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Abstract This paper contributes with the first validation of swarm cognition as a useful

framework for the design of autonomous robots controllers. The proposed model is built

upon the authors’ previous work validated on a simulated robot performing local naviga-

tion on a 2-D deterministic world. Based on the ant foraging metaphor and motivated by

the multiple covert attention hypothesis, the model consists of a set of simple virtual agents

inhabiting the robot’s visual input, searching in a collectively coordinated way for obsta-

cles. Parsimonious and accurate visual attention, operating on a by-need basis, is attained

by making the activity of these agents modulated by the robot’s action selection process.

A by-product of the system is the maintenance of active, parallel and sparse spatial work-

ing memories. In short, the model exhibits the self-organisation of a relevant set of features

composing a cognitive system. To show its robustness, the model is extended in this paper

to handle the challenges of physical off-road robots equipped with noisy stereoscopic vision

sensors. Furthermore, an extensive aggregate of biological arguments sustaining the model

is provided. Experimental results show the ability of the model to robustly control the ro-

bot on a local navigation task, with less than 1% of the robot’s visual input being analysed.

Hence, with this system the computational cost of perception is considerably reduced, thus

fostering robot miniaturisation and energetic efficiency. This confirms the advantages of us-

ing a swarm-based system, operating in an intricate way with action selection, to judiciously
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control visual attention and maintain sparse spatial memories, constituting a basic form of

swarm cognition.

Keywords Swarm cognition · Visual attention · Spatial memory · Action selection ·

Autonomous robots · Biological inspiration

1 Introduction

Almost all embodied agents, either natural or artificial, deeply rely on perception for a proper

interaction with their surrounding environment. Thus, understanding how perception self-

organises is essential not only to deepen our understanding about the natural world, but

also because it facilitates the synthesis of robust robotic systems. Although the function of

perception is well understood, its self-organisation is not. That is, we understand what the

perceptual system does, but not so much how it builds up from the interaction of distributed

simple processing units. This is more striking if the interaction between perception, action

selection, and memorisation is also taken into account in perception models. Uncovering

these phenomena is key to enable, for instance, the synthesis of developmental mechanisms

capable of allowing robotic systems to learn from their interaction with the environment.

This is a daunting task, which could profit from a new modelling paradigm.

The most elementary unit model of robot control systems is the artificial neuron. In na-

ture, neurons are the lower level units building up cognition. Being the physical substrate of

cognition, neural activity and topological organisation have been the focus of several models

(refer to Gerstner and Kistler 2002 for a thorough review on the field). With these models

it is possible to emulate how neurons affect each other and how they behave collectively.

This granularity is, however, often too fine when it comes to handle highly complex spatio-

temporal problems, where several brain areas are involved. An example is perception which,

as previously mentioned, must interact deeply with action selection and memory processes.

Therefore, a new modelling paradigm would be useful, in particular for the synthesis

of embodied cognition systems, such as autonomous robots. A possibility that has been

gaining momentum in the last few years is to model cognition in terms of the behaviour

exhibited by social animals, with particular emphasis on insects. The swarm intelligence

paradigm (Bonabeau et al. 1999) is particularly interesting to model perception. This is

because insects are simple entities that need to move and interact so as to actively perceive

their environment. Being simple, their abstraction is well suited as the atom of the self-

organising cognitive system. The abstraction of their collective behaviour, in turn, is useful

to model the interactions occurring between the atoms of the cognitive system. As will be

shown, the active nature of the swarm elements can be easily exploited to model the active

nature of embodied vision systems.

In previous work (Santana and Correia 2010), we have exploited this swarm-based para-

digm to synthesise self-organising visual attention, operating in an intricate way with spatial

memory and action selection. The result was an accurate and parsimonious perceptual sys-

tem, performing on a by-need basis and capable of handling the speed-accuracy trade-off

in a context-dependent way. However, the model was only validated on a simulated robot

performing local navigation on a noise free planar environment.

To assess whether the model is able to exhibit the same interesting properties on a de-

manding embodied setup, this paper adapts the model to handle its realisation on an all-

terrain physical robot equipped with stereoscopic vision. These adaptations are mostly re-

lated to the fact that the model must cope with a robot moving on a non-planar terrain, whose
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sensory input is a noisy 3-D point cloud. These requirements demand the model to handle the

projective nature of the vision sensor and to use evidence accumulation for noise sensitivity

reduction. Furthermore, this work deepens the model’s biological supporting arguments.

This paper is organised as follows. In Sect. 2, the rationale behind modelling visual at-

tention under the swarm cognition framework is presented. Then, the problem definition is

specified in Sect. 3. The proposed model is finally presented in Sect. 4. Next, the results

of the validation of the method by a set of experiments in a physical robot is presented

in Sect. 5. A discussion on the model’s biological plausibility is given in Sect. 6. Finally, a

set of conclusions and future work pointers are highlighted in Sect. 7.

2 Introducing swarm cognition for attention modelling

This section describes how this paper builds upon previous work on perception in both

natural and applied sciences, as well as how it departs from it.

2.1 Active vision

The act of deploying attention, by means of eyes, head or body motion, is known to be an

ubiquitous feature of animals endowed with rich vision (Land 1999). The ability to shift

the focus of attention highlights the active nature of perception, rather than a passive one.

This means that perception can only be properly studied when the agent is freely acting

on its environment, as proposed by Gibson’s ecological (ethological) approach to visual

perception (Gibson 1979). In fact, body, nervous system and environment must be seen in a

holistic way (Ashby 1952; Beer 1995; Thelen and Smith 1996).

In face of the limitations of passive set-ups (Fermuller and Aloimonos 1995), active

vision (Bajcsy 1988; Aloimonos et al. 1988; Ballard 1991) has also emerged in the realm

of artificial vision systems. Among the advantages of an active vision perspective there

is the possibility for the agent to: (1) act in order to shape its sensory information flow

(Sporns and Lungarella 2006) so as to make its processing tractable; (2) increase the sensory

input signal-to-noise ratio; and (3) reduce ambiguities and consequently perceptual aliasing.

These properties are a product of sensorimotor coordination, a concept that can be traced

back to Dewey (1896), related to the enactive approach (Varela et al. 1991), and widely

recognised as central to the sustainability of embodied adaptive behaviour (Brooks 1991;

Ballard et al. 1997; Pfeifer and Scheier 1999; O’Regan and Noe 2001; Pfeifer and Bongard

2006; Mossio and Taraborelli 2008).

Sensorimotor coordination requires a tight coupling between the agent and the environ-

ment. Given that the involved timescales of this coupling require fast perceptual process-

ing, the classical view that a global isomorphic representation of the environment is con-

tinuously maintained by the agent (Marr 1982) lacks support. Interacting perceptual path-

ways, dedicated to different purposes, are more likely to exist (Milner and Goodale 1995;

Goodale 2008). For instance, pathways associated to motor action control, supposedly the

dorsal visual stream, are prone to map directly to motor actions. This is congruent with the

idea of the “world as its own best model” championed by Brooks (1991). Being perception

so intricately linked to action, it is reasonable to assume that both unfold in parallel.

2.2 Parallel covert attention

Focussing perception on the most relevant aspects/regions of the environment, taking into

account the current context, is advantageous to increase both performance and robustness
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(Itti and Koch 2001; Hayhoe and Ballard 2005; Rothkopf et al. 2007). Furthermore, the in-

tricate relationship between visual attention and other structures, such as bottom-up sensory

pathways, categorical reasoning, and action selection, highlights its centrality and conse-

quently its relevance to the understanding of the dynamics involved in an embodied cogni-

tive system. Attention ultimately results in the motion of sense organs, e.g., eyes, towards the

relevant stimulus source. This is called overt attention. A faster process is the one of men-

tally focussing on particular aspects of the sensory stimuli. This is called covert attention

and it will be the main focus of the following discussion.

