

that belongs to a ¯nite set of mutually exclusive choice alternatives D = f1; 2; :::; Jg.
The space of state variables, S, is a subset of the jSj-dimensional Euclidean space,
where jSj is the number of state variables. Time is discrete and it is indexed by
t. At each period t an agent observes st and decides dt in order to maximize the

expected sum of current and future discounted utilities. Future values of some state

variables are uncertain for the agent. His beliefs about uncertain future states can

be represented by a Markov transition probability p(st+1jst; dt), which may combine
transition density functions for continuous state variables and transition probabili-

ties for discrete state variables. The time horizon of the decision problem is in¯nite.

Utility is time separable and u(st; dt) represents the one-period utility function. The

parameter ¯ represents the rate at which the agent discounts utility at future periods,

and it belongs to the interval (0; 1).

In this context, an agent can be represented by the set of primitives fu; p; ¯g.
Under some regularity conditions about these primitives the optimal decision rule of

the agent is a time-invariant function, ±(st), where the form of this function depends
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on the primitives of the problem (i.e., Blackwell's theorem). Therefore, the decision

at period t is the same as the decision at period t + j if st = st+j. For this reason

we omit the subindex t for the rest of this section. We use s0 to denote the vector of

next period's state variables.

We assume that the researcher knows the utility and the transition probabil-

ity functions up to the vectors of parameters µu and µp, respectively. We de¯ne

µ ´ (µu; µp). From an econometric point of view there are two types of state vari-

ables: those observable to the researcher, x, and the unobservables, ", i.e., s = (x; ").

Suppose we have a dataset with information about decisions and observable state

variables for a random sample of individuals. Under the assumption that the sample

was generated by a DMDP, our objective is to obtain an estimate of µ.

In order to guarantee the existence, consistency and asymptotic normality of the

ML estimator of µ, some assumptions should be made about the primitives fu; pg.
In particular, we impose certain restrictions that guarantee the continuity and twice

di®erentiability of the log-likelihood function with respect to µ. A source of disconti-

nuity of the log-likelihood function in discrete choice econometric models arises when

the distribution of the unobservables is not saturated. In the context of our model,

we say that the distribution of " is saturated if, for any value of µ in a compact set £

and for any combination of observables (d; x), the set f" j ±(x; ") = dg has positive
probability over the distribution of the unobservables. Under this condition, the log-

conditional choice probabilities ln Pr(djx; µ) that appear in the log-likelihood function
always take ¯nite values.

There is not a unique set of assumptions on fu; pg that guarantee that the dis-
tribution of " is saturated. Here we consider the assumptions which have been most

commonly used in the literature (see Rust, 1994). We discuss the role of these as-

sumptions in our results at the end of section 2.3.

ASSUMPTION 1 (Additivity): The one period utility function is additively sep-

arable in the observable and unobservable components.

u(s; d; µu) = u(x; d; µu) + "(d) (1)
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where "(d) is the d-th component of the Jx1 vector " and u(:) is continuous and twice

di®erentiable with respect to µu.

ASSUMPTION 2 (Conditional independence): The transition probability of the

state variables factors as:

p(x0; "0j x; d; "; µp) = g("0j x0; µq) f(x0j x; d; µf) (2)

where g(:) is continuous and twice di®erentiable in "0 and µq, and f(:) is continuous

and twice di®erentiable with respect to µf .

Although the results below can be easily extended to the case of continuous ob-

servable state variables, the implementation of the di®erent algorithms requires the

discretization of these variables. For the sake of simplicity we consider the following

assumption.

ASSUMPTION 3: Finite domain for the observable state variables.

x 2 X = fx1; :::; xMg (3)

Let V (s; µ) be the value function and let v(s; d; µ) be the value function condi-

tional on the (hypothetical) choice of alternative d. Then V (s; µ) satis¯es Bellman's

equation:

v(s; d; µ) = u(x; d; µu) + "(d) + ¯
MX

m=1

f(xmjx; d; µf )
Z
V (xm; "0; µ) g(d"0jxm; µq) (4)

and:

V (s; µ) = max
d2D

fv(s; d; µ)g (5)

The optimal decision rule is thus:

±(s; µ) = argmax
d2D

fv(s; d; µ)g (6)

2.2 Smooth Bellman equation

We now de¯ne versions of the value function and the Bellman operator which take

into account the existence of unobservables. These versions will prove more useful
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than (4)-(6) in the analysis of the estimation problem. McFadden (1973) introduced

the social surplus function:

S(x; µ) =
Z
max
d2D

fv(x; "; d; µ)g g(d"jx; µq) (7)

The social surplus is the expectation of the value function conditional on the informa-

tion available to the econometrician about the state variables, i.e., conditional on x.

Combining expressions (4), (5) and (7), we can obtain the following smooth Bellman

equation:

S(x; µ) =
Z
max
d2D

fu(x; d; µu) + "(d) + ¯ F (x; d; µf)0 S(µ)g g(d"jx; µq) (8)

where F (x; d; µf) is the vector of transition probabilities for x
0 conditional on x and

d, and S(µ) is the vector of social surpluses for each value of x. We can write the

system ofM equations in (8) (one for each value of x 2 X) using the following matrix
form:

S(µ) =
Z
max
d2D

fu(d; µu) + "(d) + ¯ F (d; µf) S(µ)g g(d"; µq) (9)

where u(d; µu) is the Mx1 vector of utilities associated with alternative d; F (d; µf ) is

the MxM matrix of transition probabilities conditional on the choice of alternative

d; and g(d"; µq) stacks the M distribution functions g(d"jx; µq) for all states. It is
straightforward to show that the operator on the right hand side of (9) satis¯es

Blackwell's su±cient conditions for a contraction mapping (i.e., monotonicity and

discounting).check? Therefore, S(µ) is the unique ¯xed point of this contraction

mapping.

Associated with the solution to Bellman's equation there is a set of conditional

choice probabilities or smooth optimal decision rule. Given the vector of state variables

x, the probability that alternative d is the optimal choice is:

P (d; x; µ) =
Z
I (±(x; "; µ) = d) g(d"jx; µq)

=
Z
I

µ
d = argmax

j2D
fu(x; j; µu) + "(j) + ¯ F (x; j; µf)0 S(µ)g

¶
g(d"jx; µq)

´ ¸(d; x; µ; S[µ])
(10)
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where I(:) is the indicator function. The last line emphasizes that P (d; x; µ) depends

on the vector of social surpluses S(µ). Let ¤(:) be the vector of ¸(:) functions for

all x; d. Notice that ¤(µ; S) gives the current optimal response of a decision maker

whose vector of social surpluses as of tomorrow is S. Finally, stack all conditional

choice probabilities in an MJx1 vector P (µ),

P (µ) ´
"
(P (1; x1; µ); P (2; x1; µ); : : : ; P (J; x1; µ))

0
; : : : ;

(P (1; xm; µ); P (2; xm; µ); : : : ; P (J; xm; µ))0

#0

Then the system of equations in (10) can be written as follows in matrix form:

P (µ) = ¤(µ;S[µ]) (11)

2.3 Smooth policy iteration

We now describe a smooth policy iteration algorithm to obtain S(µ) and P (µ) nu-

merically for a given value of µ. We will need to de¯ne 'smooth' versions of policy

valuation and policy iteration operators.

