
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Swarm‑based 4D path planning for drone
operations in urban environments
Wu, Yu; Low, Kin Huat; Pang, Bizhao; Tan, Qingyu
2021
Wu, Y., Low, K. H., Pang, B. & Tan, Q. (2021). Swarm‑based 4D path planning for drone
operations in urban environments. IEEE Transactions On Vehicular Technology, 70(8),
7464‑7479. https://dx.doi.org/10.1109/TVT.2021.3093318
https://hdl.handle.net/10356/152550
https://doi.org/10.1109/TVT.2021.3093318

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/TVT.2021.3093318.

Downloaded on 22 Aug 2022 21:31:13 SGT

Swarm-based 4D Path Planning for

Drone Operations in Urban Environments
Yu Wu1, 2*, Kin Huat Low3, Bizhao Pang4, Qingyu Tan2

Abstract—Drones have a wide range of applications in urban

environments as they can both enhance people’s daily activities

and commercial activities through various operations and

deployments. With the increasing number of drones, flight

safety and efficiency become the main concern, and effective

drone operations can make a difference. Accordingly, 4D path

planning for drone operations is the focus of this paper, and the

swarm-based method is proposed to solve this complicated

optimization problem. Under the framework of ‘AirMatrix’,

the problem is solved in two levels, i.e., 3D path planning for a

single drone and conflict resolution among drones. In the multi-

path planning level, multiple alternative flight paths for each

drone are generated to increase the acceptance rate of a flight

request. The constraints on a single flight path and two

different flight paths are considered. The goal is to obtain

several different short flight paths as alternatives. A clustering

improved ant colony optimization (CIACO) algorithm is

employed to solve the multi-path planning problem. The

crowding mechanism is used in clustering, and some

improvements are made to strengthen the global and local

search ability in the early and later phases of iterations. In the

task scheduling level, the conflicts between two drones are

defined in two circumstances. One is for the time interval of

passing the same path point, another one is for the right-angle

collision between two drones. A three-layer fitness function is

proposed to maximize the number of permitted flights

according to the safety requirement, in which the airspace

utilization and the operators’ requests are both considered. A

‘cross-off’ strategy is developed to calculate the fitness value,

and a ‘distributed-centralized’ strategy is applied considering

the task priorities of drones. A genetic algorithm (GA)-based

task scheduling algorithm is also developed according to the

characteristic of the established model. Simulation results

demonstrate that 4D flight path of each drone can be generated

by the proposed swarmed-based algorithms, and safe and

efficient drone operations in a specific airspace can be ensured.

Index Terms — drones; urban environments; 4D path

planning; swarm-based method; multi-path planning; task

scheduling

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) or drones have recently

become more popular in civil and commercial applications

as they can accomplish many tasks which are beyond the

human or ground vehicles’ ability, by taking the advantages

of drone’s height climbing, far reaching and speed

capabilities. The applications of UAVs can also enhance the

efficiency of executing tasks and reduce the pressure of over-

1 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
2 Air Traffic Management Research Institute (ATMRI), Nanyang Technological University (NTU), Singapore 637460
3 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798; Principal Investigator of ATMRI’s UAS
Program 4 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798

crowded ground traffic [1]. It is more attractive if UAVs can

be used in urban environments to facilitate people’s lives,

such as timely delivery, photography, or even air taxi in near

future [2, 3]. Public agents and relevant industry will also

benefit from UAVs in daily routines (surveillance, surveying

and mapping, etc.) and emergencies (rescue, target tracking,

etc.) [4, 5]. With multiple UAVs operating for their

respective tasks over the same airspace in a city area, the

airspace may be crowded, and the drones may collide with

each other. The flight safety must be maintained throughout

the drone operations to further improve the operation

efficiency [6].

According to the regulation of Federal Aviation

Administration (FAA) in the United State (CFR PART 107),

small and light UAVs can fly below the height of 400ft

(about 122m) from the ground [7]. Furthermore, it is

recommended by Amazon that the space between the heights

of 400ft and 500ft (about between 122m and 152m) is set as

the isolation area to separate the UAVs and the manned

aircraft [8]. Referring to the above information, the drones

are regulated to fly below 120m in this study, so the drone

must avoid the buildings by flying around them rather than

flying above them. Besides, the drones can perform various

tasks by flying between different pairs of start point and

destination respectively, such as delivery, surveillance and

target tracking.

Under such a circumstance, the path planning problem of

drones is studied in this paper, in which the conflicts among

multiple drones are considered. To be specific, the 3D flight

path of drone is generated first without considering the time

information, then in task scheduling, the time information of

path is added, and the conflicts among drones are resolved

by adjusting their departure times and flight velocities, i.e.,

a 4D path planning problem for multiple drones. The idea is

inspired by the operation in civil aviation, in which the flight

scheduling problem is decomposed into two parts to reduce

the difficulty of solving the problem [9]. Different from the

existing literatures that treating the problem from the user’s

perspective, manager’s perspective is adopted to generate

the 4D flight paths for drones from the standpoint of

unmanned aerial system (UAS) traffic management (UTM).

According to the above descriptions, the framework of

solving this 4D path planning problem is shown in Fig. 1.

Fig. 1. Framework of solving 4D path planning problem for drone

operations

In Fig. 1, there are two levels addressing the 4D path

planning problem, and the essential information is provided

by the drone operators and the air traffic controller. In the

multi-path planning level, multiple paths for a drone are

generated by the clustering improved ant colony

optimization (CIACO) algorithm to increase the acceptance

rate of a flight request, and the goal is to generate multiple

different paths for each drone. In the task scheduling level,

the results of multi-path planning for drones, the scheduled

time information of flights and the task priorities are

regarded as the inputs, and a flight scheme containing the 4D

path information of drones is generated by the genetic

algorithm (GA)-based method.

The main contributions of this work can be concluded as

follows:

1. The model for this 4D path planning problem is

developed. The urban environments and the flight rules of

drone are formulated. Under the framework, the problem is

divided into two subproblems. First, the 3D multi-path

planning model for a single drone is established. Especially,

the distance between two paths is defined to distinguish them

in the multi-path planning problem. For multiple drones

flying, the conflict model between two drones is described,

and a three-level fitness function is designed to reflect both

the airspace utilization and the operators’ requests.

2. A multi-path planning algorithm based on the CIACO

algorithm is proposed to generate several alternative flight

paths for each drone, which can increase the accepted rate of

flight request. In the CIACO algorithm, the crowding

mechanism is introduced in the clustering process.

Compared to the existing clustering algorithm, the number

of sub-swarms are determined by the quality of individuals

rather than giving a specified number. The basic ACO

algorithm is also improved to strengthen the global search

ability in the early stage of iteration and enhance the local

search ability later. As far as the authors know, there is few

publications concentrating on the ACO algorithm with

multi-population. The proposed CIACO algorithm cannot

only enrich the ACO theory, but also can be applied to other

situations when multiple different solutions are required.

3. A GA-based task scheduling algorithm is developed to

determine the 4D paths of drones. Compared to the current

studies, the task priorities of drones are considered. With the

idea of ‘distributed-centralized’ scheduling, the drones with

different priorities are scheduled in a distributed mode, and

the drones with the same priority are scheduled in a

centralized mode. In this way, the explicit meaning of task

priority is indicated, and the constraints are decomposed into

many sub-problems. A ‘cross-off’ strategy is introduced to

calculate the three-layer fitness value. With the developed

task scheduling algorithm, the difficulty of solving the large-

scale optimization problem is reduced, which can be

popularized to similar complicated scheduling problems.

II. RELATED WORKS

UAV path planning problems have received great

attentions, and various UAVs, such as quadrotor [10], solar-

powered UAV [11] and tiltrotor [12] are introduced to

execute different tasks in urban environments. According to

the complexity of path planning, two categories can be got,

i.e., path planning for a single UAV and coordinated path

planning for multiple UAVs. On the other hand, the path

planning can be conducted in the continuous and discrete

space based on the requirement of the specific problem [13].

The above issues are highly relevant to the work and the

latest progress will be discussed below.

In the path planning problem for a single UAV, it is

sometimes required that multiple paths are generated

simultaneously as alternatives. The multi-path planning

problem is mainly solved by the swarm and evolutionary

algorithms as those algorithms can be run parallelly under

the idea of subpopulations. There have been many literatures

focusing on this issue, and the subpopulations are usually

initialized by calculating the distance between different

individuals. Two individuals which have the minimum

distance are thought to be in the same subpopulation, and the

above process is repeated until the number of subpopulations

has reached the specified value [14]. There are two ways to

treat the subpopulations, i.e., the roles of subpopulations are

the same or different. In Ref. [15], K-means clustering

method is used to divide the whole population into K

subpopulations. In each subpopulation, the solutions with

bad quality will be abandoned. Then the idea of niche is

introduced to make the search conducted in their own

subpopulation, thus generating K paths at one time. Different

from K-means clustering method, the whole population is

divided into several subpopulations in Ref. [16]. As there are

different forms of position update formulas in differential

algorithm (DE), such as DE/rand1, DE/rand/2, DE/best/1

and DE/current-to rand/1, each subpopulation can select a

kind of formula to update the solutions, which can make each

subpopulation evolve from different directions.

As for the discrete path planning for a single UAV, A*

algorithm, GA and ACO algorithm are usually applied as

their original forms can be used in discrete optimization

problem. In Ref. [17], a risk A* algorithm, i.e., an ad-hoc

variant of the A* algorithm, is developed to conduct the

offline path planning based on the information related to

static risk factors. In GA, some modifications on the

operators are made to improve the algorithm performance.

For example, some individuals are selected and are analyzed

Input

Algorithm

Output

to judge the searching value of different regions in Ref. [18],

and the regions of evolution operator are reasonably

restricted. To make the crossover operator more efficient,

two nodes from different chromosomes are chosen so that

they are closer to each other than one of them is to its

adjacent node [19]. As for the ACO algorithm, the

improvements are mainly from two aspects. One is to change

the way of determining the next path point, and a guidance

factor is added to the original formula in Ref. [20] to make

the ants go toward the end point or certain direction. The

other one is to modify the formula of updating the

pheromone. To further strengthen the influence of good

solution, only the pheromone corresponding to the best

solution in the current iteration is added to the current

pheromone matrix in Ref. [21].

