Swarm dynamics and equilibria for a nonlocal aggregation model

Razvan C. Fetecau

Department of Mathematics, Simon Fraser University
http://www.math.sfu.ca/ van/
work with Y. Huang (Simon Fraser Univ.) and T. Kolokolnikov (Dalhousie Univ.)

Self-organizing animal aggregations

- Animal groups with a high structural order
- The behaviour of individuals is so coordinated, that the group moves as a single coherent entity
- Examples of self-organizing biological groups
- schooling fish
- herds of ungulates
- swarming insects
- zigzaging flocks of birds

Mathematical models

- The existing models fall into 2 categories: Lagrangian and Eulerian
- Lagrangian models: trajectories of all individuals of a species are tracked according to a set of interaction and decision rules
- a large set of coupled ODE's
- a large set of coupled difference equations (discrete time)
- Eulerian models: the problem is cast as an evolution equation for the population density field
- parabolic
- hyperbolic

A nonlocal Eulerian PDE swarming model

- We study the PDE aggregation model in \mathbb{R}^{n} :
- continuity equation for the density ρ :

$$
\rho_{t}+\nabla \cdot(\rho v)=0
$$

- the velocity v is assumed to have a functional dependence on the density

$$
v=-\nabla K * \rho
$$

- the potential K incorporates social interactions: attraction and repulsion
- The model was first suggested by Mogilner and Keshet, J. Math. Biol. [1999]
- Literature on this model has been very rich in recent years

Lagrangian description

N individuals
$X_{i}(t)=$ spatial location of the i-th individual at time t

$$
\frac{d X_{i}}{d t}=-\frac{1}{N} \sum_{\substack{j=1 \ldots N \\ j \neq i}} \nabla_{i} K\left(X_{i}-X_{j}\right), \quad i=1 \ldots N
$$

PDE: continuum approximation, as $N \rightarrow \infty$

Assumption: social interactions depend only on the relative distance between the individuals

- radially symmetric potentials

$$
K(x)=K(|x|)
$$

Notation: $F(r)=-K^{\prime}(r)$

$$
\frac{d X_{i}}{d t}=\frac{1}{N} \sum_{\substack{j=1 \ldots N \\ j \neq i}} F\left(\left|X_{i}-X_{j}\right|\right) \frac{X_{i}-X_{j}}{\left|X_{i}-X_{j}\right|}, \quad i=1 \ldots N
$$

$F\left(\left|X_{i}-X_{j}\right|\right)=$ magnitude of the force that the individual X_{j} exerts on the individual X_{i}, along $X_{i}-X_{j}$

Repulsion $(F(r)>0)$ acts at short ranges, attraction $(F(r)<0)$ at long ranges.

Example: $n=2, F(r)=1 / r-r$; random initial conditions inside the unit square. The solution approaches a constant density in the unit disk.

- Equilibria of the model should have biologically relevant features:
- finite densities
- sharp boundaries
- relatively constant internal population
- The main motivation for this work is to
- design interaction potentials K which lead to such equilibria
- investigate analytically and numerically the well-posedness and long time behaviour of solutions

Interaction potential K

$$
\begin{aligned}
K(x) & =K_{r}+K_{a} \\
& =\phi(x)+\frac{1}{q}|x|^{q}, \quad q \geq 2
\end{aligned}
$$

$\phi(x)=$ the free-space Green's function for $-\Delta$:

$$
\phi(x)= \begin{cases}-\frac{1}{2 \pi} \ln |x|, & n=2 \\ \frac{1}{n(n-2) \omega_{n}} \frac{1}{|x|^{n-2}}, & n \geq 3\end{cases}
$$

Continuity equation: $\rho_{t}+v \cdot \nabla \rho=-\rho \operatorname{div} v$
Calculate $\operatorname{div} v$:

$$
\begin{aligned}
\operatorname{div} v & =\operatorname{div}(-\nabla K * \rho) \\
& =-\Delta K * \rho \\
& =\rho-\Delta\left(\frac{1}{q}|x|^{q}\right) * \rho
\end{aligned}
$$

The repulsion term has become local!

