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Swarm-based 4D Path Planning for  

Drone Operations in Urban Environments 
Yu Wu1, 2*, Kin Huat Low3, Bizhao Pang4, Qingyu Tan2

Abstract—Drones have a wide range of applications in urban 

environments as they can both enhance people’s daily activities 

and commercial activities through various operations and 

deployments. With the increasing number of drones, flight 

safety and efficiency become the main concern, and effective 

drone operations can make a difference. Accordingly, 4D path 

planning for drone operations is the focus of this paper, and the 

swarm-based method is proposed to solve this complicated 

optimization problem. Under the framework of ‘AirMatrix’, 

the problem is solved in two levels, i.e., 3D path planning for a 

single drone and conflict resolution among drones. In the multi-

path planning level, multiple alternative flight paths for each 

drone are generated to increase the acceptance rate of a flight 

request. The constraints on a single flight path and two 

different flight paths are considered. The goal is to obtain 

several different short flight paths as alternatives. A clustering 

improved ant colony optimization (CIACO) algorithm is 

employed to solve the multi-path planning problem. The 

crowding mechanism is used in clustering, and some 

improvements are made to strengthen the global and local 

search ability in the early and later phases of iterations. In the 

task scheduling level, the conflicts between two drones are 

defined in two circumstances. One is for the time interval of 

passing the same path point, another one is for the right-angle 

collision between two drones. A three-layer fitness function is 

proposed to maximize the number of permitted flights 

according to the safety requirement, in which the airspace 

utilization and the operators’ requests are both considered. A 

‘cross-off’ strategy is developed to calculate the fitness value, 

and a ‘distributed-centralized’ strategy is applied considering 

the task priorities of drones. A genetic algorithm (GA)-based 

task scheduling algorithm is also developed according to the 

characteristic of the established model. Simulation results 

demonstrate that 4D flight path of each drone can be generated 

by the proposed swarmed-based algorithms, and safe and 

efficient drone operations in a specific airspace can be ensured. 

Index Terms — drones; urban environments; 4D path 

planning; swarm-based method; multi-path planning; task 

scheduling 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) or drones have recently 

become more popular in civil and commercial applications 

as they can accomplish many tasks which are beyond the 

human or ground vehicles’ ability, by taking the advantages 

of drone’s height climbing, far reaching and speed 

capabilities. The applications of UAVs can also enhance the 

efficiency of executing tasks and reduce the pressure of over-
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crowded ground traffic [1]. It is more attractive if UAVs can 

be used in urban environments to facilitate people’s lives, 

such as timely delivery, photography, or even air taxi in near 

future [2, 3]. Public agents and relevant industry will also 

benefit from UAVs in daily routines (surveillance, surveying 

and mapping, etc.) and emergencies (rescue, target tracking, 

etc.) [4, 5]. With multiple UAVs operating for their 

respective tasks over the same airspace in a city area, the 

airspace may be crowded, and the drones may collide with 

each other. The flight safety must be maintained throughout 

the drone operations to further improve the operation 

efficiency [6]. 

According to the regulation of Federal Aviation 

Administration (FAA) in the United State (CFR PART 107), 

small and light UAVs can fly below the height of 400ft 

(about 122m) from the ground [7]. Furthermore, it is 

recommended by Amazon that the space between the heights 

of 400ft and 500ft (about between 122m and 152m) is set as 

the isolation area to separate the UAVs and the manned 

aircraft [8]. Referring to the above information, the drones 

are regulated to fly below 120m in this study, so the drone 

must avoid the buildings by flying around them rather than 

flying above them. Besides, the drones can perform various 

tasks by flying between different pairs of start point and 

destination respectively, such as delivery, surveillance and 

target tracking.  

Under such a circumstance, the path planning problem of 

drones is studied in this paper, in which the conflicts among 

multiple drones are considered. To be specific, the 3D flight 

path of drone is generated first without considering the time 

information, then in task scheduling, the time information of 

path is added, and the conflicts among drones are resolved 

by adjusting their departure times and flight velocities, i.e., 

a 4D path planning problem for multiple drones. The idea is 

inspired by the operation in civil aviation, in which the flight 

scheduling problem is decomposed into two parts to reduce 

the difficulty of solving the problem [9]. Different from the 

existing literatures that treating the problem from the user’s 

perspective, manager’s perspective is adopted to generate 

the 4D flight paths for drones from the standpoint of 

unmanned aerial system (UAS) traffic management (UTM). 

According to the above descriptions, the framework of 

solving this 4D path planning problem is shown in Fig. 1. 



 

 

 
Fig. 1. Framework of solving 4D path planning problem for drone 

operations 

In Fig. 1, there are two levels addressing the 4D path 

planning problem, and the essential information is provided 

by the drone operators and the air traffic controller. In the 

multi-path planning level, multiple paths for a drone are 

generated by the clustering improved ant colony 

optimization (CIACO) algorithm to increase the acceptance 

rate of a flight request, and the goal is to generate multiple 

different paths for each drone. In the task scheduling level, 

the results of multi-path planning for drones, the scheduled 

time information of flights and the task priorities are 

regarded as the inputs, and a flight scheme containing the 4D 

path information of drones is generated by the genetic 

algorithm (GA)-based method. 

The main contributions of this work can be concluded as 

follows: 

1. The model for this 4D path planning problem is 

developed. The urban environments and the flight rules of 

drone are formulated. Under the framework, the problem is 

divided into two subproblems. First, the 3D multi-path 

planning model for a single drone is established. Especially, 

the distance between two paths is defined to distinguish them 

in the multi-path planning problem. For multiple drones 

flying, the conflict model between two drones is described, 

and a three-level fitness function is designed to reflect both 

the airspace utilization and the operators’ requests. 

2. A multi-path planning algorithm based on the CIACO 

algorithm is proposed to generate several alternative flight 

paths for each drone, which can increase the accepted rate of 

flight request. In the CIACO algorithm, the crowding 

mechanism is introduced in the clustering process. 

Compared to the existing clustering algorithm, the number 

of sub-swarms are determined by the quality of individuals 

rather than giving a specified number. The basic ACO 

algorithm is also improved to strengthen the global search 

ability in the early stage of iteration and enhance the local 

search ability later. As far as the authors know, there is few 

publications concentrating on the ACO algorithm with 

multi-population. The proposed CIACO algorithm cannot 

only enrich the ACO theory, but also can be applied to other 

situations when multiple different solutions are required. 

3. A GA-based task scheduling algorithm is developed to 

determine the 4D paths of drones. Compared to the current 

studies, the task priorities of drones are considered. With the 

idea of ‘distributed-centralized’ scheduling, the drones with 

different priorities are scheduled in a distributed mode, and 

the drones with the same priority are scheduled in a 

centralized mode. In this way, the explicit meaning of task 

priority is indicated, and the constraints are decomposed into 

many sub-problems. A ‘cross-off’ strategy is introduced to 

calculate the three-layer fitness value. With the developed 

task scheduling algorithm, the difficulty of solving the large-

scale optimization problem is reduced, which can be 

popularized to similar complicated scheduling problems. 

II. RELATED WORKS 

UAV path planning problems have received great 

attentions, and various UAVs, such as quadrotor [10], solar-

powered UAV [11] and tiltrotor [12] are introduced to 

execute different tasks in urban environments. According to 

the complexity of path planning, two categories can be got, 

i.e., path planning for a single UAV and coordinated path 

planning for multiple UAVs. On the other hand, the path 

planning can be conducted in the continuous and discrete 

space based on the requirement of the specific problem [13]. 

The above issues are highly relevant to the work and the 

latest progress will be discussed below. 

In the path planning problem for a single UAV, it is 

sometimes required that multiple paths are generated 

simultaneously as alternatives. The multi-path planning 

problem is mainly solved by the swarm and evolutionary 

algorithms as those algorithms can be run parallelly under 

the idea of subpopulations. There have been many literatures 

focusing on this issue, and the subpopulations are usually 

initialized by calculating the distance between different 

individuals. Two individuals which have the minimum 

distance are thought to be in the same subpopulation, and the 

above process is repeated until the number of subpopulations 

has reached the specified value [14]. There are two ways to 

treat the subpopulations, i.e., the roles of subpopulations are 

the same or different. In Ref. [15], K-means clustering 

method is used to divide the whole population into K 

subpopulations. In each subpopulation, the solutions with 

bad quality will be abandoned. Then the idea of niche is 

introduced to make the search conducted in their own 

subpopulation, thus generating K paths at one time. Different 

from K-means clustering method, the whole population is 

divided into several subpopulations in Ref. [16]. As there are 

different forms of position update formulas in differential 

algorithm (DE), such as DE/rand1, DE/rand/2, DE/best/1 

and DE/current-to rand/1, each subpopulation can select a 

kind of formula to update the solutions, which can make each 

subpopulation evolve from different directions. 

As for the discrete path planning for a single UAV, A* 

algorithm, GA and ACO algorithm are usually applied as 

their original forms can be used in discrete optimization 

problem. In Ref. [17], a risk A* algorithm, i.e., an ad-hoc 

variant of the A* algorithm, is developed to conduct the 

offline path planning based on the information related to 

static risk factors. In GA, some modifications on the 

operators are made to improve the algorithm performance. 