Computational models of visual attention typically assume the existence of a sensor-

driven bottom-up pre-attentive component (Treisman and Gelade 1980; Koch and Ullman

1985; Itti et al. 1998; Palmer 1999; Corbetta and Shulman 2002; Hou and Zhang 2007),

which drives attention to salient regions of the visual input. The more a region of the visual

input detaches from the background, the higher its level of saliency. Top-down contextual

knowledge on the visual search task, i.e., on the object being sought, is also known to play an

important role on the modulation of attention (Yarbus 1967; Wolfe 1994; Tsotsos et al. 1995;

Corbetta and Shulman 2002; Torralba et al. 2003; Frintrop et al. 2005; Navalpakkam and Itti

2005; Walther and Koch 2006; Neider and Zelinsky 2006; Rothkopf et al. 2007; Hwang et

al. 2009), as has been shown by recent neurophysiological studies (Egner et al. 2008). The

outcome of the interplay between these two processes is a saliency map whose activity level

is higher in the regions of the visual input that are more likely to contain the object being

sought. The saliency level is typically assumed to guide the motion of a “spotlight” from

the most to the least relevant regions of the visual input. In the case of overt attention, this

spotlight guides the motion of the sense organs to centre the visual input on the region of

interest. In the covert case, a task-specific object recogniser is applied at each region where

the spotlight falls (see Navalpakkam and Itti 2005). This approach highlights a dichotomy

between the parallel nature of saliency map computation and the sequential nature of the

processes operating on its basis. Due to the involvement of mechanical components, this

sequencing is unavoidable in overt attention. Conversely, although constrained to process

sensory input that is sequentially determined by the overt attention, the covert attention

process is more likely to operate in a parallel fashion. Two main arguments can be put forth

to support this hypothesis.

First, the human brain is a massively parallel structure, which renders unlikely that it

would be instantaneously dedicated to a single covert attentional sequential process. That

is, the effort of maintaining a unique purely sequential analysis is costly by itself, as it

requires complex arbitration mechanisms. Second, studies with human subjects revealed the

existence of a unitary spotlight of covert attention to be unlikely (Pylyshyn and Storm 1988;

Doran et al. 2009). The tests involved subjects paying covert attention to objects that were

moving so fast that the chances of effective attention switching were considerably low. The

observed successful tracking of these objects supports the multiple spotlights hypothesis,

which is also coherent with evidence on the existence of independent tracking mechanisms

in the two cerebral hemispheres (Alvarez and Cavanagh 2005).

There is a considerable bulk of knowledge suggesting that both overt and covert shifts

of attention share the same neural mechanisms (de Haan et al. 2008), supporting the pre-

motor theory of attention (Rizzolatti et al. 1987). Impressively, this link between response

preparation and spatial attention is not limited to the oculomotor system (Eimer et al. 2005).

Thus, this theory predicts that common sensorimotor coordination mechanisms are involved

in the control of attention and action. We argue that this opens the door for the application of

sensorimotor coordination principles, studied mostly on overt control, to better understand

and explore the dynamics of covert attention.



Swarm Intell (2011) 5: 45–72 49

2.3 Agent abstraction of covert attention

In a more classical view, the control of the attention spotlight would be considered exoge-

nous, in the sense that it is only function of sensory saliency and top-down modulation

signals. However, under the assumption that covert attention is a process of sensorimotor

coordination, it is more reasonable to consider the spotlight as a dynamical entity inhabiting

the sensorimotor space of the embodied agent. This entity can then pro-actively move in

this space to guide the focus of the embodied agent in a sensorimotor coordinated way, and

thus exploiting all the aforementioned advantages of sensorimotor coordination to shape the

sensory input. This entity, from now on called an agent, thus behaves as a locally sequential

covert attentional process.

The feasibility of agent-based modelling for sensorimotor coordination has been ex-

tensively validated in the fields of embodied cognition and active vision (Scheier et al.

1998; Nolfi and Marocco 2002; Beer 2003; Fend et al. 2003; Balkenius et al. 2004;

Floreano et al. 2004; Nolfi 2005; Suzuki and Floreano 2006; Pfeifer and Bongard 2006;

Kim and Moeller 2006; Sporns and Lungarella 2006; de Croon and Postma 2007; Choe

et al. 2008). A population of agents can generate coherent collective (parallel) behav-

iour. In perception, the agents’ motion corresponds to an attention shift, whereas the col-

lective spatio-temporal self-organised pattern implements a multi-focus attention process.

Brain computational modelling with multiple agents is not a new idea (Minsky 1988;

Chialvo and Millonas 1995). Although the first realisations for computer vision related

problems are also not new (Poli and Valli 1993; Liu et al. 1997), only more recently it has

received considerable attention (Ramos and Almeida 2000; Owechko and Medasani 2005;

Antón-Canalís et al. 2006; Mobahi et al. 2006; Broggi and Cattani 2006; Mazouzi et al.

2007; Zhang et al. 2008). In general, these models exploit the metaphor of swarming behav-

iour on social insects.

These computational models are mostly stand-alone engineered parallel perceptual sys-

tems, lacking a body capable of purposive behaviour. This deficit undermines their explana-

tion power regarding the mechanisms actually building up adaptive behaviour. Conversely,

sensor planning, which is a relatively stable field in computer vision and robotics commu-

nities, is actually trying to bridge the gap between body motions and information gathering

through the sensors (Dickmanns et al. 1990; Sukthankar et al. 1993; Kelly and Stentz 1998;

Behringer and Muller 1998; Nabbe and Hebert 2003; Kwok and Fox 2004; Patel et al. 2005;

Bagdanov et al. 2006; Urmson et al. 2006; Tessier et al. 2007; Hernandez et al. 2007;

Sprague et al. 2007). However, none of these works models parallel covert attention op-

erating in an intricate way with the action selection process.

2.4 Swarm cognition for attention modelling

The previous sections showed the relevance of a parallel model for covert attention, as well

as the importance of its tight coupling with motor action preparation. It was also suggested

that the multi-agent paradigm is appropriate for this modelling task.

A remarkable metaphor from the natural world encompassing these characteristics, and

consequently exploited in this paper, is the foraging behaviour of army ants. By exploiting

pheromone-based local interactions, these ants are able to forage in large areas around their

nest in a parallel and robust way (Deneubourg et al. 1989). These foraging ants exhibit a

sort of collective intelligence (Franks 1989), allowing the group to be seen as an individual

decision making process.

Rather than static structures, like neurons, these agents are better viewed as active infor-

mation particles that flow through the system. Hence, using agents, the design focus is on
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the process and not so much on its supporting substrate. Being sensorimotor coordinated

units, these information particles can actively shape their sensory input, use their senso-

rimotor history to induce long-range influences on other information particles, and in the

limit improve their own behaviour. When together, these modular units can exploit the syn-

ergy of self-organisation and emergent properties. We argue that reaching the complexity

of such a system with a connectionist model is possible but not likely tractable. Although

not covered in this article, we foresee the usefulness of connectionist models to implement

the agents themselves, as it would enable tractable neuro-evolution (Floreano et al. 2008)

to build complex systems. Hence, we suggest that using an agent-based design the system

modeller is able to reach higher levels of tractable complexity than when using connection-

ist models. Although the results reported in this paper show the benefits of an agent-based

design, further phenomenological support is still required for a definitive comparison with

connectionist models.

The use of the insect swarm metaphor to model vertebrate brain function has been

also suggested by parallel and independent work (Passino et al. 2008; Couzin 2009;

Marshall et al. 2009; Marshall and Franks 2009). Nest site selection in honey bees, for

instance, exhibits some of the characteristics of decision making in brain, such as the sta-

tistical speed-accuracy trade-off predicted by diffusion models (Ratcliff and Smith 2004).