The present studies on the path planning of multiple UAVs

focus on the cases in the continuous space, and the

distributed approaches are paid much attention. A distributed

velocity-aware algorithm and collision avoidance algorithm

is proposed to serve motion planning of multiple UAVs in

Ref. [22]. The velocity-aware algorithm generates paths with

acceleration vectors that converge to the predefined

destinations, and the collision avoidance algorithm will be

triggered to protect UAVs from collisions when the conflicts

are predicted. The cooperative path planning problem of

multiple UAVs with multi-objective functions is addressed

in Ref. [23]. The multi-objective model with preemptive

priorities is solved using fuzzy satisfactory optimization to

balance the requirement of multi-objective optimization and

preemptive priorities. Receding horizon control [24] and

distributed model predictive control are often combined to

deal with multi-UAV path planning problem, in which each

UAV can determine its own action considering the

constraints only related to itself [25]. Under the framework

of model predictive control, various nature inspired

optimization algorithms, such as particle swarm

optimization (PSO) algorithm [26], adaptive grasshopper

optimization algorithm (AGOA) [27] and improved grey

wolf optimizer (IGWO) [28], can be applied in generating

the optimal trajectories.

There are fewer literatures concerning the coordinated

path planning of UAVs in the discrete environment. In Ref.

[29], four algorithms are proposed to calculate the discrete

paths for UAVs, i.e., attraction approach, fuzzy logic

approach, adaptive-network-based fuzzy inference system

approach and PSO algorithm. All the four approaches are

used to calculate the locations of the waypoints to be

followed by the UAVs to minimize the distance and the risk.

An adaptive path replanning method for UAVs is developed

in the discrete space considering the uncertain and dynamic

environments. Three strategies are designed to cope with the

conflicts with the new no-fly zone, cooperative drones and

non-cooperative drones [30].

To summarize the above-described works, the swarm-

based methods which are inspired from the nature and

society are widely applied due to their fewer requirements

on the model and high computational efficiency, but

appropriate algorithm needs to be selected carefully

considering the characteristic of the specific problem. The

multi-path planning problems are mainly solved in the

continuous space in the existing literatures. As the path

planning algorithms cannot be applied in the discrete space

directly, the idea of subpopulation should combine with the

discrete path planning algorithm to solve the multi-path

planning problem in the discrete space. Furthermore, in

many cases, the UAVs are regarded as homogeneous

vehicles, and the task priority is not considered. The strategy

of resolving the conflicts between UAVs in the discrete space

also needs to be explored.

III. MODELING FOR THE 4D PATH PLANNING

PROBLEM

In this section, the concept ‘AirMatrix’ [31] is introduced

to describe the urban environments and the flight rules of

drone. There are three assumptions in the ‘AirMatrix’ before

establishing the 4D path planning model, and the details are

presented below.

1. The drones considered in this study are UAVs with

multiple rotors, which can climb and descend vertically.

2. The drone flies at a low velocity, and the velocity

doesn’t change much. Therefore, it can be approximately

thought that the drone flies at a constant velocity.

3. The drone can be treated as a free point with three

degrees of freedom as the attitude of drone is not concerned

in the 4D path planning problem. Nevertheless, the safe

distance is set to ensure that the drone must keep a certain

distance away from the buildings and other drones.

A. Environment modeling and the flight rules of drone

The buildings described in ‘AirMatrix’ is defined as cubes

with specific sizes, as shown in Fig. 2.

Fig. 2. Illustration of the buildings in ‘AirMatrix’ [32]

The buildings represented by cubes depicted in Fig. 2 are

considered as the ‘prohibited’ areas for drone operations. For

the path points defined in ‘AirMatrix’, the drones are

allowed to fly along the straight line between two adjacent

nodes, as illustrated in Fig. 3.

Fig. 3. Possible routes for drone flying according to the cube of ‘AirMatrix’

In Fig. 3, an edge, a face diagonal or a body diagonal of a

cube can be chosen as the next path segment, and there are

O

X

Y

Z

Space occupied by the buildings

Current position of drone

Alternative points in the next step

Possible next path segment

26 optional path segments. In most cases, the number of

optional path segments is less than 26. For example, the

drone is forbidden to fly back, which will increase the length

of flight path. This requirement can be achieved by setting

an appropriate fitness function to guide the drone to head for

the destination. Besides, the drone is sometimes located at

the boundary of ‘AirMatrix’ or there are buildings nearby,

and the number of optional path segments is also less than

26 in this case. Note that the edge length of the cube is set

considering the maneuverability of drone and the safe

distance between two drones (also the distance between the

drone and the building is considered), thus making the drone

fly safely and not change the flight height or turn frequently.

In a real flight, the straight line between two adjacent nodes

is regarded as the input of the flight controller, and there are

some errors between the straight line and the real flight

trajectory of drone due to the tracking error. Therefore, the

path points are just provided as the reference trajectory for

the inner flight controller, and the real flight trajectory of

drone is influenced by the path planning and flight control

together.

B. Multi-path planning model for a single drone flying

 As defined above, there are a certain number of path

points in each flight path, and they are the variables to be

optimized. The constraints come from two aspects, i.e., a

single flight path and multiple flight paths. For a single flight

path, all its path points must be within the space occupied by

‘AirMatrix’ and keep certain distance with the ground to

ensure the safety. Assume that the edge length of the cube is

a, the above constraints can be denoted by

⎩⎨
⎧ 	𝑥!"# = 𝑥$!% + 𝑎𝑖,					𝑖 = 0,1, … , &!"#'&!$%

(𝑦)"# = 𝑦$!% + 𝑎𝑗,					𝑗 = 0,1, … , *!"#'*!$%

(𝑧+"# = 𝑧$!% + 𝑎𝑘,					𝑘 = 0,1, … , ,!"#',!$%

(

 (1)

where 𝑥$!% , 𝑥$(& , 𝑦$!% , 𝑦$(& , 𝑧$!% and 𝑧$(& are the

boundaries of ‘AirMatrix’, 𝑥! , 𝑦! and 𝑧! are the

alternative path points. To further narrow the search space

and accelerate the search speed, the constraints in Eq. (1) can

be converted to the following form:

⎩⎪⎨
⎪⎧ 	𝑥!"# = 𝐿- + 𝑎𝑖,					𝑖 = 0,1, … , .&'/&(𝑦)"# = 𝐿0 + 𝑎𝑗,					𝑗 = 0,1, … , .''/'(𝑧+"# = 𝑧$!% + 𝑎𝑘,					𝑘 = 0,1, … , ,!"#',!$%

(

 (2)

where 𝐿- = 𝑚𝑎𝑥	{𝑥$!%, (𝑥# − 𝑙𝑎)} and 𝑈- =𝑚𝑖𝑛	{𝑥$(& , (𝑥1!"#
+ 𝑙𝑎)} denote the lower and upper

boundary along axis OX respectively. The subscript ‘1’ and 	𝑁$(& mean the start and end point of path along axis OX.

The same definitions are made for 𝐿0 and 𝑈0 along axis

OY. In Eq. (2), the space area in OXY plane is a rectangle

whose length and width are both enlarged by 2la based on

the original rectangle defined by the start and end point, and

l is the amplification factor. The flight height is usually

composed by several layers, so the search space in direction

OZ is kept unchanged.

Besides, each path point must keep a certain distance

away from the buildings, and the repeated path points are not

allowed in a flight path to avoid the detour. The above two

constraints can be written as

𝑚𝑖𝑛 $%&𝑥!, − 𝑥)*# + &𝑦!, − 𝑦)*# + &𝑧!, − �̃�*#/ ≥𝑎, (𝑥), 𝑦), �̃�) ∈ 𝑆$ (3)

>(𝑥%# − 𝑥%2)2 + (𝑦%# − 𝑦%2)2+(𝑧%# − 𝑧%2)2 ≠ 0 (4)

where 𝑆3 is the space occupied by the buildings, and (𝑥A, 𝑦A, �̃�) is a point belonging to 𝑆3 . 𝑛# and 𝑛2 are two

different path points in the same flight path. Eq. (3) implies

that the distance between the drone and a building must be

no less than a. The maximum number of path points also

should be set to avoid the drone deviating the destination too

much. In other words, the drone is not allowed to make too

many detours when flying to the destination. The constraints

on the battery capacity, the flying time and the distance of

drone also can be reflected in some degree. Besides, it will

also take a lot of time for the path planning algorithm to

determine a large number of path points. Assume that the

maximum number of path points and the permitted number

of path points are 𝑁$(& and 𝑁456$!7 (𝑁$(& ≤ 𝑁456$!7),
the 𝑁456$!7 is set as the sum of path points in each direction,

as expressed by

𝑁456$!7 = |&()'&*+|
(+ 1 + |*()'**+|

(+ 1 + |,()',*+|
(+ 1 (5)

To ensure that the constraint of Eq. (5) can always be met,

the drone is allowed to fly through 𝑁456$!7 path points at

most in the path planning algorithm.

For each drone, multiple flight paths can be submitted to

increase the probability of flight permission. The distance of

two flight paths can be evaluated by

𝑅9: = ∑ 𝑑(𝑃;, 𝑄;)1,"+-'#
;<# (6)

where 𝑅9: denotes the distance between flight path P and

Q, and the flight path is divided into 𝑁4(7= pieces. Note that 𝑃; and 𝑄; are the sth equal diversion point of the two flight

paths, and the definition of 𝑑(𝑃;, 𝑄;) is shown in Fig. 4.

Fig. 4. Definition of 𝑑(𝑃%, 𝑄%)

 If 𝑅9: is greater than a specified threshold 𝐷>, the two

flight paths are defined to be different, as given by 𝑅9: > 𝐷> (7)

 Next, a fitness function is designed to evaluate the quality

of a flight path, which is given by

𝐽&'() = &∑ ||𝐺*+, − 𝐺*||-!"#.,

*/,
* + ||𝐺-!"#

− 𝑇𝑎𝑟|| (8)

where 𝐺! is the ith waypoint, and Tar is the position of

destination. In Eq. (8), the first item is the total flight

distance of drone, and the second item is the penalty value

Start point

End point

Path P

Path Q

1 1(,)d P Q
2 2(,)d P Q 3 3(,)d P Q

Equal diversion point

1P

1Q

2P

2Q

3P

3Q

which denotes the distance between the last path point of

drone and the destination. When the drone can reach the

target, the penalty value is 0.