Using equation (8) and the de¯nition of conditional choice probabilities, we can

obtain the following alternative expression for the social surpluses:

S(x; µ) =
X

d2D
P (d; x; µ) fu(x; d; µu) + E["(d)jx; ±(x; "; µ) = d] + ¯ F (x; d; µf )0 S(µ)g

(12)

Hotz and Miller's Proposition 1 (1993) implies that, under Assumptions 1 and 2,

the expectations E["(d)jx; ±(x; "; µ) = d] are functions of the vector of conditional

choice probabilities P (x; µ) ´ fP [d; x; µ] : d 2 Dg. We will denote these functions
by e(d; P [x; µ]; µq). For instance, if " has an Extreme value Type I distribution, it is

possible to show that e(d; P [x; µ]; µq) = c¡ lnP (d; x; µ), where c is Euler's constant.
In matrix form, expression (12) becomes:

S(µ) =
X

d2D
P (d; µ) ¤ fu(d; µu) + e(d; P [µ]; µq) + ¯ F (d; µf) S(µ)g (13)

where ¤ is the Hadamard product (or element-by-element product); and e(d; P [µ]; µq)
is the Mx1 vector of expectations e(d; P [x; µ]; µq). Finally, we solve for S(µ) in the
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previous system of equations to obtain:

S(µ) =
³
IM ¡ ¯ FU(µf ; P [µ])

´¡1
8
<
:

X

d2D
P (d; µ) ¤ [u(d; µu) + e(d; P [µ]; µq)]

9
=
; (14)

where FU(µf ; P [µ]) is the MxM matrix of unconditional transition probabilities in-

duced by F (d; µf ) and the conditional choice probabilities P (µ):

FU(µf ; P [µ]) =
X

d2D
P (d; µ) ¤ F (d; µf) (15)

Notice that both the conditional expectation functions e(d;¦; µq) and the uncondi-

tional transition probabilities function FU(µf ;¦) are de¯ned for any set of conditional

choice probabilities ¦, optimal or not. Therefore, the expression on the right hand

side of (14) can be used to compute the vector of social surpluses induced by an

arbitrary ¦, or the valuation of ¦. We de¯ne the smooth policy valuation operator as

¾(µ;¦) ´
³
IM ¡ ¯ FU(µf ;¦)

´¡1
8
<
:

X

d2D
¦(d) ¤ [u(d; µu) + e(d;¦; µq)]

9
=
; (16)

where ¦(d) is the vector ofM conditional probabilities for alternative d, and FU(µf ;¦)

is the matrix
P
d2D¦(d) ¤ F (d; µf). We can now de¯ne a smooth policy iteration op-

erator which combines the mappings ¾(µ;¦) and ¤(µ;S):

ª(µ;¦) ´ ¤(µ;¾[µ;¦]) (17)

ª(:;¦) should be interpreted as giving the current optimal policy under the assump-

tion that policy ¦ will be used forever as of next period. Clearly, the optimal choice

probabilities P (µ) are the unique ¯xed point of this mapping: P (µ) = ª(µ; P (µ)).

The policy iteration algorithm consists on the repeated application of the smooth

policy iteration operator. The algorithm proceeds as follows. Let ¦0 2 [0; 1](J¡1)M

be an initial guess for the set of conditional choice probabilities. At iteration k,

Step 1. Given ¦k¡1, obtain ¾k¡1(µ) = ¾(µ;¦k¡1) using expression (16).

Step 2. Given ¾k¡1(µ), obtain a new vector of conditional choice proba-

bilities, ¦k, as ¦k = ¤(µ; ¾k¡1[µ]).
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Step 1 is a policy valuation; in step 2, the best policy is obtained under the

assumption that policy ¦k¡1 will be used forever as of next period. Steps 1 and 2 can

be written together as ¦k = ª(µ; ¦k¡1). The algorithm iterates until a convergence

criterion with respect to ¦ is satis¯ed.3

We now state an important property of the smooth policy operators. As we show

later, this property plays a crucial role in our result in Section 3 on the equivalence

of the two nested algorithms.

LEMMA 1:

Under Assumptions 1-3, and for any value µ, the Jacobian matrices of partial

derivatives of ¾(µ;¦) and ª(µ;¦) with respect to ¦ are zero at the ¯xed point ¦ =

P (µ).
@¾(µ; P [µ])

@¦0
= 0

Therefore,
@ª(µ; P [µ])

@¦0
=
@¤(µ; S[µ])

@S 0
@¾(µ; P [µ])

@¦0
= 0

Proof:

See Appendix 1.

The ¯rst part of Lemma 1 establishes that at the ¯xed point it is not possible to

"improve" social surpluses by changing the conditional choice probabilities. That is,

the optimal choice probabilities maximize the valuation operator locally. This result

is consistent with the interpretation of the social surplus as a smooth value function,

and the set of conditional choice probabilities as a smooth optimal decision rule. The

interpretation of the second part of the lemma is that the optimal response today to

a small deviation from optimal policies as of tomorrow is still not to deviate.

We end this section with a remark on the role of Assumptions 1-3. Assumption

3 allowed us to use compact matrix notation, but it is not crucial here. On the

contrary, assumptions 1 (Additivity) and 2 (Conditional Independence) are required

to prove Hotz & Miller's (1993) Proposition 1 (Invertibility), and this is needed in

3For a detailed description of the numerical and computational properties of policy iteration
methods see Puterman (1994) and Rust (1996).
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order to de¯ne the 'smooth' versions of policy rules, policy valuation and policy iter-

ation operators. Assumption 1 can be relaxed to allow for multiplicative separability

between observable and unobservable components. However, Assumption 2 is a nec-

essary condition for future utility di®erences not to depend on current unobservable

state variables, and this plays a crucial role in Hotz & Miller's Proposition 1.4

3 Maximum likelihood estimation and nested al-

gorithms

Suppose our panel dataset consists of observations from a random sample of individ-

uals fxit; dit : i = 1; :::; N ; t = 1; :::; Tig where i is the subindex for individuals and t
for time. Under Assumption 2, the log-likelihood function of the DMDP model can

be decomposed into choice probability and transition probability terms as follows:

l(µ) = l1(µ) + l2(µf ) =
NX

i=1

TiX

t=1

lnP (dit; xit; µ) +
NX

i=1

Ti¡1X

t=1

ln f(xit+1jxit; dit; µf) (18)

Let zmjit be the indicator for the choice of alternative j observed in state m, i.e.,

zmjit = I(dit = j) I(xit = x
m), and let ymrjit be the indicator for the transition from

state m to state r conditional on the choice of alternative j, i.e., ymrjit = I(xit+1 =

xr)I(xit = x
m)I(dit = j). Finally, let zit and yit be the vectors that contain the set of

indicator variables fzjmit g and fymrjit g, respectively, for observation (i; t). Using these
de¯nitions:

l1(µ) =
NX

i=1

TiX

t=1

MX

m=1

JX

j=1

zjmit lnP (j; x
m; µ) = n lnP (µ)0 ¹z (19)

where P (µ) is the vector of all MJ conditional choice probabilities, n is total sample

size and ¹z is the sample mean of zit, i.e., the vector with the sample frequencies of

4Hotz and Miller (1993) de¯ned a mapping Q() from the J ¡ 1 (future) utility di®erences to the
choice probabilities, conditional on observable state variables. Their Proposition 1 establishes that
this mapping is invertible. Thus, policy rules can be described either in the space of utility di®er-
ences, or as 'smooth' policies in the simplex. A corollary of their proposition is that the expectations
of choice-speci¯c unobservables are functions of the choice probabilities (the e() functions we use
here).
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every possible state-choice cell. And:

l2(µ) =
NX

i=1

Ti¡1X

t=1

MX

m=1

MX

r=1

JX

j=1

yrjmit ln f(xrj xm; j; µf) = (n¡N) lnF (µf)0 ¹y (20)

where F (µf ) is the vectorization of all the matrices of conditional choice transition

probabilities, F (d; µf), and ¹y is the sample mean of yit.