Lagrangian approach

Characteristic curves: $\frac{d}{d t} X(\alpha, t)=v(X(\alpha, t), t), \quad X(\alpha, 0)=\alpha$
Evolution equation for $\rho(X(\alpha, t), t)$:

$$
\frac{D \rho}{D t}=-\rho^{2}+\rho \Delta\left(\frac{1}{q}|x|^{q}\right) * \rho
$$

Special case $q=2$: explicit calculations

$$
\Delta\left(\frac{1}{2}|x|^{2}\right)=n, \quad \Delta\left(\frac{1}{2}|x|^{2}\right) * \rho=n \underbrace{\int_{\mathbb{R}^{n}} \rho(y) d y}_{=M}
$$

ODE along characteristics: $\frac{D \rho}{D t}=-\rho(\rho-n M)$
Exact solution: $\rho(X(\alpha, t), t)=\frac{n M}{1+\left(\frac{n M}{\rho_{0}(\alpha)}-1\right) e^{-n M t}}$
Asymptotic behaviour as $t \rightarrow \infty$?

Asymptotic behaviour

Density: $\rho(X, t) \rightarrow n M$, as $t \rightarrow \infty$, along particle paths with $\rho_{0}(\alpha) \neq 0$

Asymptotic behaviour of trajectories: $R_{\alpha}=\lim _{t \rightarrow \infty}|X(\alpha, t)|$
For radial solutions, it can be proved that trajectories are mapped into the ball of \mathbb{R}^{n} of radius $R_{\alpha}=\frac{1}{\left(n \omega_{n}\right)^{\frac{1}{n}}}$.

Numerics suggest that all solutions have this asymptotic behaviour.

Global attractor: constant, compactly supported density:

$$
\bar{\rho}(x)= \begin{cases}n M & \text { if }|x|<\frac{1}{\left(n \omega_{n}\right)^{\frac{1}{n}}} \\ 0 & \text { otherwise }\end{cases}
$$

Global existence of particle paths

$$
\begin{equation*}
v(x)=\int_{\mathbb{R}^{n}} k(x-y) \rho(y) d y-M x \tag{1}
\end{equation*}
$$

where

$$
k(x)=\frac{1}{n \omega_{n}} \frac{x}{|x|^{n}}
$$

The convolution kernel k is singular, homogeneous of degree $1-n$.

Equation (1) is analogous to Biot-Savart law, where vorticity ω is now replaced by density ρ.

Existence and uniqueness of particle paths follow similarly to that for incompressible Euler equations.

Extension to global existence: Beale-Kato-Majda criterion

$$
\int_{0}^{t}\|\rho(\cdot, s)\|_{L^{\infty}} d s<\infty, \text { for all finite times } t
$$

Case $q>2$: Non-constant steady states

Numerics suggests that attractors are radially symmetric.

Assume the model admits a radial steady state supported on a ball $B(0, R)$.

Recall formula for $\operatorname{div} v: \quad \operatorname{div} v=\rho-\Delta\left(\frac{1}{q}|x|^{q}\right) * \rho$
Equilibria supported on $B(0, R)$:

$$
v=0, \text { hence } \operatorname{div} v=0 \text { in } B(0, R)
$$

A steady state $\bar{\rho}$ satisfies:

$$
\bar{\rho}-(n+q-2) \int_{\mathbb{R}^{n}}|x-y|^{q-2} \bar{\rho}(y) d y=0 \quad \text { in } B(0, R)
$$

Use radial symmetry $\bar{\rho}(x)=\bar{\rho}(r)$.

Radial steady states

The density $\bar{\rho}$ satisfies the homogeneous Fredholm integral equation

$$
\begin{gathered}
\bar{\rho}(r)=c(q, n) \int_{0}^{R}\left(r^{\prime}\right)^{n-1} \bar{\rho}\left(r^{\prime}\right) I\left(r, r^{\prime}\right) d r^{\prime}, \quad 0 \leq r<R \\
I\left(r, r^{\prime}\right)=\int_{0}^{\pi}\left(r^{2}+\left(r^{\prime}\right)^{2}-2 r r^{\prime} \cos \theta\right)^{q / 2-1} \sin ^{n-2} \theta d \theta
\end{gathered}
$$

In other words, $\bar{\rho}$ is an eigenfunction of the linear operator T_{R} :

$$
T_{R} \bar{\rho}(r)=c(q, n) \int_{0}^{R}\left(r^{\prime}\right)^{n-1} \bar{\rho}\left(r^{\prime}\right) I\left(r, r^{\prime}\right) d r^{\prime}
$$

that corresponds to eigenvalue one: $T_{R} \bar{\rho}(r)=\bar{\rho}(r), \quad r<R$
The eigenvalue problem: find $\bar{\rho}$ and the radius R of the support

Krein-Rutman theorem

Consider case $R=1$ first.