 Assume that 𝑀$(& different paths are required to be

generated for each drone, the path points on each path are to

be optimized, and the goal of path planning is to minimize

the lengths of 𝑀$(& different paths (denoted in Eq. (8))

subjected to the constraints in Eqs. (2), (3), (4), (5) and (7).

 Note that the energy consumption or the maximum

endurance is not considered directly in the path planning

model because before the drone operator has submitted the

flight request, a preliminary evaluation must be conducted.

The task with specific start point and destination which is

beyond the cruising ability of a specific drone will not be

submitted, and only the drones with enough energy are

further considered for path planning. The flight request

contains the basic parameters of drone (size and performance)

and the information of the task (task type, expected departure

time, latest arrival time and so on).

C. Task scheduling model for multiple drones

 After the flight request has been submitted to the air traffic

controller, a task priority will be assigned to each drone

according to the importance of task. For example, the

emergency such as rescue and fire flighting will be assigned

a high task priority, and the task priorities of some

entertainment applications such as aerial photography and

media broadcast are low. Besides, drones are regulated to fly

at a constant speed during the flight, and the flight velocity

can be selected from three values, i.e., 𝑉? , 𝑉@ and 𝑉/ ,

which represent the high-speed mode, middle-speed mode

and low-speed mode respectively. In real applications, as

there are various types of drones, the values of 𝑉?, 𝑉@ and 𝑉/ may be different for heterogeneous drones.

 To determine a flight scheme for drones, the departure

delay, the flight velocity and the flight path number must be

provided, and they are also the decision variables in this task

scheduling problem. With the information, the 4D flight path

of each drone can be determined with a known requested

departure time. Assume that the number of drones is 𝑁. ,

and a drone is free of conflict with the arrival time and the

other drones if the following three constraints are satisfied: 𝑇A'6B + 𝑡A5C(*B + /.
D. ≤ 𝑇('CB (9)

|𝑇B(𝑥E, 𝑦E, 𝑧E) − 𝑇F(𝑥E, 𝑦E, 𝑧E)| > ∆𝑡 (10)

R𝒊𝒇	𝑃B(𝑛#) + 𝑃B(𝑛# + 1) = 𝑃F(𝑛2) + 𝑃F(𝑛2 + 1)𝒕𝒉𝒆𝒏𝑇B(𝑛#) > 𝑇F(𝑛2 + 1)	𝑜𝑟	𝑇F(𝑛2) > 𝑇B(𝑛# + 1)	 (11)

where 𝑢, 𝑣 ∈ {1,2, … ,𝑁.}. In Eq. (9), 𝑇A'6B and 𝑡A5C(*B are

the requested departure time and the departure delay of drone

u. 𝐿B is the length of flight path, and 𝑉B is the flight

velocity. 𝑇('CB denotes the latest acceptable arrival time. If

the actual arrival time of drone u is later than 𝑇('CB , the

corresponding flight will be rejected. Eq. (10) means that if

the same path point (𝑥E, 𝑦E, 𝑧E) is contained both in the

flight paths of drones u and v, the time interval of passing the

same point for drone u and v (denoted as 𝑇B(𝑥E, 𝑦E, 𝑧E) and

𝑇F(𝑥E, 𝑦E, 𝑧E), respectively) must be greater than the safety

time interval ∆𝑡 to avoid the conflict. However, Eq. (10) is

not sufficient to ensure the no-conflict flights. Another form

of conflict (called as the right-angle collision) between

drones u and v is shown in Fig. 5.

Fig. 5. Right-angle collision between two drones

 In Fig. 5, 𝑛# and 𝑛2 are the serial numbers of path point

of drone u and drone v respectively, and 𝑃B(𝑛#) is the

corresponding position. 𝑇B(𝑛#) is the moment that the

drone u passes 𝑃B(𝑛#). Although drones u and v are both

safe at the two positions, they will collide with each other

during the travel between 𝑃B(𝑛#) and 𝑃B(𝑛# + 1) (or 𝑃F(𝑛2) and 𝑃F(𝑛2 + 1)). The mathematical form of

checking this conflict is given in Eq. (11).

 To sum up, the constraints from Eq. (9) to Eq. (11)

describe the possible conflicts in task scheduling from two

aspects. Eq. (9) presents the constraint for a single drone, and

the conflicts between two drones are shown in Eqs. (10) and

(11). Actually, the constraint that the distance between two

drones cannot be too small at a specific moment is converted

to an equivalent constraint that the time interval of passing

the same point must be greater than a certain value, as

expressed in Eqs. (10) and (11). The reason can be explained

as follows. In the ‘AirMatrix’, it is not so convenient to

calculate the position of drone at a specific moment as the

drone is not located at the vertex of cube most of the time.

With the above operation, the process of conflict detection

becomes much concise.

D. Evaluation index for the task scheduling model

 To maximize the airspace utilization, the number of

permitted drone operations in certain airspace should be as

many as possible under the precondition of safety. Therefore,

the number of permitted flights is regarded as the fitness

function to estimate the flight scheme, as expressed by

𝐽;G=# = 𝑚𝑎𝑥	{∑ 𝑎H1/H<# } (12)

where 𝐽;G=# denotes the maximum number of permitted

flights. 𝐴 = [𝑎H]#×1/ is an array to record the information

on flight permission of drones. 𝑎H = 1 if drone w is

permitted to fly, otherwise 𝑎H = 0. However, as the number

of flights is an integer, it is possible that there are equal

number of permitted flights in two flight schemes. In this

case, the total departure delay of all the flights is regarded as

the second layer of fitness function because the operators

always prefer to minimize the departure delay as given by

𝐽;G=2 = min	{∑ 𝑎H𝑡A5C(*H1/H<# } (13)

where 𝐽;G=2 denotes the minimum total departure delay of all

the flights. In a few cases, when the total departure delays of

two flight schemes are the same, the preference on the flight

1()
u
P n

a) Body diagonals b) Face diagonals
1(+1)

u
P n

2()
v
P n

2(+1)
v
P n

2()
v
P n

1(+1)
u
P n

1()
u
P n

2(+1)
v
P n

path should be considered. For each drone, the operator

always prefers to select a shorter flight path, and the flight

path with shorter length will be assigned a smaller number.

Therefore, the sum of operators’ flight path number is set as

the third layer of fitness function as given by

𝐽;G=J = min	{∑ 𝑎H𝑚H1/H<# } (14)

where 𝐽;G=J denotes the minimum sum of operators’ flight

path number, and 𝑚H is the flight path number of drone w.

 To sum up, the decision variables of the task scheduling

problem are the departure delay (𝑡A5C(*B), the flight velocity

(𝑉B) and the flight path number of each drone, and the goal

is to maximize or minimize the three-layer fitness function

in Eqs. (12)-(14). Eqs. (9)-(11) are the constraints must be

met in this task scheduling problem.

IV. MULTI-PATH PLANNING BY CLUSTERING

IMPROVED ANT COLONY OPTIMIZATION

ALGORITHM

As there are multiple alternative flight paths for each

drone, a multi-path planning algorithm is required. Some

algorithms, such as pseudo-spectral method [33], tabu search

algorithm [34] and simulated annealing algorithm [35],

which begin with only one initial solution fail to satisfy the

demand [36]. Besides, the final optimal solution is sensitive

to the initial solution, which increase the difficulty of getting

the optimal solution.

Although A* algorithm can be applied to solve the discrete

path planning problem and can generate the optimal path,

only one solution can be obtained, which fails to satisfy the

requirement of multi-path planning. Swarm-based

optimization algorithms are suitable for solving the multi-

path planning problem. A certain number of initial solutions

are employed in those algorithms, and those solutions are

updated according to the specific formulas in every iteration.

After the maximum number of iterations is reached, the

solutions whose number equals to that of the initial solutions

are outputted. In this way, multiple optimal solutions are

obtained, but the diversity of those optimal solutions cannot

be guaranteed.

Among many swarm-based algorithms, the original form

of GA and ACO algorithm both can be used to solve the

discrete optimization problems. However, in GA, the on-off

state of every possible position of drone in ‘AirMatrix’ must

be recorded when coding, which makes the number of

optimization variables great and is inefficient for computing

in the optimization process. Based on the above

consideration, ACO algorithm is more suitable for this multi-

path planning problem, and the discrete path points

distributed in ‘AirMatrix’ are to be optimized, which has

fewer number of optimization variables compared to GA.

According to the characteristic of the established multi-path

planning model, a crowding mechanism is adopted to put the

solutions into different sub-swarms, and they update

themselves in different directions to make the final optimal

solutions diverse. Then, the clustering algorithm is

integrated into ACO algorithm, and some improvements and

adjustments in the original ACO algorithm are made to

enhance its performance in different phases of iterations.

A. Clustering algorithm in ACO based on the crowding

mechanism

First, the cluster center is determined, and good initial

cluster centers can both accelerate the convergence rate of

algorithm and avoid the solution being trapped into local

optimum. An intuitive idea is to select the cluster centers

among several best initial solutions that are different with

each other, and other initial solutions can be put into the

corresponding cluster according to their distance to the

cluster center. Note that there is only one center in each

cluster, and one initial solution only belongs to a specific

cluster. Assume that the number of initial solutions is 𝑁K,

the procedures of the clustering algorithm is shown in Fig. 6.

Fig. 6. Procedures of the clustering algorithm

In Fig. 6, o and p are the serial numbers of the initial

solution, and c is the serial number of the cluster. The

crowding mechanism is used to generate the initial cluster

centers in Fig. 6. First, the fitness values (the length of flight

path plus the penalty item) of initial solutions are evaluated

by Eq. (8), and the initial solutions are sorted in an ascending

order according to their fitness values. The first solution is

regarded as the center of the first cluster, and the distance

between the first and the second solution is calculated using

Eq. (6). If the distance is smaller than 𝐷>, the two solutions

are thought to be close, and the second solution will join the

cluster lead by the first solution. The same operations will go

on between the first solution and other solution, and the

solutions belonging to the first cluster is determined in this

way. The second solution will then be picked out, and a new

cluster will be generated if it does not belong to the first

cluster, i.e., the constraint in Eq. (7) is satisfied. With the

Initialize solutions and

sort them according to

their fitness values. The

best solution ranks first in

the sequence.

o=1; c=0;

Has solution o not

belonged to any

cluster?