For example, some individuals are selected and are analyzed 
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to judge the searching value of different regions in Ref. [18], 

and the regions of evolution operator are reasonably 

restricted. To make the crossover operator more efficient, 

two nodes from different chromosomes are chosen so that 

they are closer to each other than one of them is to its 

adjacent node [19]. As for the ACO algorithm, the 

improvements are mainly from two aspects. One is to change 

the way of determining the next path point, and a guidance 

factor is added to the original formula in Ref. [20] to make 

the ants go toward the end point or certain direction. The 

other one is to modify the formula of updating the 

pheromone. To further strengthen the influence of good 

solution, only the pheromone corresponding to the best 

solution in the current iteration is added to the current 

pheromone matrix in Ref. [21]. 

The present studies on the path planning of multiple UAVs 

focus on the cases in the continuous space, and the 

distributed approaches are paid much attention. A distributed 

velocity-aware algorithm and collision avoidance algorithm 

is proposed to serve motion planning of multiple UAVs in 

Ref. [22]. The velocity-aware algorithm generates paths with 

acceleration vectors that converge to the predefined 

destinations, and the collision avoidance algorithm will be 

triggered to protect UAVs from collisions when the conflicts 

are predicted. The cooperative path planning problem of 

multiple UAVs with multi-objective functions is addressed 

in Ref. [23]. The multi-objective model with preemptive 

priorities is solved using fuzzy satisfactory optimization to 

balance the requirement of multi-objective optimization and 

preemptive priorities. Receding horizon control [24] and 

distributed model predictive control are often combined to 

deal with multi-UAV path planning problem, in which each 

UAV can determine its own action considering the 

constraints only related to itself [25]. Under the framework 

of model predictive control, various nature inspired 

optimization algorithms, such as particle swarm 

optimization (PSO) algorithm [26], adaptive grasshopper 

optimization algorithm (AGOA) [27] and improved grey 

wolf optimizer (IGWO) [28], can be applied in generating 

the optimal trajectories. 

There are fewer literatures concerning the coordinated 

path planning of UAVs in the discrete environment. In Ref. 

[29], four algorithms are proposed to calculate the discrete 

paths for UAVs, i.e., attraction approach, fuzzy logic 

approach, adaptive-network-based fuzzy inference system 

approach and PSO algorithm. All the four approaches are 

used to calculate the locations of the waypoints to be 

followed by the UAVs to minimize the distance and the risk. 

An adaptive path replanning method for UAVs is developed 

in the discrete space considering the uncertain and dynamic 

environments. Three strategies are designed to cope with the 

conflicts with the new no-fly zone, cooperative drones and 

non-cooperative drones [30].  

To summarize the above-described works, the swarm-

based methods which are inspired from the nature and 

society are widely applied due to their fewer requirements 

on the model and high computational efficiency, but 

appropriate algorithm needs to be selected carefully 

considering the characteristic of the specific problem. The 

multi-path planning problems are mainly solved in the 

continuous space in the existing literatures. As the path 

planning algorithms cannot be applied in the discrete space 

directly, the idea of subpopulation should combine with the 

discrete path planning algorithm to solve the multi-path 

planning problem in the discrete space. Furthermore, in 

many cases, the UAVs are regarded as homogeneous 

vehicles, and the task priority is not considered. The strategy 

of resolving the conflicts between UAVs in the discrete space 

also needs to be explored. 

III. MODELING FOR THE 4D PATH PLANNING 

PROBLEM 

In this section, the concept ‘AirMatrix’ [31] is introduced 

to describe the urban environments and the flight rules of 

drone. There are three assumptions in the ‘AirMatrix’ before 

establishing the 4D path planning model, and the details are 

presented below. 

1. The drones considered in this study are UAVs with 

multiple rotors, which can climb and descend vertically. 

2. The drone flies at a low velocity, and the velocity 

doesn’t change much. Therefore, it can be approximately 

thought that the drone flies at a constant velocity. 

3. The drone can be treated as a free point with three 

degrees of freedom as the attitude of drone is not concerned 

in the 4D path planning problem. Nevertheless, the safe 

distance is set to ensure that the drone must keep a certain 

distance away from the buildings and other drones. 

A. Environment modeling and the flight rules of drone 

The buildings described in ‘AirMatrix’ is defined as cubes 

with specific sizes, as shown in Fig. 2. 

 
Fig. 2. Illustration of the buildings in ‘AirMatrix’ [32] 

The buildings represented by cubes depicted in Fig. 2 are 

considered as the ‘prohibited’ areas for drone operations. For 

the path points defined in ‘AirMatrix’, the drones are 

allowed to fly along the straight line between two adjacent 

nodes, as illustrated in Fig. 3. 

 
Fig. 3. Possible routes for drone flying according to the cube of ‘AirMatrix’ 

In Fig. 3, an edge, a face diagonal or a body diagonal of a 

cube can be chosen as the next path segment, and there are 
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26 optional path segments. In most cases, the number of 

optional path segments is less than 26. For example, the 

drone is forbidden to fly back, which will increase the length 

of flight path. This requirement can be achieved by setting 

an appropriate fitness function to guide the drone to head for 

the destination. Besides, the drone is sometimes located at 

the boundary of ‘AirMatrix’ or there are buildings nearby, 

and the number of optional path segments is also less than 

26 in this case. Note that the edge length of the cube is set 

considering the maneuverability of drone and the safe 

distance between two drones (also the distance between the 

drone and the building is considered), thus making the drone 

fly safely and not change the flight height or turn frequently. 

In a real flight, the straight line between two adjacent nodes 

is regarded as the input of the flight controller, and there are 

some errors between the straight line and the real flight 

trajectory of drone due to the tracking error. Therefore, the 

path points are just provided as the reference trajectory for 

the inner flight controller, and the real flight trajectory of 

drone is influenced by the path planning and flight control 

together. 

B. Multi-path planning model for a single drone flying 

  As defined above, there are a certain number of path 

points in each flight path, and they are the variables to be 

optimized. The constraints come from two aspects, i.e., a 

single flight path and multiple flight paths. For a single flight 

path, all its path points must be within the space occupied by 

‘AirMatrix’ and keep certain distance with the ground to 

ensure the safety. Assume that the edge length of the cube is 

a, the above constraints can be denoted by 

⎩⎨
⎧ 	𝑥!"# = 𝑥$!% + 𝑎𝑖,					𝑖 = 0,1, … , &!"#'&!$%

(	𝑦)"# = 𝑦$!% + 𝑎𝑗,					𝑗 = 0,1, … , *!"#'*!$%

(	𝑧+"# = 𝑧$!% + 𝑎𝑘,					𝑘 = 0,1, … , ,!"#',!$%

(

      (1)        

where 𝑥$!% , 𝑥$(& , 𝑦$!% , 𝑦$(& , 𝑧$!%  and 𝑧$(&  are the 

boundaries of ‘AirMatrix’, 𝑥! , 𝑦!  and 𝑧!  are the 

alternative path points. To further narrow the search space 

and accelerate the search speed, the constraints in Eq. (1) can 

be converted to the following form: 

⎩⎪⎨
⎪⎧ 	𝑥!"# = 𝐿- + 𝑎𝑖,					𝑖 = 0,1, … , .&'/&(𝑦)"# = 𝐿0 + 𝑎𝑗,					𝑗 = 0,1, … , .''/'(𝑧+"# = 𝑧$!% + 𝑎𝑘,					𝑘 = 0,1, … , ,!"#',!$%

(

    (2) 

where 𝐿- = 𝑚𝑎𝑥	{𝑥$!%, (𝑥# − 𝑙𝑎)}  and 𝑈- =𝑚𝑖𝑛	{𝑥$(& , (𝑥1!"#
+ 𝑙𝑎)}  denote the lower and upper 

boundary along axis OX respectively. The subscript ‘1’ and 	𝑁$(& mean the start and end point of path along axis OX. 

The same definitions are made for 𝐿0 and 𝑈0 along axis 

OY. In Eq. (2), the space area in OXY plane is a rectangle 

whose length and width are both enlarged by 2la based on 

the original rectangle defined by the start and end point, and 

l is the amplification factor. The flight height is usually 

composed by several layers, so the search space in direction 

OZ is kept unchanged. 