Our work, instead, approaches the problem of studying cognition through social insects be-

haviour by building it on an embodied setup, following the synthetic approach to embodied

cognition (Pfeifer and Scheier 1999) and Artificial Life (Bedau 2003). The advantages of

using Artificial Life models for this purpose, though without the support of any practical

realisation, were reviewed also in a parallel study (Trianni and Tuci 2010).

All these accounts can be framed in the emerging multidisciplinary field of Swarm Cog-

nition, which attempts to uncover the basic principles of cognition exploiting self-organising

principles, mainly those exhibited by social insects. However, as we only conceive cogni-

tion under the embodiment framework, we consider that a swarm-based model not involved

in the embodied agent’s sensorimotor coordination loop can hardly be considered as an in-

stance of Swarm Cognition. Note that all these considerations are under the assumption

that Swarm Cognition can model and help to understand the behaviour of a multi-cellular

individual.

3 Problem definition

This section specifies the objective, hypotheses, and assumptions related to the proposed

model. The problem to solve is primarily the one of minimising the perceptual resources

required to support the proper execution of the action selection process controlling the em-

bodied agent, hereafter simply called robot. Saving time in perception enables faster robot

motion. The ultimate goal is to show that this complex cognitive problem can be easily

managed by recurring to the swarm metaphor.

A perceptual resource is said to be expended when a given object detector is applied to

a given region of the robot’s visual input. Minimising perceptual resources expenditure is

achieved by reducing the number of detector applications to the point from which the action

selection process would no longer be sufficiently informed for a proper decision making.

Supported by the previous section, here we describe the three main hypothesis tested in

this work. The first hypothesis is that the considered problem can be solved by allowing both

perceptual and action selection processes to evolve in synergy, as it should promote the ap-
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plication of the detector, i.e. focus attention, on pixels whose positive detection most impacts

the action selection process, and consequently helps it in rapidly stabilising its output. If the

robot’s goal is to move forward, detecting an obstacle in its frontal region will compel a sud-

den change from forward motion to a turn. Conversely, an obstacle detected on the robot’s

side would effect no change in action selection. Hence, finding first the frontal obstacle has

the highest impact on the action selection process and consequently helps the robot reach-

ing the correct decision faster. The second hypothesis is that to ensure that the attentional

process is robust, it should be parallel and provided with self-organising properties. Given

the unpredictability of the environment, the complexity of taking into account the interaction

with the action selection process, and the difficulty of defining a fixed speed-accuracy trade-

off, turns the alternative of using an optimal covert visual attention policy into an infeasible

solution. Finally, the third hypothesis is that an adequate formalism to model this parallel

covert visual attention process is the one describing the collective behaviour exhibited by

social insects.

In previous work (Santana and Correia 2010), we have already tested and confirmed

these three hypotheses in the context of simulated robots performing local navigation in 2-D

noise free environments. This article tests the three hypotheses on a more generalised setup,

namely, on a physical robot performing local navigation in 3-D noisy environments. In turn,

the added complexity of such an experimental apparatus demands some adaptations to our

previous work (Santana and Correia 2010). Concretely, the model has been extended with

an evidence accumulation mechanism (see Sect. 4.3.3) to better handle the noisy nature

of the sensory input. This is a fundamental mechanism since, without it, noise impinging

the robot’s sensors would propagate through the system, hampering the maintenance of a

coherent cognitive representation. We also needed to handle the projective nature of the

employed vision sensor in a rough terrain.

Without loss of generalisation, the robot used to validate the hypotheses is a wheeled ro-

bot equipped with a stereoscopic vision sensor that must be able to perform local navigation

in rough terrain. Hence, the object detector in this case is a 3-D obstacle detector, whereas

the action selection process is a fast obstacle avoidance algorithm. The following sections

detail these assumptions.

3.1 The Ares robot

The robot employed in this study, i.e., the Ares robot (Santana et al. 2008), is a vehicle

with four independently steering wheels (see Fig. 1). Although it enables the use of several

locomotion modes, here only the Double Ackerman mode is considered. In this mode, the

robot moves in a car-like way, but with both front and rear wheels steering symmetrically.

This gives the robot a considerable manoeuvrability.

Off-road terrains are uneven and densely populated with protuberances, such as small

rocks (see Fig. 1). In these situations the robot exhibits considerable tilt levels, which makes

the relative position and pose of the sensor with respect to the ground plane to vary as the

robot moves.

The robot is equipped with two cameras calibrated to perform stereoscopy. This means

that each pixel from each camera is associated to a 3-D coordinate in the camera’s frame

of reference, provided that stereoscopy could be computed for the pixels in question (see

below). The left input image, L, is taken as reference and hereafter simply called visual

input or frame.

Given that stereoscopy can be computed for the pixel p′ in L, this pixel can be back-

projected so as to obtain the corresponding 3-D point p. With a projection matrix P obtained
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Fig. 1 The Ares robot. In the depicted situation the Ares robot is stepping an obstacle with its frontal left

wheel, which results in non-zero pitch and roll angles with respect to the ground plane

Fig. 2 (Colour online) 3-D reconstruction process. (a) Left input image obtained with stereoscopic vision, L.

(b) Reconstructed 3-D model limited to a depth of 10 m. The 3-D point p is projected onto L in pixel p′ .

The red line corresponds to the optical axis of the left camera. Note the absence of computed depth in many

pixels, in particular along the homogeneous vertical structure on the left and frontal walls

from calibration, it is possible to do the inverse operation, i.e., to determine which pixel p′

in L is the projection of the environment’s 3-D point p (see Fig. 2).

The distance between both cameras is 30 cm. This enables sufficiently accurate depth

computation between 2.5 m and 20 m. This means that obstacles close to the robot are

not perceivable, making mapping an essential asset for this configuration. Two additional

aspects render stereoscopic vision a challenging sensory modality. First, absence of 3-D

information in low texture and under illuminated surfaces is rather common (see Fig. 2). This

owes mostly to the difficulty of stereo processing to match both left and right camera images

in those regions. Second, high levels of noise are common with poor lighting condition and

depth computation error grows quadratically with range. Hence, in order to operate with a

stereoscopic vision setup, a perceptual system must be highly robust.

3.2 Mapping between world and sensor coordinate frames

In this study, robot actions are considered to be linear trajectories radially overlaid on the

ground in front of the robot, i.e., parallel to plane zgxg and with yg = 0 (see Fig. 1). To allow

obstacle search to be affected by action selection, these linear trajectories must be projected

onto L.
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Fig. 3 Action set parallel to the ground plane in (a), and respective projection on L in (b). In this situation,

the robot is stepping an obstacle with its frontal left wheel (as depicted in Fig. 1). Note that the projected

action set (black lines) is compensated for the robot’s non-zero roll and pitch angles. The central line in all

projected images correspond to the straight ahead motion. Note that even with considerably different pitch

angles, as in (c) and (d), the projected lines terminate roughly in the same image regions. That is, they are

clearly relative to the ground-plane coordinate system defined by {xg, yg, zg}, and so invariant to the robot’s

pose

This projection requires the estimation of transformation Q, between the ground’s frame

of reference, {xg, yg, zg}, and the camera’s frame of reference, {xc, yc, zc}. Due to terrain’s

roughness, the 4 × 4 homogeneous transformation matrix Q is computed at each frame by

recurring to a robust ground-plane fitting process (Santana et al. 2009). After transform-

ing with Q the linear trajectories to the camera’s frame of reference, these can finally be

projected onto L with projection matrix P (see Fig. 3).

In order to reduce the chances that obstacles in the environment may be confounded with

the terrain itself during the ground-plane estimation process, the pixels of the obstacles that

have been detected in the previous frame are discarded from the process (van der Mark et

al. 2007).