Yes

c=c+1;

p=o+1;

Has solution p not

belonged to any

cluster?

p=p+1;

Is p< ?

Calculate the distance

between solution o and

p using Eq. (6).

Is ?ij TR D£

p joins cluster c.

Yes

Yes

No

Yes

No

o=o+1;

Is o< ?

Yes

The clustering

process is

completed

No

No

No

AN

AN

AN

same manner, a certain number of clusters can be produced.

The clusters have the following characteristic: Although a

solution may be close to more than one cluster center, it only

belongs to the cluster whose center is with smaller fitness

value. Besides, the number of clusters is not decided in

advance, and it is determined by the fitness values of

solutions. Compared to the fixed number of clusters, the self-

adaptive number of clusters can make each cluster

distinctive from others. At last, the solutions which rank in

the first few places are different and can be the cluster

centers. This is beneficial for getting better solutions in the

later iterative process as there is at least one good solution in

each cluster.

B. Improved ACO for multi-path planning

As the whole swarm has been divided into a certain

number of clusters, the strategies of updating solutions in

each cluster will be developed based on ACO algorithm [36].

Although the ACO algorithm has been applied in many

optimization problems in industry, it still suffers from the

disadvantages of falling into local optimal solution easily

and slower convergence rate. Under the framework of ACO

algorithm, some improvements are introduced to remedy the

above drawbacks. These improvements will be highlighted

when describing the steps of ACO algorithm in solving the

multi-path planning problem.

B1. Initialization

The solution in this problem is a combination of path

points from the start point to the destination. Take the start

point as an example, the next path point can be selected from

26 optional points shown in Fig. 3. Then each of them will

be checked if the constraints in Eqs. (2)-(4) can be met, and

the next path point is randomly generated from the optional

points satisfying the constraints. The above process will be

terminated if the destination is reached or the number of path

points has been equal to 𝑁456$!7 . Eq. (8) is called to

calculate the fitness values of solutions.

Other parameters, such as the number of ants 𝑁K , the

maximum times of iterations 𝐼$(& , effective factor of

pheromone 𝛼 , effectiveness of heuristic factor 𝛽 , the

pheromone matrix 𝜏 , the pheromone constant Q and the

evaporation of pheromone 𝜌, are also needed initializing.

Note that the size of the pheromone matrix 𝜏 is as the same

as the search space to record the influence of the traveled

paths. Assume that the number of clusters is 𝑁L, each cluster

should have one independent pheromone matrix to follow by.

In the original ACO algorithm, the values of Q and 𝜌 are

kept unchanged during the iterations, which fails to adjust

the local or global search ability adaptively. A smaller value

of 𝜌 will increase the possibility of searching previous

solutions repeatedly. While a larger value of 𝜌 will enhance

the global search ability at the cost of slowing down the

convergence rate. A good algorithm should have both a

strong global search ability in the early stage of iteration and

a powerful local search ability in the later stages. The

following form of 𝜌 is adopted: 𝜌(𝑔) = 𝜌M𝑏N'#,					𝑔 = 1,2, … , 𝐼$(& (15)

where 𝜌M is the base evaporation of pheromone, and b is the

decay factor. In Eq. (15), 𝜌 decreases exponentially to keep

the exploration ability in the early iterations and enhances

the exploitation ability later. The value of Q also has an

influence on the search ability of ACO algorithm. At the

beginning of exploration, the search space should be

expanded to increase the probability of finding better

solutions. Q must be set a relatively small value to avoid a

local optimal solution. As the space has been basically

explored with the increasing iteration times, there is no need

for a large-scale exploration, and a local search is needed to

further improve the solution quality. Q needs to be set to a

large value in this stage. The value of Q varies according to

the following rule: 𝑄(𝑔) = 𝑄M + 𝑙𝑛(𝑔)𝑐,				𝑔 = 1,2, … , 𝐼$(& (16)

where 𝑄M is the base pheromone constant, and c is the

growth factor.

B2. Selection of path points

According to ACO algorithm, the selected probability of

optional path points can be obtained as follows:

𝑝O = [Q0(N)]1∙(V0)2
∑ [Q-(N)]1∙(V-)2-∈4,+$4%"5

, 𝑔 = 1,2, … , 𝐼$(& (17)

𝜂O = p #
X(&0'&+"6)7"(*0'*+"6)7"(,0',+"6)7

, 𝑓 ≠ 𝑡𝑎𝑟
1																																										, 𝑓 = 𝑡𝑎𝑟 (18)

where 𝑝O is the probability that the path point f is selected,

and 𝜏O(𝑔) is the pheromone of path point f in the gth

iteration. 𝜂O is the heuristic information of path point f that

can be obtained by Eq. (18). optional is the set of optional

path points, and (𝑥O , 𝑦O , 𝑧O) and (𝑥7(6 , 𝑦7(6 , 𝑧7(6) are the

positions of path point f and the target, respectively. Equation

(17) enables the optional path points closer to the target

selected with higher probability.

Selecting the path point by probability can avoid the

solution being trapped into local optimum to some extent,

but it also slows down the convergence rate. To deal with the

above situation, a random number 𝑟𝑎𝑛𝑑 ∈ (0,1) is

introduced. When rand is greater than a certain value, the

path point is selected by probability according to Eq. (17).

Otherwise, the path point with the highest probability is

selected, which makes the drone fly toward the target and

accelerates the convergence rate. On the other hand, the path

point is also selected by probability when rand is smaller

than a certain value, and the solution can avoid being trapped

into local optimum. Note that, when the ant has reached the

destination, or the number of path points equals to 𝑁456$!7,
the process of selecting the path points is ended.

B3. Update of the pheromone

After all the ants have finished their travels in one

iteration, numerous flight paths are generated. These flight

paths must be evaluated by calculating their fitness values,

and the better flight path can extract more pheromone on the

path point it passed by. The strategy of updating the

pheromone in ACO algorithm is governed by the following

equations:

∆𝜏(= :(N)
Y,"+-(() , 𝑎 = 1,2, … ,𝑁K (19)

𝜏O(𝑔 + 1) = r1 − 𝜌(𝑔)s𝜏O(𝑔) + ∆𝜏(, 𝑓 ∈ 𝛤((20)

where 𝐽4(7=(𝑎) is the fitness value corresponding to the

flight path of ant a, and ∆𝜏(is the pheromone increment

produced by ant a. In Eq. (20), 𝛤(is the combination of path

points traveled by ant a in the gth iteration, and 𝜏O(𝑔 + 1)
is the updated pheromone. The pheromone matrix is used to

connect the solutions in different iterations. A good strategy

of updating pheromone matrix is beneficial to the fast

convergence of ACO algorithm. In this paper, to further

strengthen the influence of excellent solutions, only the

pheromone corresponding to the best solution in the current

iteration is added to the pheromone matrix.

Besides, the pheromone may be accumulated at some path

points after many times of update using Eqs. (19) and (20),

which will lead to local optimum. The most direct way of

preventing pheromone accumulation is to set its minimum

and maximum value, as expressed by 𝜏O(𝑔) = max	(𝜏$!%, 𝑚𝑖𝑛	(𝜏O(𝑔), 𝜏$(&)) (21)

where 𝜏$!% and 𝜏$(& are the lower and upper values of

pheromone, respectively. Eq. (21) can be executed after the

pheromone is updated by Eq. (20).

C. The flow of the clustering improved ACO multi-path

planning algorithm

The clustering algorithm and the improved ACO (IACO)

algorithm are depicted in detail in Sections III.A and III.B.

In one iteration, these two parts are integrated together to

form a complete loop. The flow of the clustering IACO

(CIACO) multi-path planning algorithm is shown in Fig. 7.

Fig. 7. Flow of the CIACO algorithm for multi-path planning (Nc: Number

of clusters)

where g is the current times of iteration, and c is the serial

number of the cluster. In Fig. 7, each cluster should have one

independent pheromone matrix to follow. By comparing to

the standard ACO algorithm, a number of flight paths is

required to be included into clusters in the initialization

before the iteration process begins. The crowding

mechanism shown in Fig. 7 is different from that in the

continuous multi-path planning problem, and only one time

of clustering process is needed in CIACO algorithm.

Compared to many other swarm-based algorithms, the

excellent solutions in the iterative process are not reserved

directly according to the principle of ACO algorithm, and the

information of the excellent solutions are passed on utilizing

the pheromone matrix. In view of the above characteristic,

many crowding mechanisms in the continuous algorithms

cannot be used in ACO algorithm directly, or the frequent

actions of clustering and information sharing will make the

algorithm divergent.

After the maximum iteration time is reached, the best

flight path in each cluster will be picked out to make the

alternative flight paths of a drone. If the number of clusters

is smaller than the required number of alternative flight paths,

i.e., 𝑁L < 𝑀$(& , the missing (𝑀$(&−𝑁L) alternative

flight paths are supplemented by the 𝑁L th paths. On the

contrary, if 𝑁L > 𝑀$(& , the best 𝑀$(& paths will be

selected. In this way, multiple paths with difference are

generated, and they are the best paths in each cluster and are

regarded as the alternative flight paths for the task

scheduling of drones.

V. TASK SCHEDULING BASED ON GENETIC

ALGORITHM

After multiple flight paths are generated for each drone,

the task scheduling algorithm will work. Assume that the

delay of departure time is an integral number of seconds, the

decision variable in the task scheduling problem, i.e., the

delays of departure time, the flight velocities of drones and

the serial numbers of flight paths, are all discrete variables.

As it is a problem with large scale and complicated

constraints, evolution-based algorithms can find satisfactory

schedules in a short computation time. GA is the most

popular evolution algorithm and can be applied both in

continuous and discrete cases, which is suitable for solving

this task scheduling problem. Since the GA is proposed in

1975 [37], many new operators, such as insert [38, 39],

perturb [40], delete [40] and swap [40], have been developed

and added to original GA to increase the probability of obtain

better solutions. In this paper, instead of following the new

operators, some adjustments to the original operators, i.e.,

selection, crossover and mutation are made based on the

characteristic of the task scheduling model. The key step in

GA is to calculate the fitness value of each solution. In this

paper, the ‘distributed-centralized’ framework is applied, i.e.,

the drones with different priorities are dealt with separately

and the drones with the same priority are considered together.

