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Summary. Clustering aims at representing large datasets by a fewer number of
prototypes or clusters. It brings simplicity in modeling data and thus plays a cen-
tral role in the process of knowledge discovery and data mining. Data mining tasks,
in these days, require fast and accurate partitioning of huge datasets, which may
come with a variety of attributes or features. This, in turn, imposes severe compu-
tational requirements on the relevant clustering techniques. A family of bio-inspired
algorithms, well-known as Swarm Intelligence (SI) has recently emerged that meets
these requirements and has successfully been applied to a number of real world clus-
tering problems. This chapter explores the role of SI in clustering different kinds of
datasets. It finally describes a new SI technique for partitioning any dataset into an
optimal number of groups through one run of optimization. Computer simulations
undertaken in this research have also been provided to demonstrate the effectiveness
of the proposed algorithm.

1 Introduction

Clustering means the act of partitioning an unlabeled dataset into groups
of similar objects. Each group, called a ‘cluster’, consists of objects that are
similar between themselves and dissimilar to objects of other groups. In the
past few decades, cluster analysis has played a central role in a variety of
fields ranging from engineering (machine learning, artificial intelligence, pat-
tern recognition, mechanical engineering, electrical engineering), computer sci-
ences (web mining, spatial database analysis, textual document collection, im-
age segmentation), life and medical sciences (genetics, biology, microbiology,
paleontology, psychiatry, pathology), to earth sciences (geography. geology, re-
mote sensing), social sciences (sociology, psychology, archeology, education),
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and economics (marketing, business) (Evangelou et al., 2001, Lillesand and
Keifer, 1994,Rao, 1971,Duda and Hart, 1973,Fukunaga, 1990,Everitt, 1993).

From a machine learning perspective, clusters correspond to the hidden
patterns in data, the search for clusters is a kind of unsupervised learning,
and the resulting system represents a data concept. The problem of data clus-
tering has been approached from diverse fields of knowledge like statistics
(multivariate analysis) (Forgy, 1965), graph theory (Zahn, 1971), expectation
maximization algorithms (Mitchell, 1997), artificial neural networks (Mao and
Jain, 1995, Pal et al., 1993,Kohonen, 1995), evolutionary computing (Falke-
nauer, 1998,Paterlini and Minerva, 2003) and so on. Researchers all over the
globe are coming up with new algorithms, on a regular basis, to meet the in-
creasing complexity of vast real-world datasets. A comprehensive review of the
state-of-the-art clustering methods can be found in (Xu and Wunsch, 2005)
and (Rokach and Maimon, 2005).

Data mining is a powerful new technology, which aims at the extrac-
tion of hidden predictive information from large databases. Data mining
tools predict future trends and behaviors, allowing businesses to make proac-
tive, knowledge-driven decisions. The process of knowledge discovery from
databases necessitates fast and automatic clustering of very large datasets
with several attributes of different types (Mitra et al., 2002). This poses a se-
vere challenge before the classical clustering techniques. Recently a family of
nature inspired algorithms, known as Swarm Intelligence (SI), has attracted
several researchers from the field of pattern recognition and clustering. Clus-
tering techniques based on the SI tools have reportedly outperformed many
classical methods of partitioning a complex real world dataset.