3.3 Obstacle detection

In this study, obstacles are detected in a pixel-wise way over the visual input L. Concretely,

a pixel is said to be an obstacle point whenever the pixel’s associated 3-D point is at a

height from the estimated ground plane that cannot be climbed by the robot (Santana et al.

2009). Formally, the detection result at pixel p′
a = (xa, ya), with the corresponding 3-D point

pa = (Xa, Ya,Za), is given by,

D
(

p′
a

)

=

{

1 if d(pa, (a, b, c, d)) > hmin + βZa

0 otherwise
(1)

where, d(pa, (a, b, c, d)) is the orthogonal distance between point pa and estimated ground

plane axc + byc + czc + d = 0, as computed in Sect. 3.2. Note that pa is given relative to
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{xc, yc, zc}. The term βZa makes the detection threshold grow with the range, Za , of the

point in question. This mechanism compensates for the range-dependent error growth in

the 3-D reconstruction process. Thus, it reduces the potential for false positives in the far

field. The lack of 3-D information in some pixels results in the impossibility of applying the

detector in these cases.

Note that the simplicity of this detection method comes at the cost of only being applica-

ble to moderately rough terrain. More complex detectors (see, e.g., Santana et al. 2010),

which are required for more demanding environments, could be used in the model without

any specific customisation. In fact, the more complex the detector, the more expensive is its

computation, and consequently the more important is to focus the robot’s attention.

3.3.1 Motion estimation

A key component of any complex robotic system is motion estimation. With it, the system

will be able for instance to produce local maps of the environment.

Frame-to-frame robot motion, i.e., translation and rotation, is computed with a particular

model (Santana and Correia 2008) of visual odometry (Matthies 1989; Agrawal and Kono-

lige 2006). Visual odometry basically estimates the rigid body transformation matrix M that

explains the change in position of notorious 3-D points in the environment across frames.

The major advantage of this method over others, like dead-reckoning, is that it is fully syn-

chronised with the sensor data feeding the perceptual process. This results in very accurate

registration of information across frames.

4 Model description

This section starts by mapping the biological metaphor of foraging strategies in social insects

to the concepts of parallel covert visual attention to be employed in the proposed model. In

short, the metaphor is exploited to provide the model with the self-organising properties

essential to maintain a robust parallel focus of attention. After presenting the biological

inspiration, the proposed model is described. Since it is built upon authors’ previous work,

it is not described with full detail. For additional information the reader is referred to the

previous publication (Santana and Correia 2010).

4.1 Biological inspiration

Covert visual attention is mostly about parallel search of objects in the robot’s visual input.

A remarkable metaphor for this process is the one of army ants engaging in foraging behav-

iour (see Sect. 2.4). Assuming that the environment where these ants inhabit corresponds to

the robot’s visual input, each ant can be seen as an individual covert visual attention process.

As a consequence, their collective behaviour can be considered as a parallel covert visual

attention process.

Following this metaphor from the natural world, the visual process in our model is com-

posed of a swarm of simple homogeneous virtual agents that inhabit the visual input of the

robot. These agents are probabilistically created (recruited) and therefore they receive here-

after the designation of p-ants. They search (forage) the robot’s visual input along those re-

gions where detected obstacles are more likely to stronger affect the action selection process.

Hence, p-ants operate on a by-need basis being driven by the action selection process. In the
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case of local navigation, the utility of perceiving a given region of the visual input is re-

lated to the utility of navigating on its corresponding region of the environment. In the pro-

posed model, these regions are associated to the projected linear trajectories, as described in

Sect. 3.2.

As in natural ants, p-ants do this search in a stochastic and coordinated way. By not be-

having greedily, the system is more robust to unforeseen situations and faster in adapting to

contextual changes. P-ants interact through stigmergy, i.e., they interact through perceptual

shared mediums, for better coverage and tracking of detected obstacles. This allows the co-

existence of positive and negative feedback loops that lead to robust collective behaviour.

In conclusion, random fluctuations and both positive and negative feedback, which are nec-

essary ingredients for self-organisation to occur (Bonabeau et al. 1999), are included in the

model.

4.2 Proposed model

The proposed model is decomposed into two interacting processes, one for perception and

another for action selection. The perceptual process includes the parallel covert visual at-

tention aspects. Figure 4 illustrates the connectivity between both processes. Basically, after

receiving a new frame, L, the perceptual and action selection processes interact (thicker

arrows) for imax iterations before a final motor action decision is reached and eventually

engaged. These interactions occurring between both processes allow them to progressively

unfold in parallel, and consequently, to enable accurate deployment of visual attention.

At each iteration, the action selection process sends a message to the perceptual process

with an action utility vector, u = (u1, u2, . . . , uk), where uj ∈ [0,1] is the utility of perform-

ing action j , and k is the cardinality of the robot’s action repertoire. The action utility vector

is computed according to a desired heading of motion, h, and constrained by information

about free-space connectivity of the local environment, C, which has been sent by the per-

ceptual process in the previous iteration. This set encompasses range information regarding

those radial sectors of the local environment that contain free-space for robot motion. In this

study, actions uj are defined as linear trajectories centred on the robot and directed outwards

in a radial pattern (see Sect. 3.2). Hence, the utility of each possible action is defined as the

value of moving the robot along the corresponding linear trajectory given a goal location,

pgoal, and obstacles disposition in the environment. The more directed a given linear trajec-

tory is to the goal location, the higher its utility. The closer an obstacle is to the robot along

a given linear trajectory, the lower the trajectory’s utility. The final utility is a combination

of both factors.

At each iteration, the perceptual process uses the just received vector u to iterate its

search for obstacles on a by-need basis (see Sect. 4.3). The positions of obstacles detected

Fig. 4 Building blocks of the

proposed model, adapted from

Santana and Correia (2010)
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since the arrival of the current frame are accumulated in set O . This set is then used to

compute C. Finally, C is sent back as a message to the action selection process so as to

induce its next move. The action with highest utility at the time the maximum number of

iterations is reached is passed to the low-level motion controller through a low-pass filter.

This way, sudden changes at the system’s output are smoothed to avoid jitter at the actuators

level.

4.3 Perceptual process

The perceptual process is composed of a set of p-ants, A, whose elements individually im-

plement a covert attention process. The size of this set is zero at the first frame and varies

along iterations.

At each iteration, the perceptual process starts by appending new p-ants to the set A (see

Sect. 4.3.1). Then, each p-ant moves, according to its set of behaviours (see Sect. 4.3.2),

updating its 2-D position in the visual input. Possibly, some of the p-ants will find an obstacle

to track across iterations and even frames. In between frames, the position of every p-ant is

updated to compensate for any robot motion that has occurred (see Sect. 4.3.4). This way,

its position is kept relative to the environment and consequently invariant to robot motion.

This update is done by applying to p-ant’s 3-D position, obtained with stereoscopy from its

2-D position in the visual input, a transformation matrix representing the robot motion (see

Sect. 3.3.1). The transformed 3-D point is then projected back onto the visual input with a

projection matrix. In the process, due to robot motion, this projection may fall out of the

visual input, which means that the p-ant has been moved out of the robot’s visual field of

view. If at that moment the p-ant was tracking an obstacle it is now said to constitute part of a

body-centric local map. To maintain the local map updated (i.e., body centred), p-ants in that

situation are also motion compensated in between frames. If a given part of the environment

is revisited, the projected positions of some of these p-ants will be again within the visual

field of view. These p-ants are then reactivated in order to track their associated obstacles in

the visual input. At the end of each iteration, the 3-D positions of all p-ants that are tracking

an obstacle, either in or out of the robot’s visual field of view, may be used to extend the

obstacles set O . Evidence accumulation (see Sect. 4.3.3) on the presence of an obstacle is

used by each p-ant to determine whether or not to append its position to set O .