In the ‘centralized’ process, a ‘cross-off’ strategy is designed

to determine the value of the three-level fitness function for

the drones with the same priority. The total value of the

three-level fitness function for all the drones is obtained by

combining the results in each priority comprehensively.

Cc N< max
g I<

AN

A. Approach to calculate the fitness values

According to the established task scheduling model, after

the delay of departure time, flight velocity and flight path

number of each drone is given, the 4D flight paths of drones

are determined. However, the maximum number of

permitted flights still needs to be judged. A ‘cross-off’

strategy is developed to calculate the fitness value, and an

example is given, as shown in Fig. 8.

Fig. 8. A table to show the conflict among the drones

The conflict exists between two drones when one or more

constraints in Eqs. (9), (10) and (11) are not satisfied, and the

row number and column number corresponding to the two

drones are marked by ‘Y’. In Fig. 8, the goal is to find the

maximum number of permitted flights. In other words, the

number of drones should be reduced as small as possible to

ensure that there is only ‘N’ left in the table. Assume that the

number of drones in Fig. 8 is 𝑁G= , the specific steps of

calculating the fitness value are listed as follows.

Step 1: Check whether all the drones have conflicts with

each other and record their numbers. If all drones are safe,

the process of calculating the fitness values ends, or 𝑁65=1.

Find out the drones with ‘Y’, and they are the candidates

to be crossed off. In Fig. 8, all the five drones are the

candidates to be rejected.

Step 2: Try to cross off 𝑁65 drones from the candidates

(try all possible scenarios) and repeat step 2 if there are still

‘Y’ in the table, 𝑁65 = 𝑁65 + 1.

If there are scenarios which can wipe out all ‘Y’, stop and

record all of them. In this case, the maximum number of

permitted flights are found. In Fig. 8, all ‘Y’ cannot be wiped

out by only crossing off one drone.

Step 3: The maximum number of permitted flights are

found, and 𝑁65 drones are rejected.

In Fig. 8, all ‘Y’ can be wiped out by rejecting drones No.

2 and No. 4, and the maximum number of permitted flights

is 3.

Another point that must be explained is that even a

scenario which can wipe out all ‘Y’ is found, the remaining

possible scenarios that rejecting the same number of drones

still need to be found out. The reason is that when more than

one scenario can result in the same maximum number of

permitted flights, the best scenario should be found by

comparing their second or even the third layer of fitness

values (the total departure delays or the sum of operators’

flight path number) in Eqs. (13) and (14). The second and

the third layer of fitness values can be calculated easily as

the permitted flights has been determined by the ‘cress-off’

strategy, and the departure delay, the flight velocity and the

flight path number of each drone is provided by the GA.

The above approach to calculate the fitness value is

carried out among the drones with the same task priority, and

the drones are scheduled in a centralized way. When

considering the drones with different task priorities, they are

scheduled in a distributed way. The group with the highest

task priority will be arranged first, and the flight information

of drones will not be changed once it has been permitted

flying. The group which is arranged later will be checked

whether the drone has conflicts with the permitted ones, and

it will be rejected when the conflict is detected. The

‘distributed-centralized’ scheduling strategy decomposes a

large-scale optimization problem into smaller ones, and the

constraints are also decomposed correspondingly, which

reduces the difficulty of solving the problem. Besides, the

drone with higher task priority will consider fewer

constraints when it is being scheduled, which increases the

probability of acceptance.

B. Task scheduling based on GA

In GA, the number of initial solutions is assumed as 𝑁Z.
Three vectors, i.e., 𝐷#×1/(𝑠) , 𝑉#×1/(𝑠) and 𝐹#×1/(𝑠) (𝑠 = 1,2, … ,𝑁Z) are defined to present the decision

variables, i.e., delayed departure times, velocities and serial

numbers of flight paths of drones. After the decision

variables are initialized, the fitness value can be calculated.

The procedures of solving the task scheduling problem based

on GA are depicted below:

1. Selection operator

The selection operator is introduced to choose a certain

number of solutions, and those solutions will be brought into

the following operators. Roulette wheel selection is used in

the original GA. For a solution, the probability being

selected equals to the ratio of its fitness value in the sum of

the fitness values of all solutions. However, it is not suitable

for this problem as the three-layer fitness function is adopted,

and the roulette wheel selection can only reflect the first

layer of fitness value of a solution. Here the stochastic

tournament strategy is adopted. Two different solutions

make up a pair, and the better one in each pair is chosen to

go to the next step. Therefore,
18
2 solutions are selected.

Compared to the roulette wheel selection, the qualities of

two solutions can be easily judged in the stochastic

tournament, which makes the selection process more

straightforward and effective.

2. Crossover operator

A pool is defined to hold the selected
18
2 solutions, and

the best and the worst solution in the current pool are picked

out to execute the crossover operation. As the information of

every drone should be involved in the crossover process,

uniform crossover is adopted between two solutions, i.e.,

each corresponding element of the two solutions will be

exchanged with the same probability 𝑝G . Then two new

solutions are generated after updating the information of

every drone. Comparisons are made among two original

solutions and two new solutions, and the two with better

fitness values will be remained.

3. Mutation operator

1 2 3 4 5

1

2

3

4

5

N

Drone

number

Y Y N

Y Y N N

N Y N N

Y Y

YNNN

N N

Y: Conflict exists

N: No conflict

As there are only several allowed values for the decision

variables V and F, the effect of mutation operator will not be

so obvious to the two decision variables. Therefore, the

mutation operator is imposed on the decision variable D only.

The delay departure time of each drone fluctuates in a small

range with the probability 𝑝$. After the mutation operation,

the better solution between the original and updated ones

will be remained.

After executing the above three operators, one iteration

ends, and the fitness values of the updated solutions will be

calculated again.

C. Flow of GA-based task scheduling algorithm

In every iteration, GA starts by computing the fitness

value. The three operators are then conducted to update the

solutions. When the maximum iteration times (𝐼$(&[) is

reached, the optimal solution will be obtained. The flow of

GA-based task scheduling algorithm is shown in Fig. 9.

Fig. 9. Flow chart of GA-based task scheduling algorithm

In Fig. 9, the modules in the dotted box are the process of

calculating the fitness value, where TP is an index from 1 to

5 denoting the task priority, and 𝑇𝑃$(&=5 in this problem.

By using the ‘cross off’ strategy, the maximum number of

no-conflict drones with the same task priority can be found

in a centralized way, and they make up the permitted flights

in a solution.

VI. SIMULATION STUDIES

To investigate the rationality and superiority of the

proposed 4D path planning method for drone operations,

simulations under different path planning algorithms and

various settings are conducted. In the first group, the

standard ACO algorithm, IACO algorithm and CIACO

algorithm are used to generate multiple flight paths for each

drone, and comparison between the three algorithms are

made. In the second scenario, the results of task scheduling

with different number of drones are presented, and the

relationship between the number of drones and the

acceptance rate of flights are analyzed. Comparison between

the ‘cross-off’ strategy and other relevant approaches in

calculating the fitness value is also made. At last, to explore

the way to further enhance the acceptance rate of flights, the

influence of different number of alternative flight paths on

the fitness value are discussed.

There are 300 buildings randomly distributed in

‘AirMatrix’. The ranges of ‘AirMatrix’ along OX, OY and

OZ axes are [0, 1800] m, [0, 1800] m, and [0, 90] m

respectively, and the edge length of cube is set as 30 m. The

optional flight velocities for drones are 𝑉? = 15	m/s , 𝑉@ = 10	m/s and 𝑉/ = 5	m/s. Each flight path is divided

into ten pieces, i.e., 𝑁4(7= = 10, and the threshold to judge

whether the two flight paths are different is set to 𝐷> =4000	m considering the range of ‘AirMatrix’. The values of 𝑁4(7= and 𝐷> are determined by trial and error to ensure

that the initial solutions can be put into the clusters which are

significantly different, thus making the clusters search the

path from different directions. Smaller values of 𝑁4(7= and 𝐷> will make the difference among the clusters not so

obvious. Although the number of clusters is greater, the

search directions of sub-swarms show a smaller gap, which

is bad for generating different paths. On the contrary, there

will be fewer clusters if 𝑁4(7= and 𝐷> are set to greater

values, which may lead to insufficient number of different

paths. The safety time interval ∆𝑡 between two drones is set

as 5s. All the results are obtained by running the programs

on a desktop with Intel Core i7-3370 3.40 GHz. Note that, as

the drone can take-off and land vertically and the path of the

two processes are relatively fixed and cannot be further

optimized, they are not considered in the multi-path planning

problem. In other words, the start point and the destination

of drone can be in the air in the simulations.

A. Results of multi-path planning using different forms of

ACO algorithms

Three different forms of ACO algorithms are used to

calculate the flight paths, and comparisons are made to

demonstrate the superiority of the proposed CIACO

algorithm. The parameters settings in ACO algorithms are

listed in TABLE I.
TABLE I. SETTING OF PARAMETERS IN ACO ALGORITHMS

Item 𝑁0 𝐼1'2 𝛼 𝛽 c
Value 500 200 0.5 1 10
Item 𝜌3 b 𝜏1*! 𝜏1'2

Value 0.7 0.95 0 15

Take the start point (750, 810, 60) and destination (1770,

1710, 90) as an example, the pheromone constant Q0 is set as

Q0 = (1770-750) + (1710-810) + (90-60), which is the sum

of position differences between the start and end point along

OX, OY and OZ axes, respectively. All the elements in

pheromone matrix 𝜏 are initialized as 1. With the above

settings, the variations of fitness values in ACO, IACO and

CIACO algorithms are shown in Fig. 10.

Initialize solutions,

g=1

Yes

No

The process of calculating fitness value

IN

Calculate the fitness

values of solutions

Pick out half number of

solutions using

stochastic tournament

strategy

Execute the uniform

crossover operator on

the selected solutions

Impose the mutation

operator on decision

variable D

Is ?
G

maxg I=

TP=1

Schedule for the

drones whose task

priority are TP

Exclude the drones

which have conflicts

with the scheduled

ones

Find out the optimal

flight scheme with

the‘cross off’strategy

and add the drones to

the arranged ones.