The Maximum Likelihood Estimator (MLE) of µ can be implicitly de¯ned in terms

of two equations: the ¯rst order conditions,

n
@ lnP (µ̂ML)

0

@µ
¹z + (n¡N) @ lnF (µ̂ML)

0

@µ
¹y = 0 (21)

and the equation de¯ning P (µ) implicitly as the ¯xed point of the smooth policy

iteration mapping:

P (bµML) = ª(bµML; P (bµML)) (22)

ASSUMPTION 4: Identi¯cation assumption.5

There is a unique vector µ¤ such that:

E

Ã
@ lnP (µ¤)0

@µ

TX

t=1

zit +
@ lnF (µ¤)0

@µ

TX

t=1

yit

!
= 0 (23)

We now de¯ne two algorithms to obtain the MLE of µ¤. The ¯rst is Rust's Nested

Fixed Point Algorithm (NFXP) (see Rust 1987, 1988).

Nested Fixed Point Algorithm (NFXP).6

Start with an initial guess of µ, µ0. At iteration k ¸ 1, apply the following two

steps.

5Since both our procedure and NFXP exploit gradient algorithms, we consider a strong identi¯-
cation assumption instead of the weaker assumption that µ¤ is the unique global maximum for the
expected value of the log-likelihood function.

6Rust (1987, 1988) studied the properties of this algorithm. In order to guarantee convergence
of the 'inner' algorithm in Step 1, he proposed a hybrid ¯xed point algorithm which begins with
successive approximation iterations in the surplus function and then switches to policy iterations.
The nested algorithm always converges, and under Assumption 4 the NFXP algorithm converges to
the MLE of µ¤. If Assumption 4 is relaxed (i.e., there may be several local maxima), whether the
value of µ reached by this algorithm is a local or a global maximum will depend on the initial guess
µ0. We describe a pure policy iteration version of NFXP here in order to emphasize its relationship
with our nested algorithm.
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Step 1: Given µk¡1, obtain the optimal choice probabilities P (µk¡1). That

is, iterate in the smooth policy iteration mapping until convergence to

compute the ¯xed point:

P (µk¡1) = ª(µk¡1; P (µk¡1)) (24)

Also, compute @P (µk¡1)0=@µ .

Step 2: Apply one step of the gradient method for the maximization of

the likelihood function. That is, obtain a new value of µ, µk, according to

µk = µk¡1 ¡H(µk¡1)
Ã
n
@ lnP (µk¡1)0

@µ
¹z +

@l2(µk¡1)

@µ

!
(25)

where the form of H(:) will depend on the particular hill climbing algo-

rithm used.

Iterate in k until convergence with respect to µ is reached.

In the second nested procedure we swap the order of the two algorithms. That is,

the outer algorithm solves the ¯xed point problem, and the inner algorithm maximizes

a pseudo-likelihood function in which the conditional choice probabilities are ª(µ;¦)

instead of P (µ), where ¦ is ¯xed at the value obtained from the previous outer

iteration. However, we will show that, as the outer policy iterations converge, the

pseudo-social surplus converges to the true social surplus and the pseudo-likelihood

function to the true likelihood function. In other words, the task of obtaining the

true likelihood function by solving the dynamic programming model is performed \in

parallel" with the computation of the ML estimate of µ.

Nested Pseudo Likelihood Algorithm (NPL).

Start with an initial guess for the conditional choice probabilities, ¦0 2 [0; 1]MJ .
At iteration k ¸ 1, apply the following three steps:

Step 1: Given ¦k¡1, construct the smooth policy iteration mapping ª(µ;¦k¡1)

described in section 2.3.
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Step 2: Obtain a new value of µ, µk, as the value that maximizes a pseudo-

likelihood function de¯ned in terms of the conditional choice probabilities

ª(µ;¦k¡1).

µk = argmaxfµg
lnª(µ;¦k¡1)

0¹z + l2(µk¡1) (26)

Step 3: Update ¦ using the 'max ' from step 2, i.e.

¦k = ª(µk;¦k¡1): (27)

Iterate in k until convergence with respect to ¦ (and µ) is reached.

The following result establishes that the NPL algorithm does indeed provide an

alternative way of computing maximum likelihood estimates:

LEMMA 2 Equivalence of NFXP and NPL:

If the Nested Pseudo Likelihood algorithm (NPL) converges, it does so to a value

of µ that solves equations (21) and (22). Under Assumption 4, this is the Maximum

Likelihood estimator of µ¤

Proof:

See Appendix 1.

The proof of Lemma 2 shows that the main idea behind this result is relatively

simple. Our econometric model is such that in order to obtain the probabilities that

enter the likelihood function (given the parameters of interest) we need to solve a

¯xed point problem. If the mapping that de¯nes this ¯xed point (i.e., ª(µ;¦) in

our case) is such that, at the ¯xed point, the partial derivatives of the mapping with

respect to the probabilities are zero, then the NPL algorithm provides the Maximum

Likelihood estimates of the parameters of interest. Therefore, the result in Lemma 1

is crucial to obtain the convergence of the NPL algorithm to the MLE.

Under Assumption 2, consistent estimates of the conditional transition proba-

bility parameters µf can be obtained from transition data without having to solve

the Markov decision model. In the rest of the paper we focus on the estimation
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of preference parameters (µu) and the parameters describing the distribution of un-

observables (µq). That is, we consider a partial Maximum Likelihood estimator of

(µu; µq) based on the likelihood l1(µ), given consistent estimates of µf obtained from

likelihood l2(µf).
7 This two-stage estimation strategy, which reduces the computa-

tional burden of estimation, was used in Rust (1987) and Hotz and Miller (1993).8

In this partial likelihood analysis the identi¯cation assumption is now:

ASSUMPTION 4': Identi¯cation assumption (Partial Maximum Likelihood).

There is a unique vector µ¤ = (µ¤uq; µ
¤
f) such that:

E

Ã
@ lnP (µ¤)0

@µuq

TX

t=1

zit

!
= 0, and E

Ã
@ lnF (µ¤)0

@µf

TX

t=1

yit

!
= 0

It is straightforward to see that Lemma 2 (equivalence) still applies to the partial like-

lihood versions of NFXP and NPL.9 In this context, using the NPL algorithm rather

than NFXP results in large additional computational gains. We address this question

in Section 5 using Rust's bus replacement problem as an example. Furthermore, the

NPL algorithm de¯nes a recursive extension of Hotz and Miller's Conditional Choice

Probability (CCP) estimator. We turn to this issue in the next section.

4 Sequential policy iteration estimators

In the context of partial likelihood estimation, let bµf denote the (consistent) esti-

mates of conditional transition probability parameters obtained in the ¯rst stage

from the likelihood l2(µf ). Furthermore, let b¦0 be consistent, nonparametric esti-

mates of the conditional choice probabilities P (µ¤). Consider using b¦0 as an initial

guess in our NPL algorithm. Performing one, two and in general K iterations of the

NPL algorithm yields a sequence fbµuq1; bµuq2; :::; bµuqKg of statistics which can be used
as estimators of µ¤uq. We call them sequential Policy Iteration (PI) estimators. Let us

7The discount factor ¯ is assumed to be known.
8See Rust (1987, 1994) for a 3-stage extension which is asymptotically equivalent to full maximum

likelihood.
9Notice that the only changes are: (a) l2(µf ) drops from both the likelihood and pseudo-likelihood

functions; and (b) in the choice probabilities P () and in the pseudo-choice probabilities ª() the vector
of parameters µf is ¯xed.
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drop the uq subscript for notational simplicity. Thus, bµK denotes the K ¡ stage PI
estimator of µ¤uq which is obtained after K iterations of the Nested Pseudo Likelihood

algorithm when: 1) µf is ¯xed at bµf ; and 2) Consistent nonparametric estimates of

P (µ¤) are used as initial values ¦0. In this section we study the statistical properties

of this sequence of estimators. It is clear from Lemma 2 that it encompasses the

partial Maximum Likelihood estimator: for any sample size, as the NPL algorithm

converges in ¦k the corresponding K ¡ stage PI estimator converges to the partial
ML estimator. In Lemma 3 we show that, for any value of K, the PI estimators

are asymptotically equivalent to the MLE. Lemma 4 shows that the PI estimator

for K = 1 is Hotz-Miller's CCP estimator. Therefore, for intermediate values of K

we get asymptotically equivalent estimators which are signi¯cantly cheaper to obtain

than the MLE yet signi¯cantly more precise in ¯nite samples than the Hotz-Miller

estimator.