Besides, each path point must keep a certain distance 

away from the buildings, and the repeated path points are not 

allowed in a flight path to avoid the detour. The above two 

constraints can be written as 

𝑚𝑖𝑛 $%&𝑥!, − 𝑥)*# + &𝑦!, − 𝑦)*# + &𝑧!, − �̃�*#/ ≥𝑎, (𝑥), 𝑦), �̃�) ∈ 𝑆$ (3) 

>(𝑥%# − 𝑥%2)2 + (𝑦%# − 𝑦%2)2+(𝑧%# − 𝑧%2)2 ≠ 0  (4)              

where 𝑆3  is the space occupied by the buildings, and (𝑥A, 𝑦A, �̃�) is a point belonging to 𝑆3 . 𝑛#  and 𝑛2  are two 

different path points in the same flight path. Eq. (3) implies 

that the distance between the drone and a building must be 

no less than a. The maximum number of path points also 

should be set to avoid the drone deviating the destination too 

much. In other words, the drone is not allowed to make too 

many detours when flying to the destination. The constraints 

on the battery capacity, the flying time and the distance of 

drone also can be reflected in some degree. Besides, it will 

also take a lot of time for the path planning algorithm to 

determine a large number of path points. Assume that the 

maximum number of path points and the permitted number 

of path points are 𝑁$(&  and 𝑁456$!7  (𝑁$(& ≤ 𝑁456$!7 ), 
the 𝑁456$!7 is set as the sum of path points in each direction, 

as expressed by 

𝑁456$!7 = |&()'&*+|
( + 1 + |*()'**+|

( + 1 + |,()',*+|
( + 1 (5)           

To ensure that the constraint of Eq. (5) can always be met, 

the drone is allowed to fly through 𝑁456$!7 path points at 

most in the path planning algorithm. 

For each drone, multiple flight paths can be submitted to 

increase the probability of flight permission. The distance of 

two flight paths can be evaluated by 

𝑅9: = ∑ 𝑑(𝑃;, 𝑄;)1,"+-'#
;<#            (6) 

where 𝑅9: denotes the distance between flight path P and 

Q, and the flight path is divided into 𝑁4(7= pieces. Note that 𝑃; and 𝑄; are the sth equal diversion point of the two flight 

paths, and the definition of 𝑑(𝑃;, 𝑄;) is shown in Fig. 4. 

 
Fig. 4. Definition of 𝑑(𝑃%, 𝑄%) 

 If 𝑅9: is greater than a specified threshold 𝐷>, the two 

flight paths are defined to be different, as given by 𝑅9: > 𝐷>                  (7) 

  Next, a fitness function is designed to evaluate the quality 

of a flight path, which is given by 

𝐽&'() = &∑ ||𝐺*+, − 𝐺*||-!"#.,

*/,
* + ||𝐺-!"#

− 𝑇𝑎𝑟||    (8) 

where 𝐺!  is the ith waypoint, and Tar is the position of 

destination. In Eq. (8), the first item is the total flight 

distance of drone, and the second item is the penalty value 
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which denotes the distance between the last path point of 

drone and the destination. When the drone can reach the 

target, the penalty value is 0. 

  Assume that 𝑀$(&  different paths are required to be 

generated for each drone, the path points on each path are to 

be optimized, and the goal of path planning is to minimize 

the lengths of 𝑀$(&  different paths (denoted in Eq. (8)) 

subjected to the constraints in Eqs. (2), (3), (4), (5) and (7). 

  Note that the energy consumption or the maximum 

endurance is not considered directly in the path planning 

model because before the drone operator has submitted the 

flight request, a preliminary evaluation must be conducted. 

The task with specific start point and destination which is 

beyond the cruising ability of a specific drone will not be 

submitted, and only the drones with enough energy are 

further considered for path planning. The flight request 

contains the basic parameters of drone (size and performance) 

and the information of the task (task type, expected departure 

time, latest arrival time and so on). 

C. Task scheduling model for multiple drones 

  After the flight request has been submitted to the air traffic 

controller, a task priority will be assigned to each drone 

according to the importance of task. For example, the 

emergency such as rescue and fire flighting will be assigned 

a high task priority, and the task priorities of some 

entertainment applications such as aerial photography and 

media broadcast are low. Besides, drones are regulated to fly 

at a constant speed during the flight, and the flight velocity 

can be selected from three values, i.e., 𝑉? , 𝑉@  and 𝑉/ , 

which represent the high-speed mode, middle-speed mode 

and low-speed mode respectively. In real applications, as 

there are various types of drones, the values of 𝑉?, 𝑉@ and 𝑉/ may be different for heterogeneous drones. 

  To determine a flight scheme for drones, the departure 

delay, the flight velocity and the flight path number must be 

provided, and they are also the decision variables in this task 

scheduling problem. With the information, the 4D flight path 

of each drone can be determined with a known requested 

departure time. Assume that the number of drones is 𝑁. , 

and a drone is free of conflict with the arrival time and the 

other drones if the following three constraints are satisfied: 𝑇A'6B + 𝑡A5C(*B + /.
D. ≤ 𝑇('CB                (9) 

|𝑇B(𝑥E, 𝑦E, 𝑧E) − 𝑇F(𝑥E, 𝑦E, 𝑧E)| > ∆𝑡       (10) 

R𝒊𝒇	𝑃B(𝑛#) + 𝑃B(𝑛# + 1) = 𝑃F(𝑛2) + 𝑃F(𝑛2 + 1)𝒕𝒉𝒆𝒏𝑇B(𝑛#) > 𝑇F(𝑛2 + 1)	𝑜𝑟	𝑇F(𝑛2) > 𝑇B(𝑛# + 1)	    (11) 

where 𝑢, 𝑣 ∈ {1,2, … ,𝑁.}. In Eq. (9), 𝑇A'6B  and 𝑡A5C(*B  are 

the requested departure time and the departure delay of drone 

u. 𝐿B  is the length of flight path, and 𝑉B  is the flight 

velocity. 𝑇('CB  denotes the latest acceptable arrival time. If 

the actual arrival time of drone u is later than 𝑇('CB , the 

corresponding flight will be rejected. Eq. (10) means that if 

the same path point (𝑥E, 𝑦E, 𝑧E) is contained both in the 

flight paths of drones u and v, the time interval of passing the 

same point for drone u and v (denoted as 𝑇B(𝑥E, 𝑦E, 𝑧E) and 

𝑇F(𝑥E, 𝑦E, 𝑧E), respectively) must be greater than the safety 

time interval ∆𝑡 to avoid the conflict. However, Eq. (10) is 

not sufficient to ensure the no-conflict flights. Another form 

of conflict (called as the right-angle collision) between 

drones u and v is shown in Fig. 5. 

 
Fig. 5. Right-angle collision between two drones 

  In Fig. 5, 𝑛# and 𝑛2 are the serial numbers of path point 

of drone u and drone v respectively, and 𝑃B(𝑛#)  is the 

corresponding position. 𝑇B(𝑛#)  is the moment that the 

drone u passes 𝑃B(𝑛#). Although drones u and v are both 

safe at the two positions, they will collide with each other 

during the travel between 𝑃B(𝑛#)  and 𝑃B(𝑛# + 1)  (or 𝑃F(𝑛2)  and 𝑃F(𝑛2 + 1) ). The mathematical form of 

checking this conflict is given in Eq. (11). 

  To sum up, the constraints from Eq. (9) to Eq. (11) 

describe the possible conflicts in task scheduling from two 

aspects. Eq. (9) presents the constraint for a single drone, and 

the conflicts between two drones are shown in Eqs. (10) and 

(11). Actually, the constraint that the distance between two 

drones cannot be too small at a specific moment is converted 

to an equivalent constraint that the time interval of passing 

the same point must be greater than a certain value, as 

expressed in Eqs. (10) and (11). The reason can be explained 

as follows. In the ‘AirMatrix’, it is not so convenient to 

calculate the position of drone at a specific moment as the 

drone is not located at the vertex of cube most of the time. 

With the above operation, the process of conflict detection 

becomes much concise. 

D. Evaluation index for the task scheduling model 

  To maximize the airspace utilization, the number of 

permitted drone operations in certain airspace should be as 

many as possible under the precondition of safety. Therefore, 

the number of permitted flights is regarded as the fitness 

function to estimate the flight scheme, as expressed by 

𝐽;G=# = 𝑚𝑎𝑥	{∑ 𝑎H1/H<# }             (12) 

where 𝐽;G=#  denotes the maximum number of permitted 

flights. 𝐴 = [𝑎H]#×1/ is an array to record the information 

on flight permission of drones. 𝑎H = 1  if drone w is 

permitted to fly, otherwise 𝑎H = 0. However, as the number 

of flights is an integer, it is possible that there are equal 

number of permitted flights in two flight schemes. In this 

case, the total departure delay of all the flights is regarded as 

the second layer of fitness function because the operators 

always prefer to minimize the departure delay as given by 

𝐽;G=2 = min	{∑ 𝑎H𝑡A5C(*H1/H<# }          (13) 

where 𝐽;G=2  denotes the minimum total departure delay of all 

the flights. In a few cases, when the total departure delays of 

two flight schemes are the same, the preference on the flight 
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path should be considered. For each drone, the operator 

always prefers to select a shorter flight path, and the flight 

path with shorter length will be assigned a smaller number. 

Therefore, the sum of operators’ flight path number is set as 

the third layer of fitness function as given by 

𝐽;G=J = min	{∑ 𝑎H𝑚H1/H<# }           (14) 

where 𝐽;G=J  denotes the minimum sum of operators’ flight 

path number, and 𝑚H is the flight path number of drone w. 

  To sum up, the decision variables of the task scheduling 

problem are the departure delay (𝑡A5C(*B ), the flight velocity 

(𝑉B) and the flight path number of each drone, and the goal 

is to maximize or minimize the three-layer fitness function 

in Eqs. (12)-(14). Eqs. (9)-(11) are the constraints must be 

met in this task scheduling problem. 

