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Self-organizing animal aggregations

• Animal groups with a high structural order

• The behaviour of individuals is so coordinated, that the group

moves as a single coherent entity

• Examples of self-organizing biological groups

– schooling fish

– herds of ungulates

– swarming insects

– zigzaging flocks of birds
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Mathematical models

• The existing models fall into 2 categories: Lagrangian and

Eulerian

• Lagrangian models: trajectories of all individuals of a species

are tracked according to a set of interaction and decision

rules

– a large set of coupled ODE’s

– a large set of coupled difference equations (discrete time)

• Eulerian models: the problem is cast as an evolution equation

for the population density field

– parabolic

– hyperbolic
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A nonlocal Eulerian PDE swarming model

• We study the PDE aggregation model in R
n:

– continuity equation for the density ρ:

ρt +∇ · (ρv) = 0

– the velocity v is assumed to have a functional dependence

on the density

v = −∇K ∗ ρ

– the potential K incorporates social interactions: attrac-

tion and repulsion

• The model was first suggested by Mogilner and Keshet, J.

Math. Biol. [1999]

• Literature on this model has been very rich in recent years
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Lagrangian description

N individuals

Xi(t) = spatial location of the i-th individual at time t

dXi

dt
= −

1

N

∑

j=1...N
j 6=i

∇iK(Xi −Xj), i = 1 . . . N

PDE: continuum approximation, as N → ∞

Assumption: social interactions depend only on the relative dis-

tance between the individuals

• radially symmetric potentials

K(x) = K(|x|)
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Notation: F (r) = −K
′

(r)

dXi

dt
=

1

N

∑

j=1...N
j 6=i

F (|Xi −Xj|)
Xi −Xj

|Xi −Xj|
, i = 1 . . . N

F (|Xi − Xj|) = magnitude of the force that the individual Xj exerts on the
individual Xi, along Xi −Xj

Repulsion (F (r) > 0) acts at short ranges, attraction (F (r) < 0) at long
ranges.

Example: n = 2, F (r) = 1/r − r; random initial conditions inside the unit
square. The solution approaches a constant density in the unit disk.
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Motivation for this work

• Equilibria of the model should have biologically relevant fea-

tures:

– finite densities

– sharp boundaries

– relatively constant internal population

• The main motivation for this work is to

– design interaction potentials K which lead to such equi-

libria

– investigate analytically and numerically the well-posedness

and long time behaviour of solutions
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Interaction potential K

K(x) = Kr +Ka

= φ(x) +
1

q
|x|q, q ≥ 2

φ(x) = the free-space Green’s function for −∆:

φ(x) =







− 1
2π ln |x|, n = 2

1
n(n−2)ωn

1
|x|n−2, n ≥ 3

Continuity equation: ρt + v · ∇ρ = −ρdiv v

Calculate div v:

div v = div(−∇K ∗ ρ)

= −∆K ∗ ρ

= ρ−∆
(1

q
|x|q

)

∗ ρ

The repulsion term has become local!
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Lagrangian approach

Characteristic curves: d
dtX(α, t) = v(X(α, t), t), X(α,0) = α

Evolution equation for ρ(X(α, t), t):

Dρ

Dt
= −ρ2 + ρ∆

(1

q
|x|q

)

∗ ρ

Special case q = 2: explicit calculations

∆
(1

2
|x|2

)

= n, ∆
(1

2
|x|2

)

∗ ρ = n
∫

Rn
ρ(y)dy

︸ ︷︷ ︸

=M

ODE along characteristics: Dρ
Dt = −ρ(ρ− nM)

Exact solution: ρ(X(α, t), t) = nM

1+
(

nM
ρ0(α)

−1
)

e−nMt

Asymptotic behaviour as t → ∞?
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Asymptotic behaviour

Density: ρ(X, t) → nM , as t → ∞, along particle paths with

ρ0(α) 6= 0

Asymptotic behaviour of trajectories: Rα = limt→∞ |X(α, t)|

For radial solutions, it can be proved that trajectories are mapped

into the ball of R
n of radius Rα = 1

(nωn)
1
n
.