For this process to operate, every p-ant a ∈ A needs to maintain state information across

iterations and frames. This information includes p-ant’s body-centred 3-D position, pa, and

its 2-D projection onto a plane parallel to and centred on visual image L, p′
a. With projection

matrix P, p′
a can be computed given pa. Hence, p′

a is a 2-D vector defined in the reference

frame of L. With stereoscopy, pa can be computed given p′
a, provided that p′

a ∈ FOV , where

FOV is the set of possible positions in L. If p′
a /∈ FOV or stereoscopy failed to back-project

p′
a, then pa can only be estimated, such as through compensating its previous state with the

transformation matrix representing the robot motion estimate, M. Since with P it is possible

to obtain p′
a from pa, one can then assess when the p-ant re-enters the visual input, i.e., when

p′
a ∈ FOV .

The following sections details how the perceptual process works in each iteration.

4.3.1 P-ants creation and removal

With the exception of the first iteration in each frame, the set of p-ants, A, is extended by

creating new p-ants as a function of the incoming action utility vector, u. This set is empty

in the first frame. P-ants are not created in the first iteration of each frame because, at that

time, vector u is not yet updated (set C not yet computed).
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The higher the robot’s speed, s ∈ [0,1], and the utility of a linear trajectory, j , the higher

the chances of creating a corresponding p-ant, aj , in L. The initial 2-D position of this p-ant,

p′
a, is the point where the linear trajectory j projected onto L intersects the bottom row of

L (see Sect. 3.2). This way p-ants start their search for obstacles in the close vicinity of the

robot.

The newly created p-ant aj is endowed with an initial energy level, ρ, which is reduced

by one unit in each iteration and restored whenever the p-ant considers to be on an obstacle.

With zero energy, the p-ant is removed from the system, A ← A\{aj }, to avoid memory and

computation to grow unbounded.

4.3.2 P-ants behaviours

Figure 5 illustrates the finite state machine responsible for the switching of the behaviours

ruling each p-ant’s activity. The following describes these behaviours as well as their transi-

tions.

After appending new p-ants to A, every p-ant a ∈ A looks for obstacles at its position p′
a.

To reduce computation, it first looks at a perceptual shared medium S, which represents

obstacles detected previously in the current frame by any p-ant. If p′
a is not represented in S

and there is 3-D information associated to that point, the obstacle detector D(p′
a) (see (1)) is

called and the result is stored in S. In the absence of 3-D information the point is considered

without obstacle.

At creation time, every p-ant a starts in search behaviour. As depicted in Fig. 6(a), each

iteration of this behaviour performs a simple stochastic motion step on L along the associ-

ated projected linear trajectory,

p′
a ← p′

a + v′
a (2)

where v′
a is a velocity vector with angular direction λ1 · N(0,1) and magnitude λ2 · N(0,1),

with N(0,1) sampling a number from a Gaussian distribution with mean 0 and variance 1,

Fig. 5 Finite state machine

representing each p-ant’s activity.

Ovals and links represent

behavioural states and their

transitions, respectively. The

labels associated to each

transition specify the conditions

for the transitions to occur
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Fig. 6 (Colour online) Detection, diffusion and evidence accumulation example. The images correspond to

a small region of the current frame. Red dots are p-ants in search behaviour. Green dots refer to those p-ants

that are in track behaviour. The lighter the green the greater the evidence on the presence of the obstacle. The

vertical lines correspond to a sub-set of projected linear trajectories with positive utility. Note that only at

frame n + 3 these lines disappear, showing the progressive accumulation of evidence on the presence of the

obstacle before reporting it, i.e., appending it to O . It is also possible to depict the diffusion process in (b),

triggered by a single p-ant (red dot off the obstacle), where p-ants are cloned to better cover the obstacle.

Red dots on the obstacle represent p-ants executing local search behaviour around a given anchor point,

represented by the connected yellow dots. This occurs when the region is already too cluttered with other

p-ants. The activity level in the perceptual shared medium, R,which is used by p-ants to assess the level of

clutter and to help each other on finding the obstacle when in local search, is depicted in the bottom row.

Videos with situations as the one depicted in this figure are available as online supplementary material

and λ1 and λ2 are empirically defined scalars. High λ1 and λ2 values facilitate fast detection

of large obstacles, at the cost of missing smaller ones. Small values result in slower, though

finer, detection. If while in this behaviour the p-ant moves out of the visual input boundaries,

p′
a /∈ FOV , the p-ant is removed from the system, i.e., A ← A\{a}. This may happen due to

p-ant’s motion or due to the influence of the robot motion compensation process.

If an obstacle is found by a p-ant while in search behaviour, it switches to track behav-

iour. As illustrated in Fig. 6(b), in this new behaviour, p-ants are allowed to clone themselves

for rmax times. A single cloning is attempted per iteration by randomly selecting a position

in the neighbourhood (radius between 10 and 30 pixels) of the p-ant’s current position. If the

randomly selected position contains an obstacle and it is not too cluttered with other p-ants,

then a clone is created and initiated on it. A clone inherits the number of replications of its

ancestor so as to control the diffusion process, whose goal is to rapidly cover the detected

obstacle.

A p-ant assesses the level of cluttering by inspecting the level of activity at its position

on a perceptual shared medium, R. This 8-bit structure has the size of L. Therefore, p-ant’s

position there corresponds to p-ant’s position on L. The activity level is a clutter measure

because all p-ants in track behaviour increase the local activity of the perceptual shared

medium R at the corresponding locations. Hence, R represents pheromone directly emitted

by p-ants, and not a chemical they lay in the environment. For a p-ant a, this is done by

adding to R a top-view pyramidal shape of top magnitude 20 and linear decay (0.9) out-

wards, centred on p′
a. If the activity at p′

a in R is higher than an empirically defined scalar,
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R(pa) > η, it is said that the p-ant’s position is too cluttered. Figure 6(f–j) traces the evolu-

tion of shared medium R for a given situation.

Besides cloning, p-ants in track behaviour have no additional activity. Nevertheless, ro-

bot motion compensation (see Sect. 4.3.4) will maintain their positions relative to the as-

sociated obstacles, independently of robot motion. As the robot moves, these p-ants will

eventually leave the robot’s visual input and contribute to the robot’s spatial working mem-

ory with probability ψ . That is, not all p-ants leaving the visual input become part of the

spatial memory. This helps on the regulation of the computational load by reducing the

sampling of the peripheral environment.

Being inaccurate, the estimated robot motion is usually insufficient to completely cancel

the effects of robot motion on the relative position of p-ants. The outcome is that p-ants

eventually loose track of the obstacles. To cope with this, any p-ant in track behaviour

that considers to have sufficiently accumulated evidence of being no longer on an obstacle

switches to local search behaviour. As will be shown in Sect. 4.3.3, evidence grows and

decays as the obstacle detector returns positive and negative, respectively. As a result, if

evidence in obstacle presence is high, transient obstacle detection negatives may not be

sufficient to engage behaviour switching. This is key to deal with noisy sensory data.

The switch to local search behaviour also occurs if the p-ant in position p′
a determines

that it is on an obstacle too cluttered with other p-ants, R(p′
a) > ζ . By making η < ζ , a sort

of hysteresis is implemented, and thus massive fluctuations of neighbouring p-ants entering

and leaving local search behaviour are avoided.

As depicted in Fig. 6(c–e), when in local search behaviour, a given p-ant a performs

a random walk around an anchor point, z′
a, whose initial position is defined as the p-ant’s

position at the time local search behaviour was initiated, z′
a ← p′

a. Hence, with the goal of

re-detecting a lost obstacle or of finding a less cluttered region, R(p′
a) < η, this behaviour

randomly changes the position of the p-ant around the anchor point as follows,

p′
a ← z′

a + σa

[

N(0,1),N(0,1)
]T

(3)

where σa ← min(σa +1, l) and N(0,1) samples a number from a Gaussian distribution with

mean 0 and variance 1. By increasing σa at each iteration, the local search spreads up to the

upper-bound l, which constrains the search to avoid migration of p-ants between obstacles.