The kernel $c(q, n)\left(r^{\prime}\right)^{n-1} I\left(r, r^{\prime}\right)$ is nonnegative, continuous and bounded.
T_{1} is a linear, strongly positive, compact operator that maps the space of continuous functions $C([0,1], \mathbb{R})$ into itself.

Krein-Rutman theorem: there exists a positive eigenfunction $\bar{\rho}_{1}$ such that

$$
\begin{equation*}
T_{1} \bar{\rho}_{1}=\lambda \bar{\rho}_{1} \tag{2}
\end{equation*}
$$

$\lambda(q, n)$ is the spectral radius of T_{1}; it is a simple eigenvalue and there is no other eigenvalue with a positive eigenvector.

Define, by rescaling: $\bar{\rho}(r)=\bar{\rho}_{1}(r / R)$.

Existence and uniqueness of equilibria

Introduce $\bar{\rho}(r)=\bar{\rho}_{1}(r / R)$ in (2):

$$
T_{R} \bar{\rho}(r)=R^{n+q-2} \lambda \bar{\rho}(r)
$$

Ask that $\bar{\rho}$ is an eigenfunction of T_{R} corresponding to e-value 1:

$$
R=\lambda^{-\frac{1}{n+q-2}}
$$

This gives the radius of the support as a function of q and n.

Once a mass M for $\bar{\rho}$ is set, uniqueness can be inferred from the uniqueness properties of the spectral radius of T_{1} and its associated eigenfunction $\bar{\rho}_{1}$.

Equilibria: numerical results

Left: Plot of the radius of the support R of the steady states as a function of the exponent q, for various space dimensions n.

The plot suggests that the radius R approaches a constant, as $q \rightarrow \infty$.
Right: Normalized radially symmetric steady states $\bar{\rho}(r)$ in two dimensions for various values of the exponent q.

For $q=2$ the steady state is the constant solution in a disk. As q increases, mass aggregates toward the edge of the swarm, creating an increasingly void region in the centre.

Even q : polynomial steady states

Kernel $\quad I\left(r, r^{\prime}\right)=\int_{0}^{\pi}\left(r^{2}+\left(r^{\prime}\right)^{2}-2 r r^{\prime} \cos \theta\right)^{q / 2-1} \sin ^{n-2} \theta d \theta \quad$ is separable when q is even.

Define the i-th order moments of the density ($m_{0}=M$):

$$
\begin{equation*}
m_{i}=n \omega_{n} \int_{0}^{R} r^{n+i-1} \bar{\rho}(r) d r . \tag{3}
\end{equation*}
$$

Example: $q=4$

$$
I\left(r, r^{\prime}\right)=\left(r^{2}+\left(r^{\prime}\right)^{2}\right) \int_{0}^{\pi} \sin ^{n-2} \theta d \theta
$$

and

$$
\begin{align*}
\bar{\rho}(r) & =n(n+2) \omega_{n} \int_{0}^{R}\left(r^{\prime}\right)^{n-1}\left(r^{2}+\left(r^{\prime}\right)^{2}\right) \bar{\rho}\left(r^{\prime}\right) d r^{\prime} \\
& =(n+2) m_{0} r^{2}+(n+2) m_{2} \tag{4}
\end{align*}
$$

Plug (4) into (3): linear system to find R and m_{2}

$$
\binom{m_{0}}{m_{2}}=\left(\begin{array}{cc}
n \omega_{n} R^{n+2} & (n+2) \omega_{n} R^{n} \tag{5}\\
\frac{n(n+2)}{n+4} \omega_{n} R^{n+4} & n \omega_{n} R^{n+2}
\end{array}\right)\binom{m_{0}}{m_{2}}
$$

General q even: $\bar{\rho}(r)$ is a polynomial of even powers of r, of degree $q-2$.