Numerics suggest that all solutions have this asymptotic be-

haviour.

Global attractor: constant, compactly supported density:

ρ̄(x) =







nM if |x| < 1

(nωn)
1
n

0 otherwise
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Global existence of particle paths

v(x) =
∫

Rn
k(x− y)ρ(y) dy −Mx, (1)

where

k(x) =
1

nωn

x

|x|n

The convolution kernel k is singular, homogeneous of degree

1− n.

Equation (1) is analogous to Biot-Savart law, where vorticity ω
is now replaced by density ρ.

Existence and uniqueness of particle paths follow similarly to that

for incompressible Euler equations.

Extension to global existence: Beale-Kato-Majda criterion
∫ t

0
‖ρ(·, s)‖L∞ds < ∞, for all finite times t
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Case q > 2: Non-constant steady states

Numerics suggests that attractors are radially symmetric.

Assume the model admits a radial steady state supported on a

ball B(0, R).

Recall formula for div v: div v = ρ−∆
(
1
q |x|

q
)

∗ ρ

Equilibria supported on B(0, R):

v = 0, hence div v = 0 in B(0, R)

A steady state ρ̄ satisfies:

ρ̄− (n+ q − 2)
∫

Rn
|x− y|q−2ρ̄(y)dy = 0 in B(0, R)

Use radial symmetry ρ̄(x) = ρ̄(r).
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Radial steady states

The density ρ̄ satisfies the homogeneous Fredholm integral equa-

tion

ρ̄(r) = c(q, n)
∫ R

0
(r′)n−1ρ̄(r′)I(r, r′)dr′, 0 ≤ r < R,

I(r, r′) =
∫ π

0
(r2 + (r′)2 − 2rr′ cos θ)q/2−1 sinn−2 θdθ.

In other words, ρ̄ is an eigenfunction of the linear operator TR:

TRρ̄(r) = c(q, n)
∫ R

0
(r′)n−1ρ̄(r′)I(r, r′)dr′,

that corresponds to eigenvalue one: TRρ̄(r) = ρ̄(r), r < R

The eigenvalue problem: find ρ̄ and the radius R of the support
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Krein-Rutman theorem

Consider case R = 1 first.

The kernel c(q, n)(r′)n−1I(r, r′) is nonnegative, continuous and

bounded.

T1 is a linear, strongly positive, compact operator that maps the

space of continuous functions C([0,1],R) into itself.

Krein-Rutman theorem: there exists a positive eigenfunction ρ̄1
such that

T1ρ̄1 = λρ̄1 (2)

λ(q, n) is the spectral radius of T1; it is a simple eigenvalue and

there is no other eigenvalue with a positive eigenvector.

Define, by rescaling: ρ̄(r) = ρ̄1(r/R).
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Existence and uniqueness of equilibria

Introduce ρ̄(r) = ρ̄1(r/R) in (2):

TRρ̄(r) = Rn+q−2λ ρ̄(r)

Ask that ρ̄ is an eigenfunction of TR corresponding to e-value 1:

R = λ
− 1

n+q−2

This gives the radius of the support as a function of q and n.

Once a mass M for ρ̄ is set, uniqueness can be inferred from

the uniqueness properties of the spectral radius of T1 and its

associated eigenfunction ρ̄1.
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Equilibria: numerical results
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Left: Plot of the radius of the support R of the steady states as a function
of the exponent q, for various space dimensions n.

The plot suggests that the radius R approaches a constant, as q → ∞.

Right: Normalized radially symmetric steady states ρ̄(r) in two dimensions
for various values of the exponent q.

For q = 2 the steady state is the constant solution in a disk. As q increases,

mass aggregates toward the edge of the swarm, creating an increasingly void

region in the centre.
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Even q: polynomial steady states

Kernel I(r, r′) =
∫ π

0
(r2+(r′)2−2rr′ cos θ)q/2−1 sinn−2 θdθ is separable when

q is even.