The anchor point changes to the p-ant’s current position, z′
a ← p′

a, whenever the clutter

level there is higher than the clutter level at the current anchor’s location, yet not too high,

η > R(p′
a) > R(z′

a). This directs the local search towards uncluttered regions where other

p-ants reported the existence of an obstacle. If it is not possible to move the anchor point,

p-ant’s energy level is dramatically reduced by an amount υ . Since p-ants may be in local

search behaviour across frames, the anchor points must be compensated for the robot’s

motion the same way p-ants positions are. If a p-ant in local search behaviour happens

to detect a not too cluttered obstacle, R(p′
a) < η, it switches to track behaviour. Finally,

p-ants in local search behaviour that leave the robot’s visual input are removed from the

system. This may happen due to p-ant’s motion or due to the influence of the robot motion

compensation process.

4.3.3 Evidence accumulation

In the previous section nothing was said related to the update of the obstacles set O . This

is done by having every p-ant a in track behaviour, whose evidence on the presence of

an obstacle on its position is sufficiently high, appending its 3-D position, pa, to O . This
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accumulation of evidence before reporting an obstacle is important to reduce sensitivity to

noise in the 3-D point cloud. Otherwise, noise in the sensory input would propagate to the

action selection process. The following describes how evidence is integrated by each p-ant.

At the first iteration of each frame, every p-ant a that (1) is in track behaviour, (2) is

within visual input boundaries, p′
a ∈ FOV , and (3) its position has associated 3-D informa-

tion, updates its evidence on obstacle presence, ya , according to the following equation,

τ ẏa = −ya + γD
(

p′
a

)

R
(

p′
a

)

(4)

where τ and γ are empirically defined scalars, R(p′
a) ∈ [0,1] is the activity level of the

perceptual shared medium R at p-ant’s position, p′
a, and D(p′

a) returns the result of the

pixel-wise obstacle detector (see above).

With this system, evidence decays to zero when an obstacle is not found for several

frames, provided that 3-D information is available. This condition ensures that detected ob-

stacles are not forgotten just because stereoscopy is no longer able to compute the obstacle’s

3-D position. This allows for instance tracking an obstacle even when it is too close to the

robot to be sensed by both left and right cameras.

If the obstacle is found for several frames, then the system converges towards the fixed

point y|ẏa→0 = γ R(p′
a). This means that evidence grows faster when the level of activity in

the perceptual shared medium R is higher, i.e., when other p-ants also detect the presence of

the obstacle. Finally, if ya > α, where α is a confidence threshold, then the p-ant is confident

enough on the existence of an obstacle in its position, and so it can be reported to the action

selection process, i.e., appended to O .

To append an obstacle to O , it is necessary to project the corresponding 3-D point, which

is in the camera frame of reference, {xc, yc, zc}, to the ground-plane frame of reference,

{xg, yg, zg} (see Sect. 3.2). This way the obstacle is represented in the ground coordinate

system, and so it affects the action selection process in a robot’s pose invariant way.

Figure 6 illustrates a situation where: (a) p-ants are guided by the action selection

process; (b) they find an obstacle and a diffusion process is initiated; (c), (d) evidence is

accumulated for some frames; (e) and finally the obstacle is reported to the action selection

process.

A probabilistic framework could also be considered for evidence accumulation, provided

that a better noise description would be available. Nevertheless, the presented dynamical

system implements a leaky-integrator and consequently a sound mechanism in terms of

neural support. Moreover, allowing the collective to influence the individual decision is also

sound as it implements a sort of lateral influence between neural structures. In fact, the use of

stigmergy allows this to happen without the explicit modelling of a large set of connections.

4.3.4 Motion compensation

Motion compensation is performed in the first iteration of each frame by first transform-

ing the 3-D position of every p-ant according to the robot motion estimate matrix M (see

Sect. 3.3.1). Then, this transformed 3-D position is projected onto visual input L according

to projection matrix P. The result is the p-ant’s motion compensated position in L. See Fig. 7

and Fig. 8 for an illustration of the motion compensation used to update the spatial memory.

Allowing p-ants to be updated when out of the visual field of view to maintain spatial

memories is important so as to avoid that the action selection process operates with a myopic

view of the environment. Moreover, it allows the system to reduce perceptual requirements

when revisiting a given environment (refer to our previous work on simulation (Santana
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Fig. 7 Motion compensation example. (a) The robot moves toward the target. (b) A set of p-ants detect a

large obstacle. (c) Some frames later the robot is tilted and these p-ants are obligated to track the obstacle

outside the sensor’s field of view. (d) When the tilt angle is zeroed these p-ants are once again in the sensor’s

field of view and consequently projected onto L. At that time, p-ants update their 3-D position and confirm

the presence of the obstacle. The smaller number of p-ants, when compared to (b), is a consequence of the

probabilistic removal of p-ants when they leave the field of view. The figure at the bottom of each image is a

body-centred representation of the detected obstacles and linear trajectories. The darker the linear trajectory

the higher its utility, as casted by the action selection process. It is possible to see the stability of the repre-

sentation independently of the robot’s current pose. Videos with situations as the one depicted in this figure

are available as online supplementary material

Fig. 8 Spatial memory operation example (same colour code as in Fig. 7). The example given refers to a

situation where the robot has to move towards a goal location 30 m ahead of its start position. To reach its

goal, the robot circumnavigates the large obstacle area visible in (a) and (b), which as a consequence of

the robot’s motion leaves the sensor’s field of view in (c) and (d). Without the spatial memory, the action

selection process would not be able to take into account the obstacles outside the sensor’s field of view, and

consequently it could lead the robot towards a collision. Videos with situations as the one depicted in this

figure are available as online supplementary material

and Correia 2010) for experimental results showing this benefit). The fact that not all p-ants

leaving the robot’s visual field of view are kept in the system and that p-ants have a limited

life span permits execution time to be kept low (see Sect. 5.2). In conclusion, the ability of



62 Swarm Intell (2011) 5: 45–72

p-ants to operate as elements of the spatial working memory does not conflict with the idea

of minimal perception.

5 Experimental results

5.1 Experimental setup

Small Vision System (SVS) (Konolige 1997; Konolige and Beymer 2007) and OpenCV

(Bradski and Kaehler 2008) were used for stereo computation and other low-level computer

vision routines on the 320 × 240 input images, respectively. Stereo computation uses an

area-based L1 norm (absolute difference) correlation method, operating over Laplacian Of

Gaussian (LOG) transformed images. The result is interpolated to a precision of 1/4 pixel

and the correlation window size is 11 × 11. To increase the amount of information available

in the point cloud, the disparity calculation is carried out at the original resolution, and also

on images reduced by 1/2. With this multi-scale approach, the extra disparity information

is used to fill in dropouts in the original disparity calculation.

SVS also provides a set of standard filters to reject 3-D points that are potentially erro-

neous at the cost of reducing too much the density of the 3-D point cloud in poorly tex-

tured environments. Briefly, according to a threshold fc a confidence filter eliminates stereo

matches that have a low probability of success due to lack of image texture. A uniqueness

filter performs a consistency check to ensure that the minimum correlation value must be

lower than all other match values by a threshold fu. Finally, a speckle filter eliminates small

disparity regions that are not correct by imposing a threshold fs on the minimum region

size. The three filters are used with fc = 12, fu = 10, fs = 400.

The following describes the model’s parametrisation used in the experiments. With

γ = 1, τ = 0.8, α = 0.6, the dynamics of the confidence level in (4) is such that spurious

noise could be effectively filtered out, without imposing a compromising latency to obsta-

cles registration. Assuming a 10 Hz frame rate, with a maximum number of iterations per

frame imax = 10, and a p-ant’s top energy ρ = 5000, obstacles are maintained in the ro-

bot’s spatial memory for about 50 s. This timing is sufficient for local obstacle avoidance.