Swarm Intelligence is a relatively new interdisciplinary field of research,
which has gained huge popularity in these days. Algorithms belonging to the
domain, draw inspiration from the collective intelligence emerging from the
behavior of a group of social insects (like bees, termites and wasps). When
acting as a community, these insects even with very limited individual capa-
bility can jointly (cooperatively) perform many complex tasks necessary for
their survival. Problems like finding and storing foods, selecting and pick-
ing up materials for future usage require a detailed planning, and are solved
by insect colonies without any kind of supervisor or controller. An exam-
ple of particularly successful research direction in swarm intelligence is Ant
Colony Optimization (ACO) (Dorigo et al., 1996, Dorigo and Gambardella,
1997), which focuses on discrete optimization problems, and has been applied
successfully to a large number of NP hard discrete optimization problems in-
cluding the traveling salesman, the quadratic assignment, scheduling, vehicle
routing, etc., as well as to routing in telecommunication networks. Particle
Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is another very
popular SI algorithm for global optimization over continuous search spaces.
Since its advent in 1995, PSO has attracted the attention of several researchers
all over the world resulting into a huge number of variants of the basic algo-
rithm as well as many parameter automation strategies.
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In this Chapter, we explore the applicability of these bio-inspired ap-
proaches to the development of self-organizing, evolving, adaptive and au-
tonomous clustering techniques, which will meet the requirements of next-
generation data mining systems, such as diversity, scalability, robustness, and
resilience. The next section of the chapter provides an overview of the SI
paradigm with a special emphasis on two SI algorithms well-known as Par-
ticle Swarm Optimization (PSO) and Ant Colony Systems (ACS). Section 3
outlines the data clustering problem and briefly reviews the present state of
the art in this field. Section 4 describes the use of the SI algorithms in both
crisp and fuzzy clustering of real world datasets. A new automatic clustering
algorithm, based on PSO, has been outlined in this Section. The algorithm
requires no previous knowledge of the dataset to be partitioned, and can
determine the optimal number of classes dynamically. The new method has
been compared with two well-known, classical fuzzy clustering algorithms. The
Chapter is concluded in Section 5 with possible directions for future research.

2 An Introduction to Swarm Intelligence

The behavior of a single ant, bee, termite and wasp often is too simple, but
their collective and social behavior is of paramount significance. A look at
National Geographic TV Channel reveals that advanced mammals including
lions also enjoy social lives, perhaps for their self-existence at old age and
in particular when they are wounded. The collective and social behavior of
living creatures motivated researchers to undertake the study of today what
is known as Swarm Intelligence. Historically, the phrase Swarm Intelligence
(SI) was coined by Beny and Wang in late 1980s (Beni and Wang, 1989) in
the context of cellular robotics. A group of researchers in different parts of the
world started working almost at the same time to study the versatile behav-
ior of different living creatures and especially the social insects. The efforts to
mimic such behaviors through computer simulation finally resulted into the
fascinating field of SI. SI systems are typically made up of a population of
simple agents (an entity capable of performing/executing certain operations)
interacting locally with one another and with their environment. Although
there is normally no centralized control structure dictating how individual
agents should behave, local interactions between such agents often lead to the
emergence of global behavior. Many biological creatures such as fish schools
and bird flocks clearly display structural order, with the behavior of the or-
ganisms so integrated that even though they may change shape and direction,
they appear to move as a single coherent entity (Couzin et al., 2002). The
main properties of the collective behavior can be pointed out as follows and
is summarized in Figure 1.

Homogeneity: every bird in flock has the same behavioral model. The flock
moves without a leader, even though temporary leaders seem to appear.
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Locality: its nearest flock-mates only influence the motion of each bird. Vision
is considered to be the most important senses for flock organization.

Collision Avoidance: avoid colliding with nearby flock mates.
Velocity Matching: attempt to match velocity with nearby flock mates.
Flock Centering: attempt to stay close to nearby flock mates

Individuals attempt to maintain a minimum distance between themselves
and others at all times. This rule is given the highest priority and corresponds
to a frequently observed behavior of animals in nature (Krause and Ruxton,
2002). If individuals are not performing an avoidance maneuver they tend to
be attracted towards other individuals (to avoid being isolated) and to align
themselves with neighbors (Partridge and Pitcher, 1980,Partridge, 1982).

Collective 

Global 

Behavior 

Homogeneity

Locality Flock 

Centering 

Velocity  

Matching

Collision 

Avoidance

Fig. 1. Main traits of collective behavior

Couzin et al. identified four collective dynamical behaviors (Couzin et al.,
2002) as illustrated in Figure 2:

Swarm: an aggregate with cohesion, but a low level of polarization (parallel
alignment) among members

Torus: individuals perpetually rotate around an empty core (milling). The
direction of rotation is random.

Dynamic parallel group: the individuals are polarized and move as a coherent
group, but individuals can move throughout the group and density and
group form can fluctuate (Partridge and Pitcher, 1980, Major and Dill,
1978).