The K ¡ stage PI estimator is de¯ned as:

µ̂K = argmax
µ

NX

i=1

el1i(µ; bµf ; ¦̂K¡1) ´ argmax
µ

NX

i=1

TiX

t=1

lnª(dit; xit; µ; bµf ; ¦̂K¡1) (28)

where el1i(µ; bµf ; ¦̂K¡1) is individual i's contribution to the partial pseudo log-likelihood,

ª(dit; xit; ¢) denotes a pseudo-choice probability for the speci¯c choice-state combina-
tion in observation it and ¦̂K¡1 is the vector of pseudo-choice probabilities obtained

from the previous stage, i.e., ¦̂K¡1 = ª(µ̂K¡1; bµf ; ¦̂K¡2). This is a particular case of

a Quasi¡Generalized M¡estimator as de¯ned in Gourieroux and Monfort (1995),
with (bµf ; ¦̂K¡1) as the vector of nuisance parameters. Let the ¤ superscript denote a

function evaluated at the true parameter values; if the vector
"
1p
n

X

i

@el¤1i
@µ0
;
p
n(bµf ¡ µ¤f )0;

p
n(¦̂K¡1 ¡¦¤)0

#0

is asymptotically normally distributed with mean zero and variance  , the Quasi-

Generalized M-estimator is asymptotically normal and its asymptotic variance is given

by the following general expression:

V (µ̂K) = J
¡1

0
B@(I;Hf ; H¦)

0
B@
00 0f 0¦
f0 ff f¦
¦0 ¦f ¦0

1
CA

0
B@

I
H 0
f

H 0
¦

1
CA

1
CAJ¡1 (29)

16



where J = E

0
@¡@

2el1i(µ¤; µ¤f ;¦¤)
@µ@µ0

1
A, Hf = E

0
@@

2el1i(µ¤; µ¤f ;¦¤)
@µ@µ0f

1
A and

H¦ = E

0
@@

2el1i(µ¤; µ¤f ;¦¤)
@µ@¦0

1
A.

Likewise, the partial MLE is:

µ̂PMLE = argmax
µ

NX

i=1

l1i(µ; bµf) ´ argmax
µ

NX

i=1

TiX

t=1

lnP (dit; xit; µ; bµf) (30)

which can also be seen as a Quasi-Generalized M-estimator. Notice that the score

replaces the pseudo-score and that the only nuisance parameters are now bµf . Using

our result in Lemma 1 it is possible to show that H¦ above is zero and that scores and

pseudo-scores are equivalent, and this implies that V (µ̂K) is in fact the asymptotic

variance of the partial MLE.

LEMMA 3:

The estimators in the sequence
n
µ̂K : K ¸ 1

o
are consistent, asymptotically nor-

mal and asymptotically equivalent to the partial likelihood estimator. The asymptotic

covariance matrix of all K-stage PI estimators is:

V (µ̂K) = 
¡1
00 +

¡1
00

n
Hf f0 +0f H

0
f +Hf V (µ̂f ) H

0
f

o
¡100 (31)

where

00 = E

Ã
@el¤1i
@µ

@el¤1i
@µ0

!
; Hf = E

Ã
@el¤1i
@µ

@el¤1i
@µ0f

!
;

f0 =

"
E

Ã
¡ @2l¤2i
@µf@µ0f

!#¡1
E

Ã
@l¤2i
@µf

@el¤1i
@µ0

!
; 0f = 

0
f0;

V (µ̂
f
) =

"
E

Ã
@l¤2i
@µf

@l¤2i
@µ0f

!#¡1
with E

Ã
¡ @2l¤2i
@µf@µ0f

!
= E

Ã
@l¤2i
@µf

@l¤2i
@µ0f

!
and

@el¤1i
@µ

=
P
t

@ lnPit(µ
¤; µ¤f)

@µ
;
@el¤1i
@µ0f

=
P
t

@ lnPit(µ
¤; µ¤f)

@µ0f
;

@l¤2i
@µf

=
P
t

@ ln f(xi;t+1; xit; µ
¤
f)

@µf

Proof: See Appendix 1.

LEMMA 4:
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The estimator obtained after one iteration of the NPL algorithm is a Hotz-Miller

estimator of µ¤uq, which is consistent and asymptotically normal.

Proof: See Appendix 1.

We have thus established that the Hotz-Miller estimator, the K¡stage estimators
and the partial maximum likelihood estimator are asymptotically equivalent.10 An

important limitation of Hotz-Miller's estimator, however, is that initial nonparametric

estimates of the conditional choice probabilities can be very imprecise, and this lack

of accuracy is transmitted to the estimates of the structural parameters (see Eckstein

and Wolpin, 1989, Rust, 1994, and Hotz et al., 1994). Our K ¡ stage estimator

overcomes this problem by iterating K times in the smooth policy iteration operator.

The computational cost of these (K ¡ 1) additional iterations is equal to the cost

of (K ¡ 1) policy iterations and (K ¡ 1) pseudo-maximum likelihood estimations.

An important issue is how fast the variance of the estimator decreases with K in

¯nite samples. Is a 2-stage or 3-stage estimator enough to obtain signi¯cant gains

in precision with respect to Hotz-Miller? We address this issue with a Monte Carlo

experiment in Section 5.2.

5 The performance of the NPL algorithm and PI

estimators

5.1 Relative speed of NPL and NFXP

In order to illustrate the performance of our NPL algorithm in maximum likelihood

estimation, we use Rust's well known bus replacement model and dataset.11 We

obtain partial ML estimates using the NPL and the NFXP algorithms under several

scenarios about the dimension of the state space, the number of parameters, and the

quality of initial guesses of parameters and conditional choice probabilities. For a

detailed technical description of the two algorithms used in this section see Appendix

10Asymptotic equivalence of K-stage and maximum likelihood estimators can also be established
in a full likelihood context.

11See Rust (1987). Rust's model has been used in other studies to evaluate the performance of
alternative algorithms and estimators, e.g. Hotz et al. (1994) and Rust (1997b).
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2. 12

We show that for large problems the cost of policy iterations is the main com-

ponent of the computational burden of estimation, and that the reduction in the

number of policy iterations achieved by use of the NPL algorithm in in¯nite horizon

problems would lead to signi¯cant computational gains. An important feature of this

example In the context of partial likelihood estimation, policy iterations are much

more expensive than pseudo-likelihood climbing iterations. Notice that both types of

iteration use the policy iteration operator de¯ned in equation (17). However, pseudo-

likelihood climbing iterations at each stage do not require repeated matrix inversions

in order to compute the policy valuation operator in (16) because this inverse depends

on parameters (µf ; ¯) which are not being estimated.

Figures 1A and 1B plot the fraction of total estimation time which is spent in

policy iterations against the size of the problem as measured by the number of points

in the state space, i.e.,M . Figure 1A refers to the NFXP algorithm. We see that, even

for relatively small number of cells in the state space (e.g.,M = 200), policy iterations

represent almost 100% of the CPU time in estimation. Figure 1B shows that for the

NPL algorithm this ratio tends to increase more slowly, but it is practically equal

to 1 for M ¸ 500.13 Therefore, it is quite relevant to assess to what extent the use

of NPL instead of NFXP reduces the number of policy iterations in the estimation

procedure.