Is ?
maxTP TP= TP=TP+1

Output the fitness value of

corresponding solution
Output the optimal

flight scheme

g=g+1

Yes

No

Fig. 10. Convergence curves of three algorithms

The IACO algorithm indicates that all the improvements

mentioned in Section III.B are made on the original ACO

algorithm. The fitness value of CIACO in each iteration

corresponds to the best solution considering all the sub-

swarms. The following results can be got from Fig. 10.

(a) After 200 iterations, ACO algorithm is still oscillating,

and the fitness values are greater than the other two

algorithms.

(b) IACO and CIACO algorithms both converge quickly,

and CIACO algorithm even converges after 20 iterations.

The final fitness values of IACO and CIACO algorithms are

1739.2 and 1402.3, respectively.

From the above convergence curves, ACO algorithm

shows the slowest convergence rate. With the modifications

in Section III.B, both the solution quality and the

convergence rate are enhanced in IACO algorithm, which

demonstrate the effectiveness of the proposed improvements.

In addition, the solution quality can be improved by using

CIACO algorithm because each cluster evolves

independently towards different directions, which increases

the probability of obtaining better solutions. The best four

flights generated by IACO and CIACO algorithms are

presented in Fig. 11 to Fig. 13.

Fig. 11. Flight paths generated by IACO algorithm (3D view, and the

buildings are presented by cuboids)

Fig. 12. Best Flight paths obtained by CIACO algorithm (3D view, and
the buildings are presented by cuboids)

Fig. 13. Flight paths obtained by CIACO algorithm (top view of Fig. 12)

In Fig. 11, the flight paths are totally coincident, which

fails to satisfy the requirements of generating multiple

different flight paths. For the IACO algorithm without the

clustering mechanism, the solutions are likely to be identical

after many times of iterations. In CIACO algorithm, the

solutions are initially updated in different directions, and it

is with low probability that the best solutions in each cluster

are all identical. In Fig. 12 and Fig. 13, there are still some

flight path segments overlapped. This is because under the

same fitness function, some flight path segments are

regarded as optimal ones by many clusters. To show more

results of CIACO algorithm, the fitness values of each

cluster in CIACO algorithm are presented in Fig. 14.

Fig. 14. Convergence curves of clusters in CIACO algorithm

The solutions fall into 7 clusters in this example, and the

number in the bracket denotes the number of solutions in the

corresponding cluster. In Fig. 14, the convergence curves of

cluster No. 6 and No. 7 are oscillating as there are only two

individuals in each cluster. The fitness values of the first five

clusters are convergent with different rates, and their final

fitness values are all 1402.3 but corresponding to different

flight paths, as shown in Fig. 13.

The results demonstrate that the proposed CIACO

algorithm is validated for generating multiple alternative

flight paths for each drone, and the length of flight path can

also be shortened by improving the standard ACO algorithm.

Those 3D flight paths for drones can be the initial inputs for

the further task scheduling process.

B. Task scheduling with different number of drones:

comparison and discussion

In this section, each drone will be allocated three

alternative flight paths for the task scheduling algorithm.

Other inputs contain the requested departure times of drones,

which are set to random integers between 0 s and 300 s, the

latest arrival times of drones and the task priorities of drones.

In GA, the number of chromosomes is set to 𝑁Z = 300, and

the probabilities of executing the crossover and mutation

operators are 𝑝G = 0.2 and 𝑝$ = 0.1, respectively. GA

runs for 200 iteration times, i.e.,	𝐼$(&[= 200, and the best

solution will be outputted as the optimal flight scheme. The

convergence of the GA-based task scheduling algorithm is

discussed first. Different number of drones are set to make a

comparison. Note that the simulations are conducted with an

increasing number of drones, and some common data are

used. For example, when the number of drones is 100, the

initial settings of the first half are the same with those when

the number is 50. In this way, the comparison can be more

reliable, and the influence of random operator information

can be reduced. As the fitness function of task scheduling has

three layers, the convergence curves of each layer are shown

in Fig. 15 to Fig. 17.

Fig. 15. Convergence curve of permitted flights

Fig. 16. Convergence curve of average departure delay of drones

Fig. 17. Convergence curve of average flight path number of drones

In Fig. 15, the permitted flights are all convergent in the

four cases, and the convergence rate is faster with a smaller

number of drones. When there are 50 drones, it converges

even in the first iteration. In the second layer of fitness

function, the convergence rate become slower, and a greater

number of drones also corresponds to a slower convergence

rate and a longer average departure delay. When the number

of drones is 150 or 200, the average departure delay

increases in individual iterations (for example the 10th

iteration and the 30th iteration in the above two cases)

because the accepted number of flights has not been

convergent in the corresponding iterations in Fig. 15. In Fig.

17, the third layer of fitness function is not convergent after

200 times of iteration in all the four cases. In actual situations,

the goal of task scheduling is to obtain a satisfactory solution

within limited computation time. In this problem, the

airspace situation is reflected in the first layer of fitness

function, which are the most important information in traffic

management of drones. As for the third layer of fitness

function, it focuses on the satisfactory degree of operators,

which has a small influence on the airspace situation.

Therefore, 200-time iteration is sufficient in this example

although the third layer of fitness function is still not

convergent. Next, the complete results of task scheduling

with different number of drones are presented in TABLE II.
TABLE II. COMPLETE RESULTS OF TASK SCHEDULING WITH

DIFFERENT NUMBER OF DRONES

Numbe
r of

drones

Accepted
number (rate

of flights)

Average
departure

delay
(sec)

Averag
e path

number

Averag
e

velocit
y (m/s)

Compu
ting
time
(min)

20 20 (100%) 0 1.3 10.3 0.1
30 30 (100%) 0 1.7 10.2 0.3
40 40 (100%) 0 1.6 10.3 0.6
50 50 (100%) 0.44 1.9 9.9 1.1
60 60 (100%) 2.1 1.9 10 2.0
70 69 (98.6%) 5.1 1.9 9.3 3.1
80 79 (98.8%) 4.8 1.8 10 4.4
90 89 (98.9%) 9.9 1.9 10.5 5.9

100 96 (96%) 15.0 1.9 10.5 7.7
110 106 (96.4%) 23.2 1.9 9.9 9.9
120 115 (95.8%) 22.3 2.0 10.4 12.5
130 125 (96.2%) 29.9 1.9 10.4 15.2
140 135 (96.4%) 27.1 1.9 10.2 18.0
150 143 (95.3%) 30.7 2.0 9.9 21.1
160 151 (94.4%) 34.7 2.0 10.1 24.4
170 161 (94.7%) 44.7 2.0 10.5 27.9
180 169 (93.9%) 58.5 1.8 10.4 31.6
190 177 (93.2%) 54.8 1.9 10.2 35.5
200 185 (92.5%) 57.3 1.9 10.0 40.1

In general, with a greater number of drones, the accepted

rate of flights decreases, and the average departure delay of

drones increases. The average flight path number fluctuates,

and its mean value is about 2, which implies that the second

flight path is selected with higher probability. Note that the

accepted rate of flight and the average departure delay

sometimes show abnormal changes, such as when the

number of drones is 80 and 130. This is because with random

flight information, the flight paths of new drones may have

no conflict with the ahead ones, which makes the accepted

rate of flight increase and the average departure delay

decrease. Besides, the average flight velocities of drones are

about 10 m/s regardless of the number of drones. Moreover,

the computing time shows a rapid growth with the increasing

number of drones. This is because the number of decision

variables is larger when there are more drones, and it will

take GA more time to operate on these decision variables.

Moreover, the computation load of the ‘cross-off’ strategy

also increases rapidly when calculating the fitness value as

each pair of drones must be checked to determine whether

they have a conflict with each other. The proposed GA-based

task scheduling algorithm is applied in offline computing,

and the computing time can be further reduced by the

workstation with high configuration.

C. Comparison between the ‘cross-off’ strategy and three

other approaches when calculating the fitness value in task

scheduling

To further demonstrate the advantage of the proposed

‘cross-off’ strategy in calculating the fitness value of task

scheduling, the approach in Ref. [41] is introduced to make

a comparison first. In Ref. [41], the task priority of drone is

not considered, and an array is defined to record the serial

number of drones (called as the sequence of drones for

convenience) according to the first-come-first-served basis.

The drones are selected one by one from the second element

of the array to check the conflict with the ahead drones. If

there is a conflict, only the selected drone will be rejected.

In this way, the accepted number of drones can be calculated,

and the second or even the third layer of fitness values (the

total departure delays or the sum of operators’ flight path

number) can be determined. To sum up, the proposed ‘cross-

off’ strategy is centralized, and the strategy in Ref. [41] is

distributed. It is evident that the drone placed in the front of

the array will have a lower probability to be rejected. In this

study, when determining the sequence of drones with the

same task priority, the drone with shorter flight time will be

arranged in the front position of the array, and the reason is

explained as follows. The drone with shorter flight time

takes fewer resources of the low-altitude airspace and can

free up more airspace for other drones, and they should have

a higher probability to be accepted and be placed in the front

position of the array. Based on the above considerations, the

results of task scheduling for 200 drones under the

framework of GA with centralized and distributed strategies

of calculating the fitness value are shown in TABLE III.
TABLE III. COMPARIS BETWEEN THE CENTRALIZED AND
DUSTRIBUTED STRATEGT IN CALCULATING THE FITNESS

VALUE (200 DRONES)

Strategy Accepted
number

of flights

Average
departure

delay
(sec)

Averag
e path

number

Averag
e

velocit
y (m/s)

Compu
ting
time
(min)

Cross-off 185 57.3 1.9 10.0 40.1
Distributed 185 64.5 2.0 10.5 35.5

In TABLE III, with the distributed strategy, it takes fewer

time to obtain the result (reduced by 11.5%). It is reasonable

that the times of checking the conflict between two drones

are less when calculating the fitness value by the distributed

strategy. The drone which has been rejected will not be

checked with the drone being placed behind it in the

sequence of drones, thus reducing the computing time. With

the centralized strategy, the average departure delay of

drones is reduced, and the average flight path number is also

smaller than that in the distributed strategy, which makes the

drones fly with a lower velocity. The reasons can be

explained as follows. Although both the ‘cross-off’ strategy

and the distributed strategy can check the conflicts among

drones and calculate the maximum number of accepted

flights, there are usually more than one combination of

drones corresponding to the maximum number of accepted

flights. In the distributed strategy, there is no mechanism to

record all the possible combinations of drones, and only one

combination is recorded according to the sequence of drones.