Highly parallel group: much more static in terms of exchange of spatial posi-
tions within the group than the dynamic parallel group and the variation
in density and form is minimal.
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As mentioned in (Grosan et al., 2006) at a high-level, a swarm can be
viewed as a group of agents cooperating to achieve some purposeful behavior
and achieve some goal (Abraham et al., 2006). This collective intelligence
seems to emerge from what are often large groups:

Fig. 2. Different models of collective behavior (Grosan et al., 2006)

According to Milonas, five basic principles define the SI paradigm (Milonas,
1994). First is the the proximity principle: the swarm should be able to carry
out simple space and time computations. Second is the quality principle: the
swarm should be able to respond to quality factors in the environment. Third
is the principle of diverse response: the swarm should not commit its activi-
ties along excessively narrow channels. Fourth is the principle of stability: the
swarm should not change its mode of behavior every time the environment
changes. Fifth is the principle of adaptability: the swarm must be able to
change behavior mote when it is worth the computational price. Note that
principles four and five are the opposite sides of the same coin. Below we
discuss in details two algorithms from SI domain, which have gained wide
popularity in a relatively short span of time.
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2.1 The Ant Colony Systems

The basic idea of a real ant system is illustrated in Figure 4. In the left picture,
the ants move in a straight line to the food. The middle picture illustrates the
situation soon after an obstacle is inserted between the nest and the food. To
avoid the obstacle, initially each ant chooses to turn left or right at random.
Let us assume that ants move at the same speed depositing pheromone in
the trail uniformly. However, the ants that, by chance, choose to turn left will
reach the food sooner, whereas the ants that go around the obstacle turning
right will follow a longer path, and so will take longer time to circumvent
the obstacle. As a result, pheromone accumulates faster in the shorter path
around the obstacle. Since ants prefer to follow trails with larger amounts of
pheromone, eventually all the ants converge to the shorter path around the
obstacle, as shown in Figure 3.

Fig. 3. Illustrating the behavior of real ant movements.

An artificial Ant Colony System (ACS) is an agent-based system, which
simulates the natural behavior of ants and develops mechanisms of cooperation
and learning. ACS was proposed by Dorigo et al. (Dorigo and Gambardella,
1997) as a new heuristic to solve combinatorial optimization problems. This
new heuristic, called Ant Colony Optimization (ACO) has been found to be
both robust and versatile in handling a wide range of combinatorial optimiza-
tion problems.

The main idea of ACO is to model a problem as the search for a minimum
cost path in a graph. Artificial ants as if walk on this graph, looking for cheaper
paths. Each ant has a rather simple behavior capable of finding relatively
costlier paths. Cheaper paths are found as the emergent result of the global
cooperation among ants in the colony. The behavior of artificial ants is inspired
from real ants: they lay pheromone trails (obviously in a mathematical form)
on the graph edges and choose their path with respect to probabilities that
depend on pheromone trails. These pheromone trails progressively decrease
by evaporation. In addition, artificial ants have some extra features not seen
in their counterpart in real ants. In particular, they live in a discrete world (a
graph) and their moves consist of transitions from nodes to nodes.
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Below we illustrate the use of ACO in finding the optimal tour in the
classical Traveling Salesman Problem (TSP). Given a set of n cities and a set
of distances between them, the problem is to determine a minimum traversal
of the cities and return to the home-station at the end. It is indeed important
to note that the traversal should in no way include a city more than once. Let
r (Cx, Cy)be a measure of cost for traversal from city Cx to Cy. Naturally,
the total cost of traversing n cities indexed by i1, i2, i3,. . . , in in order is given
by the following expression:

Cost(i1, i2, ...., in) =
n−1
∑

j=1

r(Cij , Cij+1) + r(Cin, Ci1) (1)

The ACO algorithm is employed to find an optimal order of traversal of
the cities. Let τ be a mathematical entity modeling the pheromone and ηij =
1/r (i , j) is a local heuristic. Also let allowedk(t) be the set of cities that are
yet to be visited by ant k located in cityi. Then according to the classical ant
system (Everitt, 1993) the probability that ant k in city i visits city j is given
by:

pk
ij(t) =

[τij(t)]
α[ηij ]

β

∑

h∈allowedk(t)

[τih(t)]α[ηih]β
if h ∈ allowedk(t)

0 otherwise
(2)