IV. MULTI-PATH PLANNING BY CLUSTERING 

IMPROVED ANT COLONY OPTIMIZATION 

ALGORITHM 

As there are multiple alternative flight paths for each 

drone, a multi-path planning algorithm is required. Some 

algorithms, such as pseudo-spectral method [33], tabu search 

algorithm [34] and simulated annealing algorithm [35], 

which begin with only one initial solution fail to satisfy the 

demand [36]. Besides, the final optimal solution is sensitive 

to the initial solution, which increase the difficulty of getting 

the optimal solution.  

Although A* algorithm can be applied to solve the discrete 

path planning problem and can generate the optimal path, 

only one solution can be obtained, which fails to satisfy the 

requirement of multi-path planning. Swarm-based 

optimization algorithms are suitable for solving the multi-

path planning problem. A certain number of initial solutions 

are employed in those algorithms, and those solutions are 

updated according to the specific formulas in every iteration. 

After the maximum number of iterations is reached, the 

solutions whose number equals to that of the initial solutions 

are outputted. In this way, multiple optimal solutions are 

obtained, but the diversity of those optimal solutions cannot 

be guaranteed. 

Among many swarm-based algorithms, the original form 

of GA and ACO algorithm both can be used to solve the 

discrete optimization problems. However, in GA, the on-off 

state of every possible position of drone in ‘AirMatrix’ must 

be recorded when coding, which makes the number of 

optimization variables great and is inefficient for computing 

in the optimization process. Based on the above 

consideration, ACO algorithm is more suitable for this multi-

path planning problem, and the discrete path points 

distributed in ‘AirMatrix’ are to be optimized, which has 

fewer number of optimization variables compared to GA. 

According to the characteristic of the established multi-path 

planning model, a crowding mechanism is adopted to put the 

solutions into different sub-swarms, and they update 

themselves in different directions to make the final optimal 

solutions diverse. Then, the clustering algorithm is 

integrated into ACO algorithm, and some improvements and 

adjustments in the original ACO algorithm are made to 

enhance its performance in different phases of iterations. 

A. Clustering algorithm in ACO based on the crowding 

mechanism 

First, the cluster center is determined, and good initial 

cluster centers can both accelerate the convergence rate of 

algorithm and avoid the solution being trapped into local 

optimum. An intuitive idea is to select the cluster centers 

among several best initial solutions that are different with 

each other, and other initial solutions can be put into the 

corresponding cluster according to their distance to the 

cluster center. Note that there is only one center in each 

cluster, and one initial solution only belongs to a specific 

cluster. Assume that the number of initial solutions is 𝑁K, 

the procedures of the clustering algorithm is shown in Fig. 6. 

 
Fig. 6. Procedures of the clustering algorithm 

In Fig. 6, o and p are the serial numbers of the initial 

solution, and c is the serial number of the cluster. The 

crowding mechanism is used to generate the initial cluster 

centers in Fig. 6. First, the fitness values (the length of flight 

path plus the penalty item) of initial solutions are evaluated 

by Eq. (8), and the initial solutions are sorted in an ascending 

order according to their fitness values. The first solution is 

regarded as the center of the first cluster, and the distance 

between the first and the second solution is calculated using 

Eq. (6). If the distance is smaller than 𝐷>, the two solutions 

are thought to be close, and the second solution will join the 

cluster lead by the first solution. The same operations will go 

on between the first solution and other solution, and the 

solutions belonging to the first cluster is determined in this 

way. The second solution will then be picked out, and a new 

cluster will be generated if it does not belong to the first 

cluster, i.e., the constraint in Eq. (7) is satisfied. With the 
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same manner, a certain number of clusters can be produced.  

The clusters have the following characteristic: Although a 

solution may be close to more than one cluster center, it only 

belongs to the cluster whose center is with smaller fitness 

value. Besides, the number of clusters is not decided in 

advance, and it is determined by the fitness values of 

solutions. Compared to the fixed number of clusters, the self-

adaptive number of clusters can make each cluster 

distinctive from others. At last, the solutions which rank in 

the first few places are different and can be the cluster 

centers. This is beneficial for getting better solutions in the 

later iterative process as there is at least one good solution in 

each cluster. 

B. Improved ACO for multi-path planning 

As the whole swarm has been divided into a certain 

number of clusters, the strategies of updating solutions in 

each cluster will be developed based on ACO algorithm [36]. 

Although the ACO algorithm has been applied in many 

optimization problems in industry, it still suffers from the 

disadvantages of falling into local optimal solution easily 

and slower convergence rate. Under the framework of ACO 

algorithm, some improvements are introduced to remedy the 

above drawbacks. These improvements will be highlighted 

when describing the steps of ACO algorithm in solving the 

multi-path planning problem. 

B1. Initialization 

The solution in this problem is a combination of path 

points from the start point to the destination. Take the start 

point as an example, the next path point can be selected from 

26 optional points shown in Fig. 3. Then each of them will 

be checked if the constraints in Eqs. (2)-(4) can be met, and 

the next path point is randomly generated from the optional 

points satisfying the constraints. The above process will be 

terminated if the destination is reached or the number of path 

points has been equal to 𝑁456$!7 . Eq. (8) is called to 

calculate the fitness values of solutions. 

Other parameters, such as the number of ants 𝑁K , the 

maximum times of iterations 𝐼$(& , effective factor of 

pheromone 𝛼 , effectiveness of heuristic factor 𝛽 , the 

pheromone matrix 𝜏 , the pheromone constant Q and the 

evaporation of pheromone 𝜌, are also needed initializing. 

Note that the size of the pheromone matrix 𝜏 is as the same 

as the search space to record the influence of the traveled 

paths. Assume that the number of clusters is 𝑁L, each cluster 

should have one independent pheromone matrix to follow by. 

In the original ACO algorithm, the values of Q and 𝜌 are 

kept unchanged during the iterations, which fails to adjust 

the local or global search ability adaptively. A smaller value 

of 𝜌  will increase the possibility of searching previous 

solutions repeatedly. While a larger value of 𝜌 will enhance 

the global search ability at the cost of slowing down the 

convergence rate. A good algorithm should have both a 

strong global search ability in the early stage of iteration and 

a powerful local search ability in the later stages. The 

following form of 𝜌 is adopted: 𝜌(𝑔) = 𝜌M𝑏N'#,					𝑔 = 1,2, … , 𝐼$(&       (15) 

where 𝜌M is the base evaporation of pheromone, and b is the 

decay factor. In Eq. (15), 𝜌 decreases exponentially to keep 

the exploration ability in the early iterations and enhances 

the exploitation ability later. The value of Q also has an 

influence on the search ability of ACO algorithm. At the 

beginning of exploration, the search space should be 

expanded to increase the probability of finding better 

solutions. Q must be set a relatively small value to avoid a 

local optimal solution. As the space has been basically 

explored with the increasing iteration times, there is no need 

for a large-scale exploration, and a local search is needed to 

further improve the solution quality. Q needs to be set to a 

large value in this stage. The value of Q varies according to 

the following rule: 𝑄(𝑔) = 𝑄M + 𝑙𝑛(𝑔)𝑐,				𝑔 = 1,2, … , 𝐼$(&     (16) 

where 𝑄M  is the base pheromone constant, and c is the 

growth factor. 

B2. Selection of path points 

According to ACO algorithm, the selected probability of 

optional path points can be obtained as follows: 

𝑝O = [Q0(N)]1∙(V0)2
∑ [Q-(N)]1∙(V-)2-∈4,+$4%"5

, 𝑔 = 1,2, … , 𝐼$(&    (17) 

𝜂O = p #
X(&0'&+"6)7"(*0'*+"6)7"(,0',+"6)7

, 𝑓 ≠ 𝑡𝑎𝑟
1																																										, 𝑓 = 𝑡𝑎𝑟  (18) 

where 𝑝O is the probability that the path point f is selected, 

and 𝜏O(𝑔)  is the pheromone of path point f in the gth 

iteration. 𝜂O is the heuristic information of path point f that 

can be obtained by Eq. (18). optional is the set of optional 

path points, and (𝑥O , 𝑦O , 𝑧O) and (𝑥7(6 , 𝑦7(6 , 𝑧7(6) are the 

positions of path point f and the target, respectively. Equation 

(17) enables the optional path points closer to the target 

selected with higher probability. 

Selecting the path point by probability can avoid the 

solution being trapped into local optimum to some extent, 

but it also slows down the convergence rate. To deal with the 

above situation, a random number 𝑟𝑎𝑛𝑑 ∈ (0,1)  is 

introduced. When rand is greater than a certain value, the 

path point is selected by probability according to Eq. (17). 

Otherwise, the path point with the highest probability is 

selected, which makes the drone fly toward the target and 

accelerates the convergence rate. On the other hand, the path 

point is also selected by probability when rand is smaller 

than a certain value, and the solution can avoid being trapped 

into local optimum. Note that, when the ant has reached the 

destination, or the number of path points equals to 𝑁456$!7, 
the process of selecting the path points is ended. 