Define the i-th order moments of the density (m0 = M):

mi = nωn

∫ R

0

rn+i−1ρ̄(r)dr. (3)

Example: q = 4

I(r, r′) = (r2 + (r′)2)

∫ π

0

sinn−2 θdθ

and

ρ̄(r) = n(n+2)ωn

∫ R

0

(r′)n−1(r2 + (r′)2)ρ̄(r′)dr′

= (n+2)m0r
2 + (n+2)m2 (4)

Plug (4) into (3): linear system to find R and m2

(

m0

m2

)

=

(
nωnRn+2 (n+2)ωnRn

n(n+2)
n+4

ωnRn+4 nωnRn+2

)(

m0

m2

)

(5)

General q even: ρ̄(r) is a polynomial of even powers of r, of degree q − 2.
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Dynamic evolution: numerical results
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Analytic

Time evolution of a radially symmetric solution to the aggregation model
with q = 2 (left) and q = 4 (right) in two dimensions

Left: As predicted by the analytical results, the solution approaches asymp-
totically a constant, compactly supported steady state.

Right: The solution approaches asymptotically the steady state computed

analytically
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Regularized potentials

F (r) =
1

r
− r

regularize
−→ F (r) =







C1, 0 ≤ r < r0
1
r
− r, r0 ≤ r ≤ 2

−C2 exp(−r), 2 < r
(6)
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Equilibrium states for the regularized interaction force (6). Initial conditions
were chosen at random in the unit square. For r0 < 0.09, the steady state is
the same as for r0 = 0 (uniform density in the unit circle).

19



Inverse problem: custom designed potentials

Inverse problem: given a density ρ̄(x), can we find a potential K

for which ρ̄(x) is a steady state of the model?

Answer: Yes, provided ρ̄(x) is radial and is a polynomial in |x|.

Theorem: In one dimension, consider an even density ρ̄ of the form

ρ̄(x) =

{
b0 + b2x2 + b4x4 + . . .+ b2dx

2d |x| < R

0 otherwise.

Define the moments mi as in (3). Then ρ̄(x) is the steady state corresponding
to the force F :

F (x) =
1

2
−

d∑

i=0

a2i

2i+1
x2i+1

where the constants a0, a2, . . . , a2d, are computed from b0, b2, . . . , b2d by solving
the following linear system:

b2k =

d∑

j=k

a2j

(

2j
2k

)

m2(j−k), k = 0 . . . d. (7)

Moreover, system (7) has a unique solution.
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Inverse problem: numerical results

Examples: R = 1 and:

(a) ρ̄(x) = 1− x2; (b) ρ̄(x) = x2; (c) ρ̄(x) =
1

2
+ x2 − x4

The corresponding forces given by the Theorem are:

(a) F (x) =
1

2
−

9

10
x+

1

4
x3; (b) F (x) =

1

2
+

9

10
x−

1

2
x3;

(c) F (x) =
1

2
+

209425

672182
x−

2075

2527
x3 +

3

19
x5.

ρ̄(x) ρ̄(x) ρ̄(x)

x x x

(a) (b) (c)

Filled circles along the x-axis: the steady states reached by numerical time

evolution. Empty circles: density function as computed from the filled circles.

Solid line: analytical expression for ρ̄.

21



Bibliography

1. R.C. Fetecau, Y. Huang and T. Kolokolnikov [2011]. Swarm dynamics

and equilibria for a nonlocal aggregation model, Nonlinearity, Vol. 24, No.

10, pp. 2681-2716 (featured article)

Other recent work / Future Directions

• Studied q < 2, in particular the case q → 2− n, when attraction becomes
as singular as repulsion (Newtonian potential)

• Investigated properties of the steady states: monotonicity, asymptotic
behaviour (q → ∞, q → 2− n)

• Energy considerations: local/ global minima

E[ρ] =
1

2

∫

Rn

∫

Rn

K(x− y)ρ(x)ρ(y)dydx

The model is a gradient flow with respect to this energy:

d

dt
E[ρ] = −

∫

Rn

ρ(x)|∇K ∗ ρ(x)|2dx ≤ 0
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