The combination of drones recorded in the distributed

strategy may not result in the minimum departure delay of

drones. In the ‘cross-off’ strategy, all the possible

combinations of drones are recorded and are further checked

to determine the minimum departure delay of drones, which

can ensure that the best combination of drones cannot be

missed. In the offline task scheduling, the computing time of

algorithm is not the main concern, and the gap of computing

time between the two strategies is not too much as the

number of rejected flights is small. The above results and

analysis demonstrate that the proposed ‘cross-off’ strategy is

superior to the distributed strategy in calculating the fitness

value for the task scheduling problem.

Besides, as mentioned above, the proposed ‘cross-off’

strategy is centralized, and there are also other centralized

approaches which can calculate the fitness value of this task

scheduling problem, such as the simulated annealing (SA)

algorithm and estimation of distribution algorithm (EDA)

belonging to the meta-heuristic algorithms. To make a

comparison, the results of ‘cross-off’ (CO) strategy, SA

algorithm and EDA under different number of drones are

shown in TABLE IV. Note that, GA is not used as the outer

loop to obtain the results in this comparison, i.e., the

departure delay, the flight velocity and the flight path

number of each drone is fixed, and the reason will be

explained when analyzing the results.
TABLE IV. COMPARIS AMONG THE ‘CROSS-OFF’ STRATEGY, SA
ALGORITHM AND EDA IN CALCULATING THE FITNESS VALUE

Number
of drones

Algorithm Maximum
number of

drones without
conflicts

Average
departure

delay
(sec)

Comput
ing time

(sec)

 CO 25 0 0.011

25 SA 25 0 38.7
EDA 25 0 40.7

50

CO 50 0.74 0.016
SA 50 0.74 38.9

EDA 50 0.74 41.2

75
CO 74 7.6 5.8
SA 74 9.2 38.1

EDA 74 8.6 40.5

100
CO 95 13.7 69.6
SA 94 14.1 38.5

EDA 94 12.9 40.8

With the increasing number of drones, the percentage of

drones without conflicts is reduced, and the average

departure delay get greater in all the three approaches.

Compared to the ‘cross-off’ strategy, the results of SA

algorithm and EDA are worse, and the gap grows with the

increasing number of drones. As for the computing time, it

increases greatly when the number of drones is greater in the

‘cross-off’ strategy, and the computing time for SA

algorithm and EDA roughly keeps the same.

The reasons for the above results can be explained as

follows. The ‘cross-off’ strategy is an enumeration method

with some search skills in essence, so the optimal solution

can be guaranteed. SA algorithm and EDA algorithm are

heuristic algorithms, and the optimal solution cannot be

always obtained. The computing time increases greatly in the

‘cross-off’ strategy because the times of enumerations get

larger when there are more drones. However, the computing

time fluctuates in a small range in SA algorithm and EDA as

the scale of the problem does not change much. In general,

in the task scheduling problem, the number of drones which

have conflicts with others is usually small, and the ‘cross-off’

strategy is more effective and suitable for the offline

scheduling after a comprehensive consideration of solution

quality and computing time.

Furthermore, calculating the fitness value by the ‘cross-

off’ strategy is only a part of work in solving the task

scheduling problem. As the task scheduling is already an

optimization problem which is solved by the GA-based

algorithm, it will become a two-level optimization problem

if the fitness value is calculated by SA algorithm or EDA in

the inner loop. The above operations will make the problem

complicated and reduce the computation efficiency, which is

unnecessary especially when the ‘cross-off’ strategy can

obtain the optimal solution without spending too much

computing time. This is also the reason why the GA is not

used in this comparison.

D. Results with different number of alternative flight paths

and discussions

To further explain the rationality of submitting multiple

alternative flight paths, simulations with different numbers

of alternative flight paths for each drone are carried out. Take

200 drones as an example, drones with different number of

alternative flight paths are considered respectively, as shown

in TABLE V.
TABLE V. RESULTS OF TASK SCHEDULING WITH DIFFERENT

NUMBER OF ALTERNATIVE FLIGHT PATHS (200 DRONES)

Numbe
r of

flight
paths

Accepted
number/ rate

of flights

Average
departure

delay
(sec)

Averag
e path

number

Averag
e

velocit
y (m/s)

Compu
ting
time
(min)

1 181 (90.5%) 57.0 1 10.1 39.1
2 185 (92.5%) 72.2 1.5 10.4 39.5

3 185 (92.5%) 57.3 1.9 10.0 40.1

4 184 (92%) 57.7 2.3 10.2 40.9

5 184 (92%) 64.2 2.6 10.6 41.8

In TABLE V, with the increasing number of alternative

flight paths, the computing time does not increase so much

as the number of decision variables is not changed, and only

the optional values of the flight path number increase in GA.

The accepted rate of flights is not always improved, which

is different from the expected results. The best result is

obtained when there are three alternative flight paths. The

reasons can be tracked after a deep analysis of the rejected

drones’ data, as presented in TABLE VI.
TABLE VI. NUMBER AND TASK PRIORITY OF REJECTED

DRONES

Number of
alternative
flight paths

Number of drones (the number in the bracket denotes

the task priority of the corresponding drone)

1 1(5), 3(4), 38(5), 62(3), 64(5), 75(5), 81(1), 84(5), 88(3),
98(2), 100(1), 105(4), 111(3), 137(4), 146(1), 160(2),
174(5), 182(4), 192(4)

2 3(4), 38(5), 64(5), 81(1), 84(5), 88(3), 98(2), 100(1),
111(3), 137(4), 146(1), 171(2), 174(5), 182(4), 192(4)

3 3(4), 33(4), 38(5), 64(5), 81(1), 84(5), 88(3), 91(1),
98(2), 137(4), 149(3), 171(2), 174(5), 182(4), 192(4)

4 3(4), 33(4), 38(5), 84(5), 96(3), 98(2), 104(3), 111(3),
116(3), 146(1), 152(4), 154(1), 171(2), 174(5), 182(4),
192(4)

5 3(4), 33(4), 38(5), 64(5), 84(5), 98(2), 104(3),111(3),
116(3), 152(4), 153(5), 154(1), 160(2), 174(5), 182(4),
192(4)

With the increasing number of alternative flight paths (for

example, the number of alternative flight paths increases

from 3 to 4), the previously rejected drones with higher task

priority may be accepted, such as drones No. 81 and No. 91.

While the previously accepted drones with lower task

priority may be influenced by the above operations and be

rejected, such as drones No. 96 and No. 152. Therefore, it is

not always true that a greater number of alternative flight

paths will result in a better flight scheme when the task

priority is considered. To further explore the relationship

between the rejected drones and their task priorities, the

results in TABLE VI are further concluded in TABLE VII.
TABLE VII. NUMBER OF REJECTED DRONES CATEGORIZED BY

DIFFERENT TASK PRIORITIES

The number of
rejected drones

Task priority

1 2 3 4 5

Number of
alternative
flight paths

1 3 2 3 5 6

2 3 2 2 4 4

3 2 2 2 5 4

4 2 2 4 5 3

5 1 2 3 5 5

In general, with the increasing number of alternative flight

paths, the drones with higher task priorities (1 and 2) are less

likely to be rejected. In other words, when the number of

alternative flight paths is greater, the main beneficiaries are

the drones with higher task priorities but there is an influence

on the drones with lower task priorities. When the accepted

number of flights with high task priority is smaller than the

rejected number of flights with low task priority, the strategy

of increasing the number of alternative flight paths makes no

sense. Another way to further improve the accepted

number/rate of flights is to set different numbers of

alternative flight paths for drones with different task

priorities.

VII. CONCLUSION

The 4D path planning problem for drone operations in

urban environments is studied in this paper to ensure the

airspace safety and improve the airspace operation efficiency.

Literature investigation shows that the coordinated path

planning problems for UAVs are solved from the operators’

standpoint, which lacks a global consideration of airspace

situation. The viewpoint from air traffic controller is

introduced to coordinate the drones and determine their

flight scheme.

First, the concept of ‘AirMatrix’ is used to describe the

urban environments and flight rules of drones. In the multi-

path planning level, the constraints on a single flight path

and the difference of two flight paths are considered, and the

shortest flight path is the fitness function. In the task

scheduling level, with the known task priority, the departure

delay, the flight velocity and the flight path number of each

drone are regarded as the inputs, and the conflicts between

two flight paths are modeled. A three-layer fitness function

is established to reflect the solution quality from the

perspective of airspace situation and operators’ demand.

To solve the established models, CIACO algorithm is

proposed to generate multiple flight paths for each drone. In

this algorithm, the crowding mechanism is applied in the

clustering process, and the number of clusters is determined

by the solution quality rather than a specified number.

Besides, several strategies are developed to improve the

exploration and exploitation ability of the basic ACO

algorithm in different phases of iteration. In the task

scheduling problem, under the ‘distributed-centralized’

scheduling strategy, GA-based algorithm is designed to

obtain the optimal flight scheme, and a ‘cross off’ approach

is proposed to calculate the complicated three-layer fitness

value.

In the simulation studies, the CIACO multi-path planning

algorithm and the GA-based task scheduling algorithm are

both validated. The CIACO algorithm is able to generate

multiple alternative flight paths for each drone, and the

length of flight path also can be shortened compared to the

standard ACO algorithm. In GA-based task scheduling

algorithm, with the increasing number of drones, the

accepted rate of flight decreases, and the average delay of

drones rises. The superiority of the proposed ‘cross-off’

strategy is verified by comparing with the distributed

strategy, SA algorithm and EDA. Besides, the flight scheme

is not always getting better with a greater number of

alternative flight paths. The results can provide the

suggestions for the design of airspace capacity and

operator’s preference. In the future, the path planning

problem of other forms of air transportation, such as air taxi,

surveillance and emergency rescue can be modeled, and

other advanced bioinspired algorithms are expected to

improve the safety and efficiency of drone operations.