Dynamic evolution: numerical results

Time evolution of a radially symmetric solution to the aggregation model with $q=2$ (left) and $q=4$ (right) in two dimensions

Left: As predicted by the analytical results, the solution approaches asymptotically a constant, compactly supported steady state.

Right: The solution approaches asymptotically the steady state computed analytically

Regularized potentials

$$
F(r)=\frac{1}{r}-r \quad \underset{\longrightarrow}{\text { regularize }} \quad F(r)=\left\{\begin{array}{c}
C_{1}, \quad 0 \leq r<r_{0} \tag{6}\\
\frac{1}{r}-r, \quad r_{0} \leq r \leq 2 \\
-C_{2} \exp (-r), \quad 2<r
\end{array}\right.
$$

Equilibrium states for the regularized interaction force (6). Initial conditions were chosen at random in the unit square. For $r_{0}<0.09$, the steady state is the same as for $r_{0}=0$ (uniform density in the unit circle).

Inverse problem: custom designed potentials

Inverse problem: given a density $\bar{\rho}(x)$, can we find a potential K for which $\bar{\rho}(x)$ is a steady state of the model?

Answer: Yes, provided $\bar{\rho}(x)$ is radial and is a polynomial in $|x|$.
Theorem: In one dimension, consider an even density $\bar{\rho}$ of the form

$$
\bar{\rho}(x)=\left\{\begin{array}{cl}
b_{0}+b_{2} x^{2}+b_{4} x^{4}+\ldots+b_{2 d} x^{2 d} & |x|<R \\
0 & \text { otherwise } .
\end{array}\right.
$$

Define the moments m_{i} as in (3). Then $\bar{\rho}(x)$ is the steady state corresponding to the force F :

$$
F(x)=\frac{1}{2}-\sum_{i=0}^{d} \frac{a_{2 i}}{2 i+1} x^{2 i+1}
$$

where the constants $a_{0}, a_{2}, \ldots, a_{2 d}$, are computed from $b_{0}, b_{2}, \ldots, b_{2 d}$ by solving the following linear system:

$$
\begin{equation*}
b_{2 k}=\sum_{j=k}^{d} a_{2 j}\binom{2 j}{2 k} m_{2(j-k)}, \quad k=0 \ldots d . \tag{7}
\end{equation*}
$$

Moreover, system (7) has a unique solution.

Inverse problem: numerical results

Examples: $R=1$ and:
(a) $\bar{\rho}(x)=1-x^{2} ;$
(b) $\bar{\rho}(x)=x^{2}$;
(c) $\bar{\rho}(x)=\frac{1}{2}+x^{2}-x^{4}$

The corresponding forces given by the Theorem are:

$$
\begin{aligned}
& \text { (a) } \quad F(x)=\frac{1}{2}-\frac{9}{10} x+\frac{1}{4} x^{3} ; \quad \text { (b) } \quad F(x)=\frac{1}{2}+\frac{9}{10} x-\frac{1}{2} x^{3} \\
& \text { (c) } F(x)=\frac{1}{2}+\frac{209425}{672182} x-\frac{2075}{2527} x^{3}+\frac{3}{19} x^{5}
\end{aligned}
$$

(a)

(b)

(c)

Filled circles along the x-axis: the steady states reached by numerical time evolution. Empty circles: density function as computed from the filled circles. Solid line: analytical expression for $\bar{\rho}$.

Bibliography

1. R.C. Fetecau, Y. Huang and T. Kolokolnikov [2011]. Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, Vol. 24, No. 10, pp. 2681-2716 (featured article)

Other recent work / Future Directions

- Studied $q<2$, in particular the case $q \rightarrow 2-n$, when attraction becomes as singular as repulsion (Newtonian potential)
- Investigated properties of the steady states: monotonicity, asymptotic behaviour $(q \rightarrow \infty, q \rightarrow 2-n)$
- Energy considerations: local/ global minima

$$
E[\rho]=\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x-y) \rho(x) \rho(y) d y d x
$$

The model is a gradient flow with respect to this energy:

$$
\frac{d}{d t} E[\rho]=-\int_{\mathbb{R}^{n}} \rho(x)|\nabla K * \rho(x)|^{2} d x \leq 0
$$