Before we address this question, it is important to notice that the size of the state

space does not a®ect the number of policy iterations. Figures 2A and 2B illustrate

this point by presenting the number of policy iterations to obtain the MLE under the

NFXP and the NPL, respectively, for di®erent sizes of the state space. Therefore,

taking into account Figures 1 and 2, it should be clear that, for M large enough:

12It is important to underline that the NFXP algorithm that we use has two features which con-
tribute very signi¯cantly to improve its computational e±ciency (both features have been considered
by Rust, 1987, 1988). First, we use a closed-form expression for the gradient of the likelihood func-
tion. Second, at each outer iteration, we use "smart guesses" for the vector of choice probabilities
that initialize the policy iteration algorithm. For further details see Appendix 2.

13The reason why under the NPL this ratio increases more slowly with M is that, as we will show
below, the number of policy iterations under NPL is smaller than under NFXP.
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(a) the ratio between the CPU times of the two algorithms will be very close to the

ratio between their respective number of policy iterations; and (b) this ratio does not

depend on the size of the state space. However, the number of policy iterations is

a®ected by the accuracy of initial guesses of parameter values (for NFXP) and initial

guesses of conditional choice probabilities (for NPL). In principle, it might depend

also on the number of parameters to be estimated. For this reason, in Table 1 we

report results for only one size of the state space, M = 500, but we consider di®erent

cases for the other factors a®ecting the relative speed of the two algorithms.14

Table 1 presents absolute and relative values for CPU time and number of policy

iterations for speci¯cations with 2 and 4 structural parameters. 15 For the NFXP

algorithm, the initial guesses µ0 have been chosen in two di®erent ways. Since µ0 = 0

is a commonly used initial guess, we present results for it. Other guesses for µ0

have been obtained so that they lie in the frontier of a con¯dence region with a

predetermined signi¯cance level. In particular, we have considered a con¯dence region

obtained from the actual ML estimates with signi¯cance level equal to 10¡6.16 We

believe this is a reasonable metric for the quality of a researcher's guesses. Our choice

of the signi¯cance level is necessarily arbitrary. However, notice that, both with 2

and 4 structural parameters, µ0 = 0 lies outside this frontier, i.e., it is a worse guess.

Furthermore, we obtain similar results with signi¯cance levels between 10¡4 and 10¡7.

As for the NPL algorithm we consider 2 cases for the initial guesses of the choice

probabilities, i.e., kernel estimates and random draws from a U(0; 1). Figures 3 and 4

present the true choice probabilities and the 2 guesses for ¦0.
17 The estimations with

random initial choice probabilities try to represent a worst case scenario for NPL.

14All the computations in this paper have been made using a Pentium MMX 233 MHz. The
programs have been written in GAUSS.

15As one might expect from Lemma 2, the values of the ML estimates using NFXP and NPL are
numerically equivalent (i.e., up to the twelfth signi¯cant digit). In fact, this paper was originally
motivated by this ¯nding.

16We generate these values for µ0 as follows. We ¯xed all the parameters except one at their
maximum likelihood estimates. Using the asymptotic Normal distribution of the vector of ML
estimates, and its estimated covariance matrix, the value of the remaining parameter is determined
so that µ0 lies in the frontier of the con¯dence region with a predetermined signi¯cance level.

17Kernel estimates have been obtained using a Nadaraya-Watson estimator with a Gaussian kernel
function and Silverman's rule of thumb for the choice of the bandwidth parameter.
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But notice that, in this application, the kernel estimates are quite inaccurate too.

Table 1 shows that, even when using random draws for the initial choice proba-

bilities, the NPL algorithm is between 7 and 13 times faster than NFXP. When using

kernel estimates as initial probabilities, this ratio is between 9 and 19. It is clear that

for models with large state spaces this range of speed ratios implies huge savings in

CPU time.

The number of structural parameters in the model does not a®ect the relative

performance of the two estimators.

5.2 The precision of PI estimators: A Monte Carlo exercise

In section 4 we established that all K-stage PI are asymptotically equivalent. We

now look into their behavior in ¯nite samples. The Hotz-Miller estimator is known

to be quite sensitive to the quality of the initial non-parametric estimates of choice

probabilities. This suggests that there is a trade-o® between increasing computational

cost and increasing precision as we move along the sequence of estimators. In order

to illustrate and analyze this trade-o® in ¯nite samples, we carried out the following

Monte Carlo experiment. We used Rust's bus engine model with parameters equal

to ML estimates as the DGP. For sample sizes 2500, 5000 and 10000 we generated

500 samples and for each of them we obtained the sequence of PI estimators and its

limit, the ML estimator.18

Tables 2 to 5 present summary statistics for several experiments. For the 1, 2 and

3 -stage PI estimators and the ML estimator, we report in these Tables the mean and

median of the absolute estimation error, and the empirical standard deviations. We

also report the average number of stages to obtain the MLE. The size of the state

space grid in the DGP is 200. Recall from Figure 2 that grid size does not a®ect

the number of policy iterations to convergence of the NPL. Thus, if the precision

18Each sample has been obtained in the following way. First, we obtain the steady-state distri-
bution of the observable state variable (cumulative mileage) using transition probabilities and true
choice probabilities. Second, from this distribution we obtain n random draws of the state variable,
where n is the sample size. Finally, using the optimal decision rule and simulations of the unobserv-
able epsilons, we obtain the optimal decisions associated with each of the n simulations of the state
variables.
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of the initial nonparametric estimates of ¦0 is the same for di®erent state spaces,

the e±ciency of the K ¡ stage estimators relative to MLE does not depend on the

dimension of the state space. Of course, in an actual application where the sample

size is given, the larger the dimension of the state space the lower the precision of

the initial nonparametric estimates. We take into account this issue by considering

di®erent sample sizes, and ¯xing the grid size.

In experiments 1 to 3, we ¯nd very signi¯cant bene¯ts of doing more than one

policy iteration, even for relatively large sample sizes. In general, the 1-PI estimator

performs poorly relative to the other estimators. More interestingly, the relative per-

formance of the 2-PI is excellent. Even for very small sample sizes (and, consequently,

very imprecise kernel estimates of the choice probabilities) the 2-PI estimator is very

similar to MLE. Most of the bene¯ts of additional policy iterations are obtained when

one goes from 1 to 2 iterations.

However, this result might be misleading. Since this model is binary and has

only one observable state variable, it is not possible to have very large discrepancies

between the precision of the ML estimates of the choice probabilities and the precision

of the kernel estimates. In other words, the only way to get very imprecise kernel

estimates is by considering very small sample sizes, but this implies also imprecise ML

estimates. In order to overcome this limitation, we consider Experiment 4. Instead

of kernel estimates of the initial choice probabilities we use random draws from a

U(0; 1). This results in arti¯cially poor initial values for the choice probabilities. The

results of this experiment (in Table 5) actually reinforce the ones from Experiments

1 to 3. Poor initial guesses have a very serious e®ect on the 1-PI estimator, but a

negligible e®ect on the 2-PI, which is still very close to the MLE.

Therefore, in the context of this parametric model the ¯xed point structure has

very important identifying power. When we construct expected value functions using

choice probabilities which are closer to the ¯xed point our estimates become much

more precise. However, it seems that 2 policy iterations are enough to get choice

probabilities which are close enough to the ¯xed point.

In order to interpret this ¯nding, note that there exists an important qualitative
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di®erence between going from 1 to 2 policy iterations and going from 2 to more it-

erations. The second policy iteration is the ¯rst one in which we incorporate the

structure of the model to obtain the choice probabilities used to compute the pseudo-

social surplus ¾(µ;¦). These probabilities incorporate for the ¯rst time the following

information which is not contained in the initial nonparametric estimates: (1) a

distributional assumption about the unobservable state variables; (2) a parametric

assumption for the one-period utility function; (3) the assumption of additivity be-

tween observables and unobservables in the one-period utility function; and (4) the

assumption of additivity between current and future utilities in the intertemporal

utility function. All subsequent policy iterations impose (recursively) that (5) the

choice probabilities should be a ¯xed point of the policy iteration mapping, but no

further assumptions about the functional form of the primitives are incorporated.