Acknowledgements

This research work is supported by the Chongqing

Research Program of Basic Research and Frontier

Technology with the grant numbers of cstc2020jcyj-

msxmX0602 and cstc2018jcyjAX0127, Fundamental

Research Funds for the Central Universities with the project

reference number of 2020CDJ-LHZZ-066, China

Scholarship Council with the project reference number of

201906055030.

This collaborative research is also supported by the

Ministry of Education (MOE, Singapore) Tier-1 project

research grant (Project ID: 2018-T1-002-124) and the UAS

Program on “Urban Aerial Transport Traffic Management

and Systems” in the ATMRI, NTU, Singapore.

Any opinions, findings, and conclusions or

recommendations expressed in this paper are those of the

authors and do not reflect the views of any of the above-

mentioned funding agents.

REFERENCES

[1] Gallacher, D. (2016). Drones to manage the urban environment: Risks,
rewards, alternatives. Journal of Unmanned Vehicle Systems, 4(2),
115-124.

[2] Ramana, M. V., Varma, S. A., & Kothari, M. (2016). Motion planning
for a fixed-wing UAV in urban environments. IFAC-

PapersOnLine, 49(1), 419-424.
[3] Yao, J., & Ansari, N. (2020). Online Task Allocation and Flying Control

in Fog-Aided Internet of Drones. IEEE Transactions on Vehicular

Technology, 69(5), 5562-5569.
[4] Meng, W., He, Z., Su, R., Yadav, P. K., Teo, R., & Xie, L. (2016).

Decentralized multi-UAV flight autonomy for moving convoys search
and track. IEEE Transactions on Control Systems Technology, 25(4),
1480-1487.

[5] Zhang, Z., Zheng, L., & Guo, Q. (2018). A varying-parameter
convergent neural dynamic controller of multirotor UAVs for tracking
time-varying tasks. IEEE Transactions on Vehicular Technology, 67(6),
4793-4805.

[6] Watkins, S., Burry, J., Mohamed, A., Marino, M., Prudden, S., Fisher,
A., ... & Clothier, R. (2020). Ten questions concerning the use of
drones in urban environments. Building and Environment, 167,
106458.

[7] Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., & Robinson,
J. E. (2016). Unmanned aircraft system traffic management (UTM)
concept of operations. In 16th AIAA Aviation Technology, Integration,

and Operations Conference, Reston, VA: 3292.
[8] Air, A. P. (2015). Revising the airspace model for the safe integration of

small unmanned aircraft systems. Amazon Prime Air.
[9] Yan, S., & Tseng, C. H. (2002). A passenger demand model for airline

flight scheduling and fleet routing. Computers & Operations Research,
29(11), 1559-1581.

[10] Hu, H., Wu, Y., Xu, J., & Sun, Q. (2019). Cuckoo search-based method
for trajectory planning of quadrotor in an urban
environment. Proceedings of the Institution of Mechanical Engineers,

Part G: Journal of Aerospace Engineering, 233(12), 4571-4582.
[11] Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., & Yang, H. (2018). Path

planning for solar-powered UAV in urban

environment. Neurocomputing, 275, 2055-2065.
[12] Zhang, J., Yu, W., & Qu, X. (2019). A trajectory planning model of

tiltrotor considering multi-phase and multi-mode flight. Proceedings

of the Institution of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, 233(16), 6019-6031.
[13] Wu Y. (2021). A survey on population-based meta-heuristic algorithms

for motion planning of aircraft. Swarm and Evolutionary Computation,
62, 100844.

[14] Zhou, D.., Li, X., Zhang, K., & Pan, Q. (2015, July). Multiple routes
planning based on particle swarm algorithm and hierarchical clustering.
In 2015 34th Chinese Control Conference (CCC) (pp. 42-46). IEEE.

[15] Li, F., Hao, B., Zhao, J., & Xue, L. (2013). Cruise missile multiple
routes planning based on hybrid particle swarm optimization. Journal

of Beijing Institute of Technology, 3, 12.
[16] Dong, K., Huang, H., Huang, C., & Zhang, Z. (2017). Trajectory online

optimization for unmanned combat aerial vehicle using combined
strategy. Journal of Systems Engineering and Electronics, 28(5), 963-
970.

[17] Primatesta, S., Guglieri, G., & Rizzo, A. (2019). A risk-aware path
planning strategy for uavs in urban environments. Journal of

Intelligent & Robotic Systems, 95(2), 629-643.
[18] Wang, X., & Meng, X. (2019, October). UAV Online Path Planning

Based on Improved Genetic Algorithm with Optimized Search Region.
In 2019 IEEE International Conference on Unmanned Systems

(ICUS) (pp. 1-6). IEEE.
[19] Savuran, H., & Karakaya, M. (2016). Efficient route planning for an

unmanned air vehicle deployed on a moving carrier. Soft

Computing, 20(7), 2905-2920.
[20] Feng, Y., Cheng, J., Li, T., Chen, B., & Tang, K. (2019, October). Path

Planning of Uninhabited Aerial Vehicle Added the Guiding Factor.
In 2019 IEEE International Conference on Unmanned Systems

(ICUS) (pp. 866-870). IEEE.
[21] Yue, L., & Chen, H. (2019). Unmanned vehicle path planning using a

novel ant colony algorithm. EURASIP Journal on Wireless

Communications and Networking, 2019(1), 136.
[22] Hu, Y., Yao, Y., Ren, Q., & Zhou, X. (2020). 3D multi-UAV cooperative

velocity-aware motion planning. Future Generation Computer

Systems, 102, 762-774.
[23] Hu, C., Zhang, Z., Yang, N., Shin, H. S., & Tsourdos, A. (2019). Fuzzy

multiobjective cooperative surveillance of multiple UAVs based on
distributed predictive control for unknown ground moving target in
urban environment. Aerospace Science and Technology, 84, 329-338.

[24] Yao, P., Wang, H., & Ji, H. (2017). Gaussian mixture model and
receding horizon control for multiple UAV search in complex
environment. Nonlinear Dynamics, 88(2), 903-919.

[25] Shim, D. H., & Sastry, S. (2008, August). A dynamic path generation
method for a UAV swarm in the urban environment. In AIAA Guidance,

Navigation and Control Conference and Exhibit (p. 6836).
[26] Wu, Y., Wang Y., Qu, X., & Sun, L. (2019). Exploring mission planning

method for a team of carrier aircraft launching. Chinese Journal of

Aeronautics, 32(5), 1256-1267.
[27] Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., Su, Z., & Yu, Y. (2017).

Distributed trajectory optimization for multiple solar-powered UAVs
target tracking in urban environment by Adaptive Grasshopper
Optimization Algorithm. Aerospace Science and Technology, 70, 497-
510.

[28] Yao, P., Wang, H., & Ji, H. (2016). Multi-UAVs tracking target in urban
environment by model predictive control and Improved Grey Wolf
Optimizer. Aerospace Science and Technology, 55, 131-143.

[29] San Juan, V., Santos, M., & Andújar, J. M. (2018). Intelligent UAV map
generation and discrete path planning for search and rescue operations.
Complexity, 2018, Article ID 6789419.

[30] Wu, Y. & Low, K. H. (2020). An Adaptive Path Replanning Method for
Coordinated Operations of Drone in Dynamic Urban Environments,
IEEE Systems Journal, DOI: 10.1109/JSYST.2020.3017677.

[31] Mohamed Salleh, M. F. B., Wanchao, C., Wang, Z., Huang, S., Tan, D.
Y., Huang, T., & Low, K. H. (2018). Preliminary concept of adaptive
urban airspace management for unmanned aircraft operations. In 2018

AIAA Information Systems-AIAA Infotech@ Aerospace, AIAA SciTech
Forum 2018, Florida, USA. DOI: 10.2514/6.2018-2260.

[32] Mohamed Salleh, M. F. B., & Low, K. H. (2017). Concept of operations
(ConOps) for traffic management of Unmanned Aircraft Systems (TM-
UAS) in urban environment. In AIAA Information Systems-AIAA

Infotech@ Aerospace, AIAA 2017-0223, 5 Jan 2017. DOI:
https://doi.org/10.2514/6.2017-0223.

[33] Wang, J., Cui, N., & Wei, C. (2019). Rapid trajectory optimization for
hypersonic entry using convex optimization and pseudospectral
method. Aircraft Engineering and Aerospace Technology, 91(4), 669-
679.

[34] Blot, A., Kessaci, M. É., & Jourdan, L. (2018). Survey and unification
of local search techniques in metaheuristics for multi-objective
combinatorial optimisation. Journal of Heuristics, 24(6), 853-877.

[35] Dal Sasso, V., Fomeni, F. D., Lulli, G., & Zografos, K. G. (2019).
Planning efficient 4D trajectories in Air Traffic Flow
Management. European Journal of Operational Research, 276(2),
676-687.

[36] Zhang, H., Wang, H., Li, N., Yu, Y., Su, Z., & Liu, Y. (2018). Time-
optimal memetic whale optimization algorithm for hypersonic vehicle
reentry trajectory optimization with no-fly zones. Neural Computing

and Applications, 1-15.
[37] Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm

intelligence: a survey. International Journal of Bio-Inspired

Computation, 3(1), 1-16.
[38] Qingtian, H., Wenjing, C., & Jia, C. (2012, March). Research of route

planning based on genetic algorithm. In 2012 International Conference

on Computer Science and Electronics Engineering (Vol. 2, pp. 199-
202). IEEE.

[39] Savuran, H., & Karakaya, M. (2016). Efficient route planning for an
unmanned air vehicle deployed on a moving carrier. Soft

Computing, 20(7), 2905-2920.
[40] Kok, J., Gonzalez, L. F., & Kelson, N. (2012). FPGA implementation

of an evolutionary algorithm for autonomous unmanned aerial vehicle
on-board path planning. IEEE transactions on evolutionary

computation, 17(2), 272-281.
[41] Tan, Q., Wang, Z., Ong, Y. S., & Low, K. H. (2019, June). Evolutionary

Optimization-based Mission Planning for UAS Traffic Management
(UTM). In 2019 International Conference on Unmanned Aircraft

Systems (ICUAS) (pp. 952-958), IEEE.
DOI: 10.1109/ICUAS.2019.8798078.