The strong energy decay occurring when local search is engaged, i.e. υ = 100, guarantees

that p-ants in that situation are removed from the system before a new frame is acquired.

To produce an adequate speed-accuracy trade-off, the stochastic motion control parameters

from (2), λ1 and λ2, have been empirically defined as 0.3 and 24, respectively. The number

of times a p-ant is allowed to clone itself is rmax = 5. The cardinality of the robot’s action

repertoire, k, is 80, which is sufficient to ensure navigation in cluttered environments. The

control parameters to determine when an obstacle is too cluttered with p-ants, η and ζ , have

been set to 40 and 250, respectively. This ensures a good coverage of the obstacle with p-

ants without too much overlap. The control parameter to avoid migration of p-ants between

obstacles when performing a local search, l, has been set to 20. Finally, the probability of re-

moving a p-ant when it leaves the visual input is ψ = 0.4. This value establishes an adequate

trade-off between computational efficiency and the density of the robot’s spatial memory.

5.2 Experiments

To validate the proposed model the robot was asked to perform at a speed of s = 0.5 ms−1 a

set of five runs on the off-road environment depicted in Fig. 9. In each run, the robot started

from a different initial position and its goal was to reach a location 30 m ahead. Although
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Fig. 9 Experimental site. (a) The test site overlaid with approximate paths executed by the robot in two runs.

In each run, the robot started from a different position and moved autonomously to reach the specified final

position, represented by a circle. (b) Situation where the difficult conditions faced by the robot are evidenced:

dense and tall vegetation, which often promotes the occurrence of false positives

Table 1 Results summary
Percentage of analysed pixels 0.9 ± 0.6 [%]

Control system computation time 112.1 ± 5.4 [ms]

Swarm computation time (ts ) 1.7 ± 0.6 [ms]

ts /full analysis computation time 0.37 ± 0.17

mostly planar, the environment includes regions of variable slope. This, in addition to the

considerable amount of tall vegetation, results in a considerable proneness for false positives

occurrence.

Table 1 summarises the quantitative results obtained from the experiments. The robot

reached the goal location in every run by negotiating all obstacles between itself and the

goal. The executed paths were smooth and short, i.e., the robot avoided obstacles soon

enough and smoothly followed their contour whenever necessary. This means that the sys-

tem was capable of rapidly detecting obstacles at distance and kept tracking them in memory.

Notice that whenever the robot followed the contour of obstacles outside its field of view we

know that it is tracking them in memory.

Visual attention refers to the ability of accurately focussing perceptual resources where

these are the most needed, according to the action selection process. The fact that the robot

exhibits a near-optimal behaviour, i.e., it produces a highly directed motion towards the goal

(see Fig. 9), with only 0.9% of analysed pixels on average per frame, is a clear demonstration

that the model produces accurate visual attention. Note that accuracy here stands for being

able to focus precisely on the regions of the current frame that are the most important for

the action selection process.

For the following analysis we split the time spent by the swarm infrastructure from the

one spent by p-ants when applying the obstacle detector to the image in their current posi-

tion. Were the swarm’s computation time larger than the one taken by a full image analysis,

the benefits of the proposed model would be marginal. This is not the case, as it only requires

37%, on average, of the time spent by the brute force approach.

As the complexity of the obstacle detector grows, the less significant is the computation

time of the swarm infrastructure to the overall cost. Note that the obstacle detector used by p-

ants is actually the simplest one for a stereoscopic setup, as it only requires the computation
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Fig. 10 Context-dependent load balancing results. Plots refer to the total number of p-ants during each run

of a distance to the ground plane. Hence, the reported results can be understood as the

baseline performance of the proposed model. A final remark to say that the whole control

system operates almost at 10 Hz, which showed to be sufficient to maintain a stable control

of the robot at a speed of 0.5 ms−1. This cost includes swarm update, visual odometry,

ground-plane estimation and 3-D reconstruction.

One recognised characteristic of self-organised systems is their robustness to varying

contexts. In this work, p-ants self-organise to build visual attention and spatial memories

as the environment unfolds in the sensor’s field of view. A by-product of this process is

the adaptation to the context, which can be observed by the number of p-ants along time

(see Fig. 10). A raise in the number of p-ants corresponds typically to situations where new

obstacles are detected. When these are actually noise, their associated p-ants are eventually

removed, resulting in a corresponding drop in their cardinality. A smoother decay in the

quantity of p-ants usually refers to the removal of p-ants that have reached zero energy. Thus,

the variability of the number of p-ants is a sign of system’s adaptation to the environmental

context and robot-environment interaction history.

Figure 11 shows the results of a comparison between the proposed model for visual

attention and a random sampling of the visual input. From the comparison stands out that in

7% of the tested frames the random policy outperforms the swarm-based policy. However,

this percentage corresponds to situations where no obstacles are present in sensor’s field

of view, meaning that the comparison is made solely on the basis of false positives and

consequently is of little value.

One can then conclude that the results clearly show the benefits of the swarm-based

solution guided by the action selection process over a baseline random one. With a larger

field of view and a higher resolution, i.e., in a situation where the chances of randomly

selecting an obstacle pixel are smaller, it is reasonable to assume that the comparison would

further highlight the advantages of the proposed model.

Figure 12 shows that without the evidence accumulation mechanism, all false positives

caused by the noisy nature of the sensory input are propagated to the action selection process

and consequently to the actuators. Conversely, with evidence accumulation the actuators are

barely affected by sensor noise. The inertia introduced by the mechanism to remove noise

could cause latency in the sensory information processing. However, the proper behaviour
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Fig. 11 Comparison between the proposed model and a random policy. The bins of the histogram refer to the

ratio between the detection rate of the proposed method and the detection rate of a random policy, over the set

of five runs. Detection rate is defined as the ratio of analysed pixels that are reported as obstacles. The higher

the detection rate the more focused and effective is the attentive process. For each frame, the random policy

operates by randomly sampling as much pixels as those that have been analysed by the swarm-based one in

the same frame. That is, this test compares the effectiveness of each method for the same computational cost.

The first bin (light grey) corresponds to the situations where the random policy outperforms the swarm-based

one, 7% overall

Fig. 12 Comparison between model with (α = 0.6) and without (α = 0.0) evidence accumulation. The

comparison is based on statistics obtained from running each configuration five times on a pre-recorded

video sequence. The video sequence was acquired by tele-operating the robot along the straight ahead ≈25 m

motion overlaid in (a), whose final point is represented by a circle. To magnify the differences between both

configurations, the obstacle detector’s threshold is not set to grow with range, i.e., β = 0 in (1). The action

selection’s goal in both configurations is to move forward. No obstacles along the path inhibited the forward

motion from being the one with highest utility. Therefore, in the absence of false positives influencing the

action selection process, the latter would output a zero steering. The bars and error bars in (b) correspond to

the average and standard deviation of the steering angle for each configuration

exhibited in the previous experiments allows us to conclude that this is not the case. Note

that the evidence accumulation process is affected by the activity of the shared medium

R, thus implementing a sort of implicit multi-agent consensus protocol. This is essential

to help discriminating actual obstacles from spurious isolated noise, without imposing a

slow evidence accumulation dynamics to every situation. Moreover, the use of this form of
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implicit communication (stigmergy) to reach a sort of collective decision is a feed-forward

mechanism without computational overhead.

A set of representative videos with the proposed model’s output is available as online

supplementary material. For complementary experimental evidence on simulation regarding

the key role of some aspects of the model, such as stochastic vs. deterministic behaviour,

memory-based vs. pure reflexive operation, parallel vs. a pure greedy deployment of p-ants,

please refer to our previous work (Santana and Correia 2010).