B3. Update of the pheromone 

After all the ants have finished their travels in one 

iteration, numerous flight paths are generated. These flight 

paths must be evaluated by calculating their fitness values, 

and the better flight path can extract more pheromone on the 

path point it passed by. The strategy of updating the 

pheromone in ACO algorithm is governed by the following 

equations: 



 

 

∆𝜏( = :(N)
Y,"+-(() , 𝑎 = 1,2, … ,𝑁K           (19) 

𝜏O(𝑔 + 1) = r1 − 𝜌(𝑔)s𝜏O(𝑔) + ∆𝜏(, 𝑓 ∈ 𝛤(    (20) 

where 𝐽4(7=(𝑎) is the fitness value corresponding to the 

flight path of ant a, and ∆𝜏( is the pheromone increment 

produced by ant a. In Eq. (20), 𝛤( is the combination of path 

points traveled by ant a in the gth iteration, and 𝜏O(𝑔 + 1) 
is the updated pheromone. The pheromone matrix is used to 

connect the solutions in different iterations. A good strategy 

of updating pheromone matrix is beneficial to the fast 

convergence of ACO algorithm. In this paper, to further 

strengthen the influence of excellent solutions, only the 

pheromone corresponding to the best solution in the current 

iteration is added to the pheromone matrix. 

Besides, the pheromone may be accumulated at some path 

points after many times of update using Eqs. (19) and (20), 

which will lead to local optimum. The most direct way of 

preventing pheromone accumulation is to set its minimum 

and maximum value, as expressed by 𝜏O(𝑔) = max	(𝜏$!%, 𝑚𝑖𝑛	(𝜏O(𝑔), 𝜏$(&))     (21) 

where 𝜏$!%  and 𝜏$(&  are the lower and upper values of 

pheromone, respectively. Eq. (21) can be executed after the 

pheromone is updated by Eq. (20). 

C. The flow of the clustering improved ACO multi-path 

planning algorithm 

The clustering algorithm and the improved ACO (IACO) 

algorithm are depicted in detail in Sections III.A and III.B. 

In one iteration, these two parts are integrated together to 

form a complete loop. The flow of the clustering IACO 

(CIACO) multi-path planning algorithm is shown in Fig. 7. 

 
Fig. 7. Flow of the CIACO algorithm for multi-path planning (Nc: Number 

of clusters) 

where g is the current times of iteration, and c is the serial 

number of the cluster. In Fig. 7, each cluster should have one 

independent pheromone matrix to follow. By comparing to 

the standard ACO algorithm, a number of flight paths is 

required to be included into clusters in the initialization 

before the iteration process begins. The crowding 

mechanism shown in Fig. 7 is different from that in the 

continuous multi-path planning problem, and only one time 

of clustering process is needed in CIACO algorithm. 

Compared to many other swarm-based algorithms, the 

excellent solutions in the iterative process are not reserved 

directly according to the principle of ACO algorithm, and the 

information of the excellent solutions are passed on utilizing 

the pheromone matrix. In view of the above characteristic, 

many crowding mechanisms in the continuous algorithms 

cannot be used in ACO algorithm directly, or the frequent 

actions of clustering and information sharing will make the 

algorithm divergent. 

After the maximum iteration time is reached, the best 

flight path in each cluster will be picked out to make the 

alternative flight paths of a drone. If the number of clusters 

is smaller than the required number of alternative flight paths, 

i.e., 𝑁L < 𝑀$(& , the missing (𝑀$(&−𝑁L)  alternative 

flight paths are supplemented by the 𝑁L th paths. On the 

contrary, if 𝑁L > 𝑀$(& , the best 𝑀$(&  paths will be 

selected. In this way, multiple paths with difference are 

generated, and they are the best paths in each cluster and are 

regarded as the alternative flight paths for the task 

scheduling of drones. 

V. TASK SCHEDULING BASED ON GENETIC 

ALGORITHM 

After multiple flight paths are generated for each drone, 

the task scheduling algorithm will work. Assume that the 

delay of departure time is an integral number of seconds, the 

decision variable in the task scheduling problem, i.e., the 

delays of departure time, the flight velocities of drones and 

the serial numbers of flight paths, are all discrete variables. 

As it is a problem with large scale and complicated 

constraints, evolution-based algorithms can find satisfactory 

schedules in a short computation time. GA is the most 

popular evolution algorithm and can be applied both in 

continuous and discrete cases, which is suitable for solving 

this task scheduling problem. Since the GA is proposed in 

1975 [37], many new operators, such as insert [38, 39], 

perturb [40], delete [40] and swap [40], have been developed 

and added to original GA to increase the probability of obtain 

better solutions. In this paper, instead of following the new 

operators, some adjustments to the original operators, i.e., 

selection, crossover and mutation are made based on the 

characteristic of the task scheduling model. The key step in 

GA is to calculate the fitness value of each solution. In this 

paper, the ‘distributed-centralized’ framework is applied, i.e., 

the drones with different priorities are dealt with separately 

and the drones with the same priority are considered together. 

In the ‘centralized’ process, a ‘cross-off’ strategy is designed 

to determine the value of the three-level fitness function for 

the drones with the same priority. The total value of the 

three-level fitness function for all the drones is obtained by 

combining the results in each priority comprehensively. 
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A. Approach to calculate the fitness values 

According to the established task scheduling model, after 

the delay of departure time, flight velocity and flight path 

number of each drone is given, the 4D flight paths of drones 

are determined. However, the maximum number of 

permitted flights still needs to be judged. A ‘cross-off’ 

strategy is developed to calculate the fitness value, and an 

example is given, as shown in Fig. 8. 

 
Fig. 8. A table to show the conflict among the drones 

The conflict exists between two drones when one or more 

constraints in Eqs. (9), (10) and (11) are not satisfied, and the 

row number and column number corresponding to the two 

drones are marked by ‘Y’. In Fig. 8, the goal is to find the 

maximum number of permitted flights. In other words, the 

number of drones should be reduced as small as possible to 

ensure that there is only ‘N’ left in the table. Assume that the 

number of drones in Fig. 8 is 𝑁G= , the specific steps of 

calculating the fitness value are listed as follows. 

Step 1: Check whether all the drones have conflicts with 

each other and record their numbers. If all drones are safe, 

the process of calculating the fitness values ends, or 𝑁65=1. 

Find out the drones with ‘Y’, and they are the candidates 

to be crossed off. In Fig. 8, all the five drones are the 

candidates to be rejected. 

Step 2: Try to cross off 𝑁65 drones from the candidates 

(try all possible scenarios) and repeat step 2 if there are still 

‘Y’ in the table, 𝑁65 = 𝑁65 + 1. 

If there are scenarios which can wipe out all ‘Y’, stop and 

record all of them. In this case, the maximum number of 

permitted flights are found. In Fig. 8, all ‘Y’ cannot be wiped 

out by only crossing off one drone. 

Step 3: The maximum number of permitted flights are 

found, and 𝑁65 drones are rejected. 

In Fig. 8, all ‘Y’ can be wiped out by rejecting drones No. 

2 and No. 4, and the maximum number of permitted flights 

is 3. 

Another point that must be explained is that even a 

scenario which can wipe out all ‘Y’ is found, the remaining 

possible scenarios that rejecting the same number of drones 

still need to be found out. The reason is that when more than 

one scenario can result in the same maximum number of 

permitted flights, the best scenario should be found by 

comparing their second or even the third layer of fitness 

values (the total departure delays or the sum of operators’ 

flight path number) in Eqs. (13) and (14). The second and 

the third layer of fitness values can be calculated easily as 

the permitted flights has been determined by the ‘cress-off’ 

strategy, and the departure delay, the flight velocity and the 

flight path number of each drone is provided by the GA. 

The above approach to calculate the fitness value is 

carried out among the drones with the same task priority, and 

the drones are scheduled in a centralized way. When 

considering the drones with different task priorities, they are 

scheduled in a distributed way. The group with the highest 

task priority will be arranged first, and the flight information 

of drones will not be changed once it has been permitted 

flying. The group which is arranged later will be checked 

whether the drone has conflicts with the permitted ones, and 

it will be rejected when the conflict is detected. The 

‘distributed-centralized’ scheduling strategy decomposes a 

large-scale optimization problem into smaller ones, and the 

constraints are also decomposed correspondingly, which 

reduces the difficulty of solving the problem. Besides, the 

drone with higher task priority will consider fewer 

constraints when it is being scheduled, which increases the 

probability of acceptance. 

B. Task scheduling based on GA 

In GA, the number of initial solutions is assumed as 𝑁Z. 
Three vectors, i.e., 𝐷#×1/(𝑠) , 𝑉#×1/(𝑠)  and 𝐹#×1/(𝑠) (𝑠 = 1,2, … ,𝑁Z)  are defined to present the decision 

variables, i.e., delayed departure times, velocities and serial 

numbers of flight paths of drones. After the decision 

variables are initialized, the fitness value can be calculated. 