In our experiment the incorporation of (1) to (4) leads to very important im-

provements in the estimates of choice probabilities and structural parameters. The

results also show that once we incorporate this structure the choice probabilities are

very close to the ones that solve the ¯xed point problem for the MLE. An interesting

issue would be to see whether this result still holds when we relax the parametric

assumptions (1) or (2). To answer this question we would have to incorporate a semi-

parametric estimation method like the one in Klein and Spady (1993). We consider

this a topic for further research. .

6 Concluding remarks

We have proposed a new algorithm to obtain Maximum Likelihood estimates of dy-

namic programming discrete choice models. We have shown that this algorithm pro-

duces the MLE using signi¯cantly fewer policy iterations than the usual Nested Fixed

Point Algorithm, resulting in large computational gains for a class of in¯nite-horizon,

partial likelihood problems. Based on our algorithm, we have de¯ned a family of

sequential Policy Iteration estimators which encompass the Hotz-Miller estimator

and the ML estimator as extreme cases. All K-stage PI estimators are consistent and
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asymptotically equivalent. Our Monte Carlo experiments show that the performance

of the 2¡stage PI estimator is excellent. Its ¯nite sample variance and bias are very
similar to those of the MLE. However, the 2¡stage PI overcomes the well-known lim-
itations of Hotz and Miller's estimator in terms of ¯nite sample properties. Since this

estimator is computationally much cheaper to obtain than MLE, our ability to obtain

precise estimates of interesting economic models with more than two or three state

variables is signi¯cantly enhanced. We would like to see these encouraging results

con¯rmed by the use of 2-stage and k-stage PI estimators in actual applications.

It has been pointed out that the Conditional Independence assumption on which

the Hotz & Miller estimator relies is perhaps too strong in many interesting applica-

tions. This drawback is shared by our K-stage PI estimators. However, one can show

that our NPL algorithm can accommodate a form of serial correlation in the unobserv-

ables which has proved useful in many applications, the case in which the unobserved

state variables include a permanent component with a non-parametric discrete dis-

tribution as in Heckman-Singer (1984). In this case the Hotz-Miller and k-stage PI

estimators are not feasible because it is not possible to obtain non-parametric consis-

tent estimates of conditional choice probabilities. But our NPL algorithm initiated

with (inconsistent) guesses of choice probabilities will still converge to the Maximum

Likelihood estimator, and in many applications it will do so much faster than the

alternative NFXP algorithm.

As mentioned in the Introduction, the emphasis of this paper is not in algorithms

for the solution of the dynamic programming models, but on the procedures used to

search for parameter estimates in those models. In principle, our approach could be

combined with the discretization techniques in Rust (1997b). Furthermore, the idea

behind our algorithm is simple and it might be applied to the estimation of other type

of models that incorporate the solution of a ¯xed point problem, i.e., game theoretic

models, general equilibrium models. The main question is whether Lemma 1 can be

extended to this type of models or not. We believe these are interesting topics for

further research.
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APPENDIX 1. Proof of Lemmas.

Proof of Lemma 1.

For the sake of notational simplicity, we omit µ as an argument of all the functions

below. First of all, notice that the matrix ¦ contains onlyM(J¡1) conditional choice
probabilities. That is, for each of the M possible values of the conditioning variables,

there are only J ¡ 1 free probabilities. Without loss of generality, the probabilities
that we exclude from ¦ are the ones associated with choice alternative 1.

[1] By de¯nition,

¾(¦) =
JX

j=1

¦(j) ¤ fu(j) + e(j;¦) + ¯ F (j) ¾(¦)g ;

Let ¼m be the column vector containing the (J¡1) choice probabilities in ¦ associated
with x = xm, and let ¼m(j) be the j ¡ th component of ¼m. Di®erentiating in both
sides with respect to ¼m and collecting terms, one can show that

@¾(¦)

@¼m
= [IM ¡ ¯F¦]¡1

"Ã
JX

k=1

¦(k) ¤ @e(k;¦)
@¼0m

!
+ im f¢e0m +¢v0mg

#
; (A.1)

where im is an Mx1 vector with 1 in the j ¡ th position and zeros elsewhere; ¢em is
the (J ¡ 1)x1 vector fem(j;¦)¡ em(1;¦) : j = 2; :::; Jg; and ¢vm(j) is the (J ¡ 1)x1
vector fvm(j)¡ vm(1) : j = 2; :::; Jg, where vm(j) ´ um(j) + ¯ Fm(j) ¾(¦).

>From Proposition 1 in Hotz and Miller (1993), em(k;¦) = em(k; ¼m). That is, the

expectations E("(j) j xm; ± = j) do not depend on choice probabilities associated with
values of x di®erent to xm. Therefore, using expression (A.1), it is straightforward to

see that
@¾n
@¼0m

= 0, for any m 6= n. It remains to prove that @¾m
@¼0m

= 0. According to

expression (A.1), it will su±ce to show that

Ã
JX

k=1

¼m(k)
@em(k; ¼m)

@¼0m

!
+¢e0m +¢v

0
m = 0: (A.2)

For notational simplicity we omit the subindex m in our expressions below. However,

it should be understood that all vectors, matrices and functions below refer to a

particular value of x:
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[2] To prove (A.2) we should introduce some additional notation. First, remember

that ¼(j) can be expressed as a function of ¢v.

¼(j) = Q(j;¢v) ´
+1Z

¡1
Gj(» +¢v(j); :::; »; :::; » +¢v(j)¡¢v(J)) d»;

where G(:) is the cdf of ", and Gj(:) is its partial derivative with respect to "(j).

Also, e(j) is a function of ¢v. For j > 1,

e(j) = W (j;¢v) ´ H(j;¢v)

Q(j;¢v)
;

where:

H(j;¢v) ´
+1Z

¡1
» Gj(» +¢v(j); :::; »; :::; » +¢v(j)¡¢v(J)) d»:

And for j = 1;

e(1) =W (1;¢v) ´ H(1;¢v)

1¡
X

j 6=1
Q(j;¢v)

;

We also introduce the following de¯nitions. For any pair (j; k), we de¯ne:

qk(j) =

+1Z

¡1
Gjk(» +¢v(j); :::; »; :::; » +¢v(j)¡¢v(J)) d»;

and,

hk(j) =

+1Z

¡1
» Gjk(» +¢v(j); :::; »; :::; » +¢v(j)¡¢v(J)) d»

where Gjk(:) is the partial derivative of G(:) with respect to "(j) and "(k). The

following properties of these functions will be used below.