6 Discussion

A p-ant represents a covert focus of attention to a given portion of the visual input, upon

which a task-specific detector can be applied. Analogously, a natural ant can be seen as a

mobile sensor that locally senses the environment for the presence of food items. Natural

ants reinforce pheromone trails leading to fruitful locations so as to promote the rate at

which food items are returned to the nest. P-ants also use a form of pheromone (activity in

shared medium R) to recruit other p-ants to the location of detected obstacles. A negative

feedback mechanism is included under the form of a too high pheromone concentration

repelling p-ants. This guarantees an adequate number of p-ants to aggregate around a given

obstacle.

Patterns in human brain may break when the visual input changes, but rapidly re-emerge

in order to track the dynamics of the environment. Ant colonies are also known to be en-

dowed with similar resilience in what regards tracking environmental changes. Thus, this

ability of ant colonies can be used as metaphor to model tracking behaviour in parallel vi-

sual processes. Tracking is the action of updating the estimate of a given obstacle’s position

in the visual input, which can change, for instance, due to motion. In general this requires

the tracking entity to perform a local search with the goal of re-detecting the obstacle. Ac-

cordingly, if a p-ant determines that it has lost the obstacle it has been focused on, it initiates

a local search. As their natural counterparts, p-ants also exploit other p-ants pheromones to

boost this search. In addition, p-ants are also sensitive to the robot’s motion, allowing them

to perform the respective compensation.

This ability of tracking and motion compensation endows the visual system with an in-

trinsically parallel and active spatial map of the environment. That is, each obstacle is rep-

resented by a set of p-ants that actively seek to maintain contact with it.

It is largely recognised that the amplification of random fluctuations is essential to al-

low the emergence of novel situations in foraging tasks, and in self-organised systems in

general (Bonabeau et al. 1999). In this line, p-ants’ behaviour also encompasses a proba-

bilistic component. We add the following advantages of using randomness in search tasks.

The goal of explicitly using random fluctuations allows p-ants to actively search the sur-

roundings with complex search patterns, without their explicit coding. Moreover, the use of

stochastic behaviour has the additional advantage of naturally handling noisy data. A deter-

ministic program would require an extensive exception handling facility, which tends to be

error-prone. In short, random fluctuations are essential to foster both cheap and robust de-

sign. In fact, the variability in neural response to identical stimulus has supporting evidence

to be key in explaining the nearly optimal human brain performance, in a Bayesian sense

(Ma et al. 2006). Refer to our previous work on simulation (Santana and Correia 2010) for

experimental evidence supporting the importance of random fluctuations in the proposed

model.

Neurophysiological studies reveal that when human subjects are requested to produce

fast response times, in detriment of accuracy, an increase in the baseline activity is observed
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in a network of brain areas related to decision, response preparation, and execution, in op-

position to sensory related ones (van Veen et al. 2008). The raise in baseline activity allows

reaching a decision threshold faster. In our model this is implemented by constraining the

time available, i.e., maximum number of iterations per frame, for the action selection process

to reach a conclusion. Until the time limit is reached, both action and perceptual processes

act the same way for each possible speed-accuracy context. We speculate that this is only

possible because the act of perceiving has the goal of pushing action selection forward, while

being led by it. By using a parallel approach, our model allows perception to robustly track

a good solution right from its onset and without the need of explicit context awareness. This

allows both perceptual and action processes to progressively unfold by analysing best pos-

sible actions in decreasing order. The result is a good solution whatever the speed-accuracy

trade-off. Thus, context modulation is emergent through the decision process, rather than

from an explicit context-dependent modulatory signal operating on the perceptual process.

As for the perception-action coupling aspect, the parallel visual process herein proposed

also maps seamlessly on the current understanding about the way covert attention operates.

First, the use of a parallel system follows the idea of multiple loci of attention (Pylyshyn

and Storm 1988; Doran et al. 2009). Second, being parallel, the approach robustly handles

the speed-accuracy trade-off (van Veen et al. 2008). Finally, the proposed model includes

a natural way of integrating noise, which is known to be very important to achieve near-

optimal brain operation (Ma et al. 2006).

From an engineering standpoint, it is useful to compare the proposed model with parti-

cle filters as employed for the problem of simultaneous localisation and mapping (SLAM)

(Thrun et al. 2005). In general, a particle in SLAM is a sample of the joint distribution

robot/map, where a map is composed by a set of Extended Kalman Filters (EKF), each as-

sociated to a given landmark of the environment. Conversely, a p-ant is associated to a single

landmark, and so it is more related to the role played by each EKF than with the particles

themselves. Differently from EKFs in SLAM, p-ants perform an active search in addition to

tracking, and do it guided by the action selection process. Moreover, while p-ants interact to

improve their individual performance, EKFs in particles are independent.

P-ants do not contribute to the estimation of the localisation of the robot, as particles do.

Local navigation being the focus of the proposed model, the localisation problem is han-

dled solely with dead-reckoning. While SLAM methods could deliver both localisation and

mapping, their high computational and memory cost makes them unsuited for parsimonious

local navigation. For a more comprehensive discussion refer to our previous work (Santana

and Correia 2010).

7 Conclusions

The first embodied realisation of swarm cognition was proposed and validated on the local

navigation problem for vision-based off-road robots. Although simulations are recognised

as important tools to validate minimalist cognition models (Slocum et al. 2000), we believe

that only when facing the burdens of the real world, i.e., uncertainty, a model is capable

of truly exhibiting its scalability. In this sense, this report is an important contribution to

the demonstration of swarm cognition as a promising approach to the synthesis of cognitive

systems.

The model considers that perceptual and action selection processes operate in an intricate

way to focus attention and consequently reduce the processed image area. The underlying

idea of the model is that perception should focus on the regions of the visual input where
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detected objects most impact the action selection process. This helps action selection to

rapidly stabilise its output. Motivated by the multiple covert attention hypothesis (Pylyshyn

and Storm 1988; Doran et al. 2009), covert visual attention is modelled with swarms of sim-

ple virtual agents, named p-ants, based on the social insects foraging metaphor. Basically,

p-ants perform local covert visual attention loops, whereas the self-organised collective be-

haviour maintains a robust global spatio-temporal coherence.

The benefits of these properties are confirmed by experimental results obtained with

a physical all-terrain robot performing local navigation and equipped with a stereoscopic

vision sensor. Concretely, the perceptual process is showed to be capable of providing the

action selection process with sufficient information for a proper decision making with only

0.9% of visual input being analysed. This accuracy of the focus of attention is credited to:

(1) the ability of action selection to guide perception on a by-need basis, as verified against a

random policy; and (2) the self-organising principles exhibited by the parallel covert visual

attention process, which provides the system with robustness and consequently the ability

of maintaining an adequate focus of attention across environments. Spatial memory, another

relevant asset of a cognitive system, was also shown to self-organise in the proposed model.

The evidence accumulation mechanism added to the model revealed to be essential on the

reduction of the sensitivity to false positives, which due to their high quantity would impair

cognitive behaviour.

On the one hand, these results show the feasibility and advantages of relying on self-

organisation to synthesise robust embodied cognitive systems, by recurring to the social

insects metaphor. On the other hand, they show that with such a model, autonomous ro-

bots can considerably reduce the cost of perception, which in turn fosters real-time per-

formance, computational parsimony, and energetic efficiency. This is an important asset to

enable miniaturisation, long-lasting operation, and higher robot speed. The proposed model

is a systematic method to exploit action selection information to maintain an accurate focus

of perceptual attention. It allows the robot designer to exploit the most adequate detector

for the task at hand without having to customise the method to cope with the computational

requirements, and consequently to lose some of its detection capabilities.

As future work, we plan to devise a parallel implementation of the model in dedicated

hardware, such as GPUs, thus fully exploiting the advantages of a multi-agent design. In

addition, we intend to generalise the model so that it can be applied to other perception

tasks.
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