The procedures of solving the task scheduling problem based 

on GA are depicted below: 

1. Selection operator 

The selection operator is introduced to choose a certain 

number of solutions, and those solutions will be brought into 

the following operators. Roulette wheel selection is used in 

the original GA. For a solution, the probability being 

selected equals to the ratio of its fitness value in the sum of 

the fitness values of all solutions. However, it is not suitable 

for this problem as the three-layer fitness function is adopted, 

and the roulette wheel selection can only reflect the first 

layer of fitness value of a solution. Here the stochastic 

tournament strategy is adopted. Two different solutions 

make up a pair, and the better one in each pair is chosen to 

go to the next step. Therefore, 
18
2  solutions are selected. 

Compared to the roulette wheel selection, the qualities of 

two solutions can be easily judged in the stochastic 

tournament, which makes the selection process more 

straightforward and effective. 

2. Crossover operator 

A pool is defined to hold the selected 
18
2  solutions, and 

the best and the worst solution in the current pool are picked 

out to execute the crossover operation. As the information of 

every drone should be involved in the crossover process, 

uniform crossover is adopted between two solutions, i.e., 

each corresponding element of the two solutions will be 

exchanged with the same probability 𝑝G . Then two new 

solutions are generated after updating the information of 

every drone. Comparisons are made among two original 

solutions and two new solutions, and the two with better 

fitness values will be remained. 

3. Mutation operator 
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As there are only several allowed values for the decision 

variables V and F, the effect of mutation operator will not be 

so obvious to the two decision variables. Therefore, the 

mutation operator is imposed on the decision variable D only. 

The delay departure time of each drone fluctuates in a small 

range with the probability 𝑝$. After the mutation operation, 

the better solution between the original and updated ones 

will be remained. 

After executing the above three operators, one iteration 

ends, and the fitness values of the updated solutions will be 

calculated again. 

C. Flow of GA-based task scheduling algorithm 

In every iteration, GA starts by computing the fitness 

value. The three operators are then conducted to update the 

solutions. When the maximum iteration times ( 𝐼$(&[ ) is 

reached, the optimal solution will be obtained. The flow of 

GA-based task scheduling algorithm is shown in Fig. 9. 

Fig. 9. Flow chart of GA-based task scheduling algorithm 

In Fig. 9, the modules in the dotted box are the process of 

calculating the fitness value, where TP is an index from 1 to 

5 denoting the task priority, and 𝑇𝑃$(&=5 in this problem. 

By using the ‘cross off’ strategy, the maximum number of 

no-conflict drones with the same task priority can be found 

in a centralized way, and they make up the permitted flights 

in a solution. 

VI. SIMULATION STUDIES 

To investigate the rationality and superiority of the 

proposed 4D path planning method for drone operations, 

simulations under different path planning algorithms and 

various settings are conducted. In the first group, the 

standard ACO algorithm, IACO algorithm and CIACO 

algorithm are used to generate multiple flight paths for each 

drone, and comparison between the three algorithms are 

made. In the second scenario, the results of task scheduling 

with different number of drones are presented, and the 

relationship between the number of drones and the 

acceptance rate of flights are analyzed. Comparison between 

the ‘cross-off’ strategy and other relevant approaches in 

calculating the fitness value is also made. At last, to explore 

the way to further enhance the acceptance rate of flights, the 

influence of different number of alternative flight paths on 

the fitness value are discussed. 

There are 300 buildings randomly distributed in 

‘AirMatrix’. The ranges of ‘AirMatrix’ along OX, OY and 

OZ axes are [0, 1800] m, [0, 1800] m, and [0, 90] m 

respectively, and the edge length of cube is set as 30 m. The 

optional flight velocities for drones are 𝑉? = 15	m/s , 𝑉@ = 10	m/s and 𝑉/ = 5	m/s. Each flight path is divided 

into ten pieces, i.e., 𝑁4(7= = 10, and the threshold to judge 

whether the two flight paths are different is set to 𝐷> =4000	m considering the range of ‘AirMatrix’. The values of 𝑁4(7= and 𝐷> are determined by trial and error to ensure 

that the initial solutions can be put into the clusters which are 

significantly different, thus making the clusters search the 

path from different directions. Smaller values of 𝑁4(7= and 𝐷>  will make the difference among the clusters not so 

obvious. Although the number of clusters is greater, the 

search directions of sub-swarms show a smaller gap, which 

is bad for generating different paths. On the contrary, there 

will be fewer clusters if 𝑁4(7=  and 𝐷>  are set to greater 

values, which may lead to insufficient number of different 

paths. The safety time interval ∆𝑡 between two drones is set 

as 5s. All the results are obtained by running the programs 

on a desktop with Intel Core i7-3370 3.40 GHz. Note that, as 

the drone can take-off and land vertically and the path of the 

two processes are relatively fixed and cannot be further 

optimized, they are not considered in the multi-path planning 

problem. In other words, the start point and the destination 

of drone can be in the air in the simulations. 

A. Results of multi-path planning using different forms of 

ACO algorithms 

Three different forms of ACO algorithms are used to 

calculate the flight paths, and comparisons are made to 

demonstrate the superiority of the proposed CIACO 

algorithm. The parameters settings in ACO algorithms are 

listed in TABLE I. 
TABLE I. SETTING OF PARAMETERS IN ACO ALGORITHMS 

Item 𝑁0 𝐼1'2 𝛼 𝛽 c 
Value 500 200 0.5 1 10 
Item 𝜌3 b 𝜏1*! 𝜏1'2  

Value 0.7 0.95 0 15  

Take the start point (750, 810, 60) and destination (1770, 

1710, 90) as an example, the pheromone constant Q0 is set as 

Q0 = (1770-750) + (1710-810) + (90-60), which is the sum 

of position differences between the start and end point along 

OX, OY and OZ axes, respectively. All the elements in 

pheromone matrix 𝜏  are initialized as 1. With the above 

settings, the variations of fitness values in ACO, IACO and 

CIACO algorithms are shown in Fig. 10. 
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Fig. 10. Convergence curves of three algorithms 

The IACO algorithm indicates that all the improvements 

mentioned in Section III.B are made on the original ACO 

algorithm. The fitness value of CIACO in each iteration 

corresponds to the best solution considering all the sub-

swarms. The following results can be got from Fig. 10.              

(a) After 200 iterations, ACO algorithm is still oscillating, 

and the fitness values are greater than the other two 

algorithms.  

(b) IACO and CIACO algorithms both converge quickly, 

and CIACO algorithm even converges after 20 iterations. 

The final fitness values of IACO and CIACO algorithms are 

1739.2 and 1402.3, respectively. 

From the above convergence curves, ACO algorithm 

shows the slowest convergence rate. With the modifications 

in Section III.B, both the solution quality and the 

convergence rate are enhanced in IACO algorithm, which 

demonstrate the effectiveness of the proposed improvements. 

In addition, the solution quality can be improved by using 

CIACO algorithm because each cluster evolves 

independently towards different directions, which increases 

the probability of obtaining better solutions. The best four 

flights generated by IACO and CIACO algorithms are 

presented in Fig. 11 to Fig. 13. 

 
Fig. 11. Flight paths generated by IACO algorithm (3D view, and the 

buildings are presented by cuboids) 

 

Fig. 12. Best Flight paths obtained by CIACO algorithm (3D view, and 
the buildings are presented by cuboids) 

 
Fig. 13. Flight paths obtained by CIACO algorithm (top view of Fig. 12) 

In Fig. 11, the flight paths are totally coincident, which 

fails to satisfy the requirements of generating multiple 

different flight paths. For the IACO algorithm without the 

clustering mechanism, the solutions are likely to be identical 

after many times of iterations. In CIACO algorithm, the 

solutions are initially updated in different directions, and it 

is with low probability that the best solutions in each cluster 

are all identical. In Fig. 12 and Fig. 13, there are still some 

flight path segments overlapped. This is because under the 

same fitness function, some flight path segments are 

regarded as optimal ones by many clusters. To show more 

results of CIACO algorithm, the fitness values of each 

cluster in CIACO algorithm are presented in Fig. 14. 

 
Fig. 14. Convergence curves of clusters in CIACO algorithm 

The solutions fall into 7 clusters in this example, and the 

number in the bracket denotes the number of solutions in the 

corresponding cluster. In Fig. 14, the convergence curves of 

cluster No. 6 and No. 7 are oscillating as there are only two 

individuals in each cluster. The fitness values of the first five 

clusters are convergent with different rates, and their final 



 

 

fitness values are all 1402.3 but corresponding to different 

flight paths, as shown in Fig. 13. 

The results demonstrate that the proposed CIACO 

algorithm is validated for generating multiple alternative 

flight paths for each drone, and the length of flight path can 

also be shortened by improving the standard ACO algorithm. 

Those 3D flight paths for drones can be the initial inputs for 

the further task scheduling process. 

B. Task scheduling with different number of drones: 

comparison and discussion 

In this section, each drone will be allocated three 

alternative flight paths for the task scheduling algorithm. 

Other inputs contain the requested departure times of drones, 

which are set to random integers between 0 s and 300 s, the 

latest arrival times of drones and the task priorities of drones. 