Property 1: qk(j) = qj(k)
Property 2: hk(j) = hj(k) + [¢v(j)¡¢v(k)] qk(j)

According to these de¯nitions, the (J ¡ 1)x(J ¡ 1) Jacobian matrix @Q(¢v)
@¢v0

has

the following expression. For j > 1 and k > 1:

DQjk ´ @Q(j;¢v)

@¢v(k)
=

8
<
:

¡qk(j) if k 6= jP
i6=j
qi(j) if k = j
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We can also obtain the expression for the Jx(J ¡ 1) Jacobian matrix @H(¢v)
@¢v0

. For

k > 1:

DHjk ´ @H(j;¢v)

@¢v(k)
=

8
<
:

¡hk(j) if k 6= jP
i6=j
hi(j) if k = j

[3] We now proceed with the proof of (A.2). First, we obtain
@e(¼)

@¼0
. Since

Q(¢v) is an invertible system of equations (see Proposition 1 in Hotz and Miller),

¢v = Q¡1(¼). Therefore, applying the chain rule and the inverse function theorem,

we can obtain:

@e(k; ¼)

@¼0
=
@W (k;¢v)

@¢v0
@Q¡1(¼)

@¼0
=
@W (k;¢v)

@¢v0

Ã
@Q(¢v)

@¢v0

!¡1
; (A.3)

Using the de¯nition of W (k;¢v) and the de¯nitions in [2], it is simple to show

that for k > 1,
@W (k;¢v)

@¢v0
=

1

¼(k)
[DHk² ¡ e(k) DQk²] ;

where DHk² and DQk² are the k ¡ th rows of DH and DQ, respectively. For k = 1,

@W (1;¢v)

@¢v0
=

1

¼(1)
[DH1² ¡ e(1) (i0DQ)] ;

where i is a (J ¡ 1)x1 vector of ones.
Now, solving the previous equations in (A.3) we get,

@e(k; ¼)

@¼0
=

1

¼(k)

h
DHk² (DQ)

¡1 ¡ e(k) i0k
i

@e(1; ¼)

@¼0
=

1

¼(1)

h
DH1² (DQ)

¡1 + e(1) i0
i

where ik is a (J¡1)x1 vector with 1 in the k¡ th position and zeros elsewhere. Thus,
JX

k=1

¼(k)
@e(k; ¼)

@¼0
=

Ã
JX

k=1

DHk²

!
(DQ)¡1 ¡¢e0 (A.4)

[4] Solving (A.4) into (A.2) it becomes clear that (A.2) is true if:

JX

k=1

DHk² = ¡(¢v0)DQ
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To prove this we rely on the expressions forDH andDQ in [2], as well as on Properties

1 and 2. The j ¡ th element in the left-hand side of the previous equation is:
X

k 6=j
DHkj +DHjj =

X

k 6=j
[hk(j)¡ hj(k)] =

X

k 6=j
[¢v(j)¡¢v(k)] qk(j):

And the j-th element in the right-hand side is:

¡
JX

k=2;k 6=j
¢v(k) DQkj ¡¢v(j) DQjj =

X

k 6=j
[¢v(j)¡¢v(k)] qk(j):

what completes the proof.

Proof of Lemma 2.

[1] Suppose the sequence f¦kg from the NPL algorithm converges to a vector

¦NPL. Then, the smoothness of the pseudo-maximum likelihood estimator mapping

de¯ned in (26) guarantees that the sequence fµkg converges also to a vector µ̂NPL.
Therefore, by construction, ¦NPL should be the ¯xed point of the policy iteration

mapping for µ = µ̂NPL.

¦NPL = ª(µ̂NPL;¦NPL) (A.5)

Furthermore, µ̂NPL maximizes the pseudo log-likelihood function flnª(µ;¦NPL)0 ¹z+
l2(µf )g. Therefore, the following marginal conditions of optimality should hold:

@ª(µ̂NPL;¦NPL)
0

@µ
diag

n
1=ªjm(µ̂NPL;¦NPL)

o
¹z +

@l2(bµNPL)
@µ

= 0 (A.6)

or, combining (A.5) and (A.6):

@ª(µ̂NPL; P [µ̂NPL])
0

@µ
diag

n
1=Pjm[µ̂NPL]

o
¹z +

@l2(bµNPL)
@µ

= 0 (A.7)

Expression (A.7) de¯nes implicitly µ̂NPL. Our next step is to show that this

expression is equivalent to the one that de¯nes the ML estimator.

[2] Under Assumption 4, the ML estimator µ̂ML is the unique value of µ such that:

@ lnP (µ̂ML)
0

@µ
¹z +

@l2(bµML)
@µ

= 0
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where:

P (µ̂ML) = ª(µ̂ML; P [µ̂ML])

Now, using the de¯nition of P (µ) as the (unique) ¯xed point of the mapping ª(µ;¦),

it is possible to express the matrix of partial derivatives
@P (µ)

@µ0
in terms of the partial

derivatives of ª() with respect to µ and ¦. In particular, applying the implicit

function theorem we obtain the following expression:

@P (µ)

@µ0
=

"
IJM ¡ @ª(µ; P (µ))

@¦0

#¡1
@ª(µ; P (µ))

@µ0
(A.8)

Solving (A.8) in the marginal conditions of optimality for the MLE, we get:

@ª(µ̂ML; P [µ̂ML])
0

@µ

Ã
IJM ¡ @ª(µ̂ML; P [µ̂ML])

0

@¦

!¡1
diag

n
1=Pjm(µ̂ML)

o
¹z+
@l2(bµML)
@µ

= 0

(A.9)

Equations (A.7) and (A.9) are not equivalent for values of ¦ which are not the

¯xed point. However, by Lemma 1, at any ¯xed point
@ª(µ; P [µ])0

@¦
= 0. Therefore,

equation (A.9) can be simpli¯ed to:

@ª(µ̂ML; P [µ̂ML])
0

@µ
diag

n
1=Pjm[µ̂ML]

o
¹z +

@l2(bµML)
@µ

= 0

which completes the proof.

Proof of Lemma 3.

Consistency and asymptotic normality follow from the results in Gourieroux and

Monfort (1995, pp. 214-216). We ¯rst note two properties which we use repeat-

edly: (a) At the true parameter values, the pseudo choice probabilities ª(µ¤;¦¤)

are the true choice probabilities P (µ¤). It follows from this that the partial pseudo-

likelihood el1i(µ¤; µ¤f ;¦¤) satis¯es the \information equivalence", i.e., E
Ã
¡ @2el¤1i
@µ@µ0

!
=

E

Ã
@el¤1i
@µ

@el¤1i
@µ0

!
and so on. (b) Furthermore, as seen in (A.8) in Appendix 1,

@P (µ)

@µ0
=

"
IJM ¡ @ª(µ; P (µ))

@¦0

#¡1
@ª(µ; P (µ))

@µ0
. Lemma 1 then implies the equivalence of scores

and pseudo-scores at the true parameter values.
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Asymptotic normality of the vector

"
1p
n

P
i

@el¤1i
@µ0
;
p
n(bµf ¡ µ¤f )0;

p
n(¦̂0 ¡¦¤)0

#
0

and the form of its asymptotic variance  can be established using a Central Limit

Theorem applied to score functions as well as Taylor series expansions of the ¯rst

order conditions de¯ning the nuisance parameters (bµf ; b¦0). Notice that since b¦K =

ª(bµK; bµf ; b¦K¡1) with ª a smooth function, consitency and asymptotic normality of
b¦K follow.

We now prove that H¦ is zero:

H¦ = E

Ã
@2el¤1i
@µ@¦0

!
= E

Ã
@el¤1i
@µ

@el¤1i
@¦0

!
= E

ÃX

t

@ lnª¤it
@µ

X

t

@ lnª¤it
@¦0

!

But by Lemma 1
@ª¤it
@¦0

is zero for any (dit; xit). Therefore, H¦ = 0 and the

expression for V (µ̂K) becomes:

V (µ̂K) = J
¡1

³
00 +Hf f0 +0f H

0
f +Hf ff H

0
f

´
J¡1

But J = E

Ã
¡ @2el¤1i
@µ@µ0

!
= E

Ã
@el¤1i
@µ

@el¤1i
@µ0

!
= 00 and ff = V (µ̂f ) which establishes

(31).

Proof of Lemma 4.

The 1 ¡ stage PI estimator referred to in Lemma 4 is characterized in terms of
the following sample moment conditions:

1

N

P
i

@l2i(bµf ; yi1; : : : ; yiT )
@µf

= 0

diag
nb¦0mj

o
¢ (¹z ¡ ¹X ¦̂0) = 0

¢(µ̂1; bµf ; ¦̂0)f¹z ¡ ¹X ª(µ̂1; bµf ; ¦̂0)g = 0

where ¹z and ¹X are the sample means of zit and Xit, respectively. But, by de¯nition,

this is the Hotz-Miller estimator of µ¤uq when optimal instruments are used in the

second step.
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APPENDIX 2:

NFXP algorithm

[1] Inner (¯xed point) algorithm:

- Smooth policy iteration algorithm.

- Convergence criterion: maxfj;mgfj¦kjm ¡ ¦k¡1jm jg < 10¡6

- At outer iteration K, the initial guess for the vector of probabilities is P (µk¡1).

These "smart guesses" reduce very signi¯cantly the number of policy iterations when

we advance in the outer iterations.

[2] Outer (hill climbing) algorithm:

- BHHH method.

- Convergence criterion: maxfjgfjµkj ¡ µk¡1j jg < 10¡6

- Analytical expression for the gradient of the likelihood function. This implies

that we only have to solve one ¯xed point problem for each outer iteration.

- ¯ is ¯xed at 0:9999.

NPL algorithm

[1] Inner (pseudo-ML) algorithm:

- It is a simple Multinomial logit estimation where we restrict the parameter ¯ to

be equal to 0:9999.

- Convergence criterion: maxfjgfjµkj ¡ µk¡1j jg < 10¡6

[2] Outer algorithm:

- "Pseudo" Policy iteration procedure, because at each iteration we use a new

value of µ to obtain the new vector of probabilities.

- The convergence criterion is: maxfj;mgfj¦kjm ¡ ¦k¡1jm jg < 10¡6.
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Table 1
CPU time and number of policy iterations for NFXP and NPL algorithms

Rust's bus replacement model ; Size of the state space = 500
Initial ¦0 Initial µ0 Policy Policy Ratio CPU CPU Ratio
in NPL in NFXP iter. iter. (1)/(2) seconds seconds (4)/(5)

NFXP NPL NFXP NPL
(1) (2) (3) (4) (5) (6)

Number of structural parameters = 2
Kernel

µ0 = 0 59 3 19.7 955 51 18.7
µ0 2 Frontier

with sig. level 10¡6 34.5 3 11.5 553 51 10.8
Random

µ0 = 0 59 5 11.8 955 80 11.8
µ0 2 Frontier

with sig. level 10¡6 34.5 5 6.9 553 80 6.9

Number of structural parameters = 4
Kernel

µ0 = 0 65 3 21.7 1058 59 17.9
µ0 2 Frontier

with sig. level 10¡6 33.8 3 11.3 550 59 9.3
Random

µ0 = 0 65 5 13.0 1058 81 13.0
µ0 2 Frontier

with sig. level 10¡6 33.8 5 6.8 550 81 6.8

Note: For the NFXP algorithm, the MLE has been obtained using 4 di®erent values for

the initial µ0. Here we report the average numbers for these four computations.

The initial values for µ0 are such that they lie in the frontier of a con¯dence

region with signi¯cance level equal to 10¡6:
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Table 2
Monte Carlo Experiment 1
Sample size = 10,000

Initial Probabilities = Kernel estimates
Parameter Statistics Estimators

1-PI 2-PI 3-PI MLE
µ0 Mean absolute error 0.835 0.631 0.629 0.628

(% over µ0) (7.98) (6.02) (6.01) (6.00)
Median absolute error 0.653 0.530 0.524 0.524

(% over µ0) (6.24) (5.06) (5.01) (5.01)
Std. dev. estimator 1.056 0.787 0.784 0.784

(% over µ0) (10.08) (7.52) (7.49) (7.49)

µ1 Mean absolute error 0.0782 0.0521 0.0517 0.0515
(% over µ1) (13.48) (8.99) (8.91) (8.89)

Median absolute error 0.0558 0.0448 0.0439 0.0437
(% over µ1) (9.61) (7.72) (7.57) (7.54)

Std. dev. of estimator 0.1024 0.0660 0.0654 0.0652
(% over µ1) (17.66) (11.38) (11.27) (11.25)

Average number of Policy Iterations to obtain MLE = 5.37

True parameters: µ0 = 10.47 ; µ1 = 0.58 ; ¯ = 0.9999

State space = 200 ; Number of replications = 500
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Table 3
Monte Carlo Experiment 2
Sample size = 5,000

Initial Probabilities = Kernel estimates
Parameter Statistics Estimators

1-PI 2-PI 3-PI MLE
µ0 Mean absolute error 1.032 0.789 0.786 0.784

(% over µ0) (9.86) (7.54) (7.51) (7.49)
Median absolute error 0.780 0.652 0.649 0.645

(% over µ0) (7.45) (6.23) (6.20) (6.16)
Std. dev. of estimator 1.277 0.997 0.993 0.992

(% over µ0) (12.19) (9.52) (9.49) (9.47)

µ1 Mean absolute error 0.0991 0.0667 0.0664 0.0661
(% over µ1) (17.08) (11.5) (11.5) (11.4)

Median absolute error 0.0753 0.0573 0.0575 0.0575
(% over µ1) (13.00) (9.88) (9.92) (9.91)

Std. dev. of estimator 0.1249 0.0838 0.0833 0.0831
(% over µ1) (21.54) (14.44) (14.35) (14.32)

Average number of Policy Iterations to obtain MLE = 5.48

True parameters: µ0 = 10.47 ; µ1 = 0.58 ; ¯ = 0.9999

State space = 200 ; Number of replications = 500
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Table 4
Monte Carlo Experiment 3
Sample size = 2,500

Initial Probabilities = Kernel estimates
Parameter Statistics Estimators

1-PI 2-PI 3-PI MLE
µ0 Mean absolute error 1.476 1.309 1.300 1.296

(% over µ0) (14.09) (12.50) (12.41) (12.38)
Median absolute error 1.198 1.013 1.002 1.009

(% over µ0) (11.44) (9.67) (9.58) (9.64)
Std. dev. of estimator 1.832 1.707 1.698 1.695

(% over µ0) (17.50) (16.31) (16.22) (16.19)

µ1 Mean absolute error 0.1388 0.1075 0.1067 0.1064
(% over µ1) (23.93) (18.54) (18.40) (18.34)

Median absolute error 0.1096 0.0837 0.0839 0.0836
(% over µ1) (18.90) (14.42) (14.47) (14.42)

Std. dev. of estimator 0.1684 0.1381 0.1369 0.1367
(% over µ1) (29.04) (23.81) (23.60) (23.56)

Average number of Policy Iterations to obtain MLE = 5.86

True parameters: µ0 = 10.47 ; µ1 = 0.58 ; ¯ = 0.9999

State space = 200 ; Number of replications = 500
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Table 5
Monte Carlo Experiment 4
Sample size = 5,000

Initial Probabilities = Random draws
Parameter Statistics Estimators

1-PI 2-PI 3-PI MLE
µ0 Mean absolute error 3.114 0.791 0.780 0.784

(% over µ0) (29.75) (7.56) (7.45) (7.49)
Median absolute error 3.185 0.711 0.656 0.645

(% over µ0) (30.42) (6.79) (6.27) (6.16)
Std. dev. of estimator 1.620 0.961 0.986 0.992

(% over µ0) (15.47) (9.18) (9.42) (9.47)

µ1 Mean absolute error 4.1986 0.0758 0.0665 0.0661
(% over µ1) (723.8) (13.07) (11.47) (11.40)

Median absolute error 4.1662 0.0682 0.0569 0.0575
(% over µ1) (718.3) (11.75) (9.80) (9.91)

Std. dev. of estimator 0.5650 0.0853 0.0831 0.0831
(% over µ1) (97.42) (14.71) (14.32) (14.32)

Average number of Policy Iterations to obtain MLE = 7.06

True parameters: µ0 = 10.47 ; µ1 = 0.58 ; ¯ = 0.9999

State space = 200 ; Number of replications = 500
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