In GA, the number of chromosomes is set to 𝑁Z = 300, and 

the probabilities of executing the crossover and mutation 

operators are 𝑝G = 0.2  and 𝑝$ = 0.1,  respectively. GA 

runs for 200 iteration times, i.e.,	𝐼$(&[ = 200, and the best 

solution will be outputted as the optimal flight scheme. The 

convergence of the GA-based task scheduling algorithm is 

discussed first. Different number of drones are set to make a 

comparison. Note that the simulations are conducted with an 

increasing number of drones, and some common data are 

used. For example, when the number of drones is 100, the 

initial settings of the first half are the same with those when 

the number is 50. In this way, the comparison can be more 

reliable, and the influence of random operator information 

can be reduced. As the fitness function of task scheduling has 

three layers, the convergence curves of each layer are shown 

in Fig. 15 to Fig. 17. 

 
Fig. 15. Convergence curve of permitted flights 

 

Fig. 16. Convergence curve of average departure delay of drones

 

Fig. 17. Convergence curve of average flight path number of drones 

In Fig. 15, the permitted flights are all convergent in the 

four cases, and the convergence rate is faster with a smaller 

number of drones. When there are 50 drones, it converges 

even in the first iteration. In the second layer of fitness 

function, the convergence rate become slower, and a greater 

number of drones also corresponds to a slower convergence 

rate and a longer average departure delay. When the number 

of drones is 150 or 200, the average departure delay 

increases in individual iterations (for example the 10th 

iteration and the 30th iteration in the above two cases) 

because the accepted number of flights has not been 

convergent in the corresponding iterations in Fig. 15. In Fig. 

17, the third layer of fitness function is not convergent after 

200 times of iteration in all the four cases. In actual situations, 

the goal of task scheduling is to obtain a satisfactory solution 

within limited computation time. In this problem, the 

airspace situation is reflected in the first layer of fitness 

function, which are the most important information in traffic 

management of drones. As for the third layer of fitness 

function, it focuses on the satisfactory degree of operators, 

which has a small influence on the airspace situation. 

Therefore, 200-time iteration is sufficient in this example 

although the third layer of fitness function is still not 

convergent. Next, the complete results of task scheduling 

with different number of drones are presented in TABLE II. 
TABLE II. COMPLETE RESULTS OF TASK SCHEDULING WITH 

DIFFERENT NUMBER OF DRONES 

Numbe
r of 

drones 

Accepted 
number (rate 

of flights) 

Average 
departure 

delay 
(sec) 

Averag
e path 

number 

Averag
e 

velocit
y (m/s) 

Compu
ting 
time 
(min) 

20 20 (100%) 0 1.3 10.3 0.1 
30 30 (100%) 0 1.7 10.2 0.3 
40 40 (100%) 0 1.6 10.3 0.6 
50 50 (100%) 0.44 1.9 9.9 1.1 
60 60 (100%) 2.1 1.9 10 2.0 
70 69 (98.6%) 5.1 1.9 9.3 3.1 
80 79 (98.8%) 4.8 1.8 10 4.4 
90 89 (98.9%) 9.9 1.9 10.5 5.9 

100 96 (96%) 15.0 1.9 10.5 7.7 
110 106 (96.4%) 23.2 1.9 9.9 9.9 
120 115 (95.8%) 22.3 2.0 10.4 12.5 
130 125 (96.2%) 29.9 1.9 10.4 15.2 
140 135 (96.4%) 27.1 1.9 10.2 18.0 
150 143 (95.3%) 30.7 2.0 9.9 21.1 
160 151 (94.4%) 34.7 2.0 10.1 24.4 
170 161 (94.7%) 44.7 2.0 10.5 27.9 
180 169 (93.9%) 58.5 1.8 10.4 31.6 
190 177 (93.2%) 54.8 1.9 10.2 35.5 
200 185 (92.5%) 57.3 1.9 10.0 40.1 



 

 

 

In general, with a greater number of drones, the accepted 

rate of flights decreases, and the average departure delay of 

drones increases. The average flight path number fluctuates, 

and its mean value is about 2, which implies that the second 

flight path is selected with higher probability. Note that the 

accepted rate of flight and the average departure delay 

sometimes show abnormal changes, such as when the 

number of drones is 80 and 130. This is because with random 

flight information, the flight paths of new drones may have 

no conflict with the ahead ones, which makes the accepted 

rate of flight increase and the average departure delay 

decrease. Besides, the average flight velocities of drones are 

about 10 m/s regardless of the number of drones. Moreover, 

the computing time shows a rapid growth with the increasing 

number of drones. This is because the number of decision 

variables is larger when there are more drones, and it will 

take GA more time to operate on these decision variables. 

Moreover, the computation load of the ‘cross-off’ strategy 

also increases rapidly when calculating the fitness value as 

each pair of drones must be checked to determine whether 

they have a conflict with each other. The proposed GA-based 

task scheduling algorithm is applied in offline computing, 

and the computing time can be further reduced by the 

workstation with high configuration. 

C. Comparison between the ‘cross-off’ strategy and three 

other approaches when calculating the fitness value in task 

scheduling 

To further demonstrate the advantage of the proposed 

‘cross-off’ strategy in calculating the fitness value of task 

scheduling, the approach in Ref. [41] is introduced to make 

a comparison first. In Ref. [41], the task priority of drone is 

not considered, and an array is defined to record the serial 

number of drones (called as the sequence of drones for 

convenience) according to the first-come-first-served basis. 

The drones are selected one by one from the second element 

of the array to check the conflict with the ahead drones. If 

there is a conflict, only the selected drone will be rejected. 

In this way, the accepted number of drones can be calculated, 

and the second or even the third layer of fitness values (the 

total departure delays or the sum of operators’ flight path 

number) can be determined. To sum up, the proposed ‘cross-

off’ strategy is centralized, and the strategy in Ref. [41] is 

distributed. It is evident that the drone placed in the front of 

the array will have a lower probability to be rejected. In this 

study, when determining the sequence of drones with the 

same task priority, the drone with shorter flight time will be 

arranged in the front position of the array, and the reason is 

explained as follows. The drone with shorter flight time 

takes fewer resources of the low-altitude airspace and can 

free up more airspace for other drones, and they should have 

a higher probability to be accepted and be placed in the front 

position of the array. Based on the above considerations, the 

results of task scheduling for 200 drones under the 

framework of GA with centralized and distributed strategies 

of calculating the fitness value are shown in TABLE III. 
TABLE III. COMPARIS BETWEEN THE CENTRALIZED AND 
DUSTRIBUTED STRATEGT IN CALCULATING THE FITNESS 

VALUE (200 DRONES) 

Strategy Accepted 
number 

of flights 

Average 
departure 

delay 
(sec) 

Averag
e path 

number 

Averag
e 

velocit
y (m/s) 

Compu
ting 
time 
(min) 

Cross-off 185 57.3 1.9 10.0 40.1 
Distributed 185 64.5 2.0 10.5 35.5 

 

In TABLE III, with the distributed strategy, it takes fewer 

time to obtain the result (reduced by 11.5%). It is reasonable 

that the times of checking the conflict between two drones 

are less when calculating the fitness value by the distributed 

strategy. The drone which has been rejected will not be 

checked with the drone being placed behind it in the 

sequence of drones, thus reducing the computing time. With 

the centralized strategy, the average departure delay of 

drones is reduced, and the average flight path number is also 

smaller than that in the distributed strategy, which makes the 

drones fly with a lower velocity. The reasons can be 

explained as follows. Although both the ‘cross-off’ strategy 

and the distributed strategy can check the conflicts among 

drones and calculate the maximum number of accepted 

flights, there are usually more than one combination of 

drones corresponding to the maximum number of accepted 

flights. In the distributed strategy, there is no mechanism to 

record all the possible combinations of drones, and only one 

combination is recorded according to the sequence of drones. 

The combination of drones recorded in the distributed 

strategy may not result in the minimum departure delay of 

drones. In the ‘cross-off’ strategy, all the possible 

combinations of drones are recorded and are further checked 

to determine the minimum departure delay of drones, which 

can ensure that the best combination of drones cannot be 

missed. In the offline task scheduling, the computing time of 

algorithm is not the main concern, and the gap of computing 

time between the two strategies is not too much as the 

number of rejected flights is small. The above results and 

analysis demonstrate that the proposed ‘cross-off’ strategy is 

superior to the distributed strategy in calculating the fitness 

value for the task scheduling problem. 

Besides, as mentioned above, the proposed ‘cross-off’ 

strategy is centralized, and there are also other centralized 

approaches which can calculate the fitness value of this task 

scheduling problem, such as the simulated annealing (SA) 

algorithm and estimation of distribution algorithm (EDA) 

belonging to the meta-heuristic algorithms. To make a 

comparison, the results of ‘cross-off’ (CO) strategy, SA 

algorithm and EDA under different number of drones are 

shown in TABLE IV. Note that, GA is not used as the outer 

loop to obtain the results in this comparison, i.e., the 

departure delay, the flight velocity and the flight path 

number of each drone is fixed, and the reason will be 

explained when analyzing the results. 
TABLE IV. COMPARIS AMONG THE ‘CROSS-OFF’ STRATEGY, SA 
ALGORITHM AND EDA IN CALCULATING THE FITNESS VALUE 

Number 
of drones 

Algorithm Maximum 
number of 

drones without 
conflicts 

Average 
departure 

delay 
(sec) 

Comput
ing time 

(sec) 

 CO 25 0 0.011 



 

 

25 SA 25 0 38.7 
EDA 25 0 40.7 

 
50 

CO 50 0.74 0.016 
SA 50 0.74 38.9 

EDA 50 0.74 41.2 
 

75 
CO 74 7.6 5.8 
SA 74 9.2 38.1 

EDA 74 8.6 40.5 
 

100 
CO 95 13.7 69.6 
SA 94 14.1 38.5 

EDA 94 12.9 40.8 

 

With the increasing number of drones, the percentage of 

drones without conflicts is reduced, and the average 

departure delay get greater in all the three approaches. 

Compared to the ‘cross-off’ strategy, the results of SA 

algorithm and EDA are worse, and the gap grows with the 

increasing number of drones. As for the computing time, it 

increases greatly when the number of drones is greater in the 

‘cross-off’ strategy, and the computing time for SA 

algorithm and EDA roughly keeps the same. 

The reasons for the above results can be explained as 

follows. The ‘cross-off’ strategy is an enumeration method 

with some search skills in essence, so the optimal solution 

can be guaranteed. SA algorithm and EDA algorithm are 

heuristic algorithms, and the optimal solution cannot be 

always obtained. The computing time increases greatly in the 

‘cross-off’ strategy because the times of enumerations get 

larger when there are more drones. However, the computing 

time fluctuates in a small range in SA algorithm and EDA as 

the scale of the problem does not change much. In general, 

in the task scheduling problem, the number of drones which 

have conflicts with others is usually small, and the ‘cross-off’ 

strategy is more effective and suitable for the offline 

scheduling after a comprehensive consideration of solution 

quality and computing time. 

Furthermore, calculating the fitness value by the ‘cross-

off’ strategy is only a part of work in solving the task 

scheduling problem. As the task scheduling is already an 

optimization problem which is solved by the GA-based 

algorithm, it will become a two-level optimization problem 

if the fitness value is calculated by SA algorithm or EDA in 

the inner loop. The above operations will make the problem 

complicated and reduce the computation efficiency, which is 

unnecessary especially when the ‘cross-off’ strategy can 

obtain the optimal solution without spending too much 

computing time. This is also the reason why the GA is not 

used in this comparison. 

D. Results with different number of alternative flight paths 

and discussions 

To further explain the rationality of submitting multiple 

alternative flight paths, simulations with different numbers 

of alternative flight paths for each drone are carried out. Take 

200 drones as an example, drones with different number of 

alternative flight paths are considered respectively, as shown 

in TABLE V. 
TABLE V. RESULTS OF TASK SCHEDULING WITH DIFFERENT 

NUMBER OF ALTERNATIVE FLIGHT PATHS (200 DRONES) 
 

Numbe
r of 

flight 
paths 

Accepted 
number/ rate 

of flights 

Average 
departure 

delay 
(sec) 

Averag
e path 

number 

Averag
e 

velocit
y (m/s) 

Compu
ting 
time 
(min) 

1 181 (90.5%) 57.0 1 10.1 39.1 
2 185 (92.5%) 72.2 1.5 10.4 39.5 

3 185 (92.5%) 57.3 1.9 10.0 40.1 

4 184 (92%) 57.7 2.3 10.2 40.9 

5 184 (92%) 64.2 2.6 10.6 41.8 

 

In TABLE V, with the increasing number of alternative 

flight paths, the computing time does not increase so much 

as the number of decision variables is not changed, and only 

the optional values of the flight path number increase in GA. 

The accepted rate of flights is not always improved, which 

is different from the expected results. The best result is 

obtained when there are three alternative flight paths. The 

reasons can be tracked after a deep analysis of the rejected 

drones’ data, as presented in TABLE VI. 
TABLE VI. NUMBER AND TASK PRIORITY OF REJECTED 

DRONES 

Number of 
alternative 
flight paths 

Number of drones (the number in the bracket denotes 

the task priority of the corresponding drone) 

1 1(5), 3(4), 38(5), 62(3), 64(5), 75(5), 81(1), 84(5), 88(3), 
98(2), 100(1), 105(4), 111(3), 137(4), 146(1), 160(2), 
174(5), 182(4), 192(4) 

2 3(4), 38(5), 64(5), 81(1), 84(5), 88(3), 98(2), 100(1), 
111(3), 137(4), 146(1), 171(2), 174(5), 182(4), 192(4) 

3 3(4), 33(4), 38(5), 64(5), 81(1), 84(5), 88(3), 91(1), 
98(2), 137(4), 149(3), 171(2), 174(5), 182(4), 192(4) 

4 3(4), 33(4), 38(5), 84(5), 96(3), 98(2), 104(3), 111(3), 
116(3), 146(1), 152(4), 154(1), 171(2), 174(5), 182(4), 
192(4) 

5 3(4), 33(4), 38(5), 64(5), 84(5), 98(2), 104(3),111(3), 
116(3), 152(4), 153(5), 154(1), 160(2), 174(5), 182(4), 
192(4) 

   

With the increasing number of alternative flight paths (for 

example, the number of alternative flight paths increases 

from 3 to 4), the previously rejected drones with higher task 

priority may be accepted, such as drones No. 81 and No. 91. 

While the previously accepted drones with lower task 

priority may be influenced by the above operations and be 

rejected, such as drones No. 96 and No. 152. Therefore, it is 

not always true that a greater number of alternative flight 

paths will result in a better flight scheme when the task 

priority is considered. To further explore the relationship 

between the rejected drones and their task priorities, the 

results in TABLE VI are further concluded in TABLE VII. 
TABLE VII. NUMBER OF REJECTED DRONES CATEGORIZED BY 

DIFFERENT TASK PRIORITIES 

The number of 
rejected drones 

Task priority 

1 2 3 4 5 

 
Number of 
alternative 
flight paths 

1 3 2 3 5 6 

2 3 2 2 4 4 

3 2 2 2 5 4 

4 2 2 4 5 3 

5 1 2 3 5 5 

   

In general, with the increasing number of alternative flight 



 

 

paths, the drones with higher task priorities (1 and 2) are less 

likely to be rejected. In other words, when the number of 

alternative flight paths is greater, the main beneficiaries are 

the drones with higher task priorities but there is an influence 

on the drones with lower task priorities. When the accepted 

number of flights with high task priority is smaller than the 

rejected number of flights with low task priority, the strategy 

of increasing the number of alternative flight paths makes no 

sense. Another way to further improve the accepted 

number/rate of flights is to set different numbers of 

alternative flight paths for drones with different task 

priorities. 

VII. CONCLUSION 

The 4D path planning problem for drone operations in 

urban environments is studied in this paper to ensure the 

airspace safety and improve the airspace operation efficiency. 

Literature investigation shows that the coordinated path 

planning problems for UAVs are solved from the operators’ 

standpoint, which lacks a global consideration of airspace 

situation. The viewpoint from air traffic controller is 

introduced to coordinate the drones and determine their 

flight scheme. 

First, the concept of ‘AirMatrix’ is used to describe the 

urban environments and flight rules of drones. In the multi-

path planning level, the constraints on a single flight path 

and the difference of two flight paths are considered, and the 

shortest flight path is the fitness function. In the task 

scheduling level, with the known task priority, the departure 

delay, the flight velocity and the flight path number of each 

drone are regarded as the inputs, and the conflicts between 

two flight paths are modeled. A three-layer fitness function 

is established to reflect the solution quality from the 

perspective of airspace situation and operators’ demand. 

To solve the established models, CIACO algorithm is 

proposed to generate multiple flight paths for each drone. In 

this algorithm, the crowding mechanism is applied in the 

clustering process, and the number of clusters is determined 

by the solution quality rather than a specified number. 

Besides, several strategies are developed to improve the 

exploration and exploitation ability of the basic ACO 

algorithm in different phases of iteration. In the task 

scheduling problem, under the ‘distributed-centralized’ 

scheduling strategy, GA-based algorithm is designed to 

obtain the optimal flight scheme, and a ‘cross off’ approach 

is proposed to calculate the complicated three-layer fitness 

value. 

In the simulation studies, the CIACO multi-path planning 

algorithm and the GA-based task scheduling algorithm are 

both validated. The CIACO algorithm is able to generate 

multiple alternative flight paths for each drone, and the 

length of flight path also can be shortened compared to the 

standard ACO algorithm. In GA-based task scheduling 

algorithm, with the increasing number of drones, the 

accepted rate of flight decreases, and the average delay of 

drones rises. The superiority of the proposed ‘cross-off’ 

strategy is verified by comparing with the distributed 

strategy, SA algorithm and EDA. Besides, the flight scheme 

is not always getting better with a greater number of 

alternative flight paths. The results can provide the 

suggestions for the design of airspace capacity and 

operator’s preference. In the future, the path planning 

problem of other forms of air transportation, such as air taxi, 

surveillance and emergency rescue can be modeled, and 

other advanced bioinspired algorithms are expected to 

improve the safety and efficiency of drone operations. 
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