In Equation 2 shorter edges with greater amount of pheromone are favored
by multiplying the pheromone on edge (i, j ) by the corresponding heuristic
value η(i, j ). Parameters α (¿ 0) and β (¿ 0) determine the relative importance
of pheromone versus cost. Now in ant system, pheromone trails are updated
as follows. Let Dk be the length of the tour performed by ant k, ∆τk ( i , j
)= 1/Dk if (i, j) ∈ tour done by ant kand = 0 otherwise and finally let ρ
∈ [0,1] be a pheromone decay parameter which takes care of the occasional
evaporation of the pheromone from the visited edges. Then once all ants have
built their tours, pheromone is updated on all the ages as,

τ(i, j) = (1 − ρ).τ(i, j) +

m
∑

k=1

∆τk(i, j) (3)

From Equation (3), we can guess that pheromone updating attempts
to accumulate greater amount of pheromone to shorter tours (which cor-
responds to high value of the second term in (3) so as to compensate for
any loss of pheromone due to the first term). This conceptually resembles a
reinforcement-learning scheme, where better solutions receive a higher rein-
forcement.

The ACO differs from the classical ant system in the sense that here the
pheromone trails are updated in two ways. Firstly, when ants construct a tour
they locally change the amount of pheromone on the visited edges by a local
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updating rule. Now if we let γ to be a decay parameter and ∆τ(i, j) = τ0 such
that τ0 is the initial pheromone level, then the local rule may be stated as,

(4)

Secondly, after all the ants have built their individual tours, a global up-
dating rule is applied to modify the pheromone level on the edges that belong
to the best ant tour found so far. If κ be the usual pheromone evaporation
constant, Dgb be the length of the globally best tour from the beginning of
the trial and

∆τ/(i , j) = 1/ Dgb only when the edge (i, j) belongs to global-best-tour
and zero otherwise, then we may express the global rule as follows:

τ(i, j) = (1 − κ).τ(i, j) + κ.∆τ/(i, j) (5)

The main steps of ACO algorithm are presented in Algorithm 1.

Algorithm 1: Procedure ACO

1: Initialize pheromone trails;
2: repeat {at this stage each loop is called an iteration}
3: Each ant is positioned on a starting node
4: repeat {at this level each loop is called a step}
5:

a solution and a local pheromone-updating rule like rule (4);
6: until all ants have built a complete solution
7: global pheromone-updating rule like rule (5) is applied.
8: until terminating condition is reached

2.2 The Particle Swarm Optimization (PSO)

The concept of Particle Swarms, although initially introduced for simulating
human social behaviors, has become very popular these days as an efficient
search and optimization technique. The Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1995,Kennedy et al., 2001), as it is called now, does
not require any gradient information of the function to be optimized, uses
only primitive mathematical operators and is conceptually very simple.

In PSO, a population of conceptual ‘particles’ is initialized with random
positions Xi and velocities Vi, and a function, f , is evaluated, using the parti-
cle’s positional coordinates as input values. In an n-dimensional search space,
Xi = (xi1, xi2, xi3,...,xin) and Vi= (vi1, vi2, vi3,...,vin). Positions and ve-
locities are adjusted, and the function is evaluated with the new coordinates
at each time-step. The basic update equations for the d-th dimension of the
i-th particle in PSO may be given as

Each ant applies a state transition rule like rule (2) to incrementallybuild

τ(i, j) = (1 − γ).τ(i, j) + γ.∆τ(i, j)
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Vid(t + 1) = ω.Vid(t) + C1.ϕ1.(P lid − Xid(t)) + C2.ϕ2.(Pgd − Xid(t))
Xid(t + 1) = Xid(t) + Vid(t + 1)

(6)

The variables φ1 and φ2 are random positive numbers, drawn from a uni-
form distribution and defined by an upper limit φmax,which is a parameter of
the system. C1 and C2 are called acceleration constants whereas ω is called
inertia weight. Pli is the local best solution found so far by the i-th particle,
while Pg represents the positional coordinates of the fittest particle found so
far in the entire community. Once the iterations are terminated, most of the
particles are expected to converge to a small radius surrounding the global
optima of the search space. The velocity updating scheme has been illustrated
in Figure 4 with a humanoid particle.

Fig. 4. Illustrating the velocity updating scheme of basic PSO

A pseudo code for the PSO algorithm is presented in Algorithm 2.

3 Data Clustering – An Overview

In this section, we first provide a brief and formal description of the clustering
problem. We then discuss a few major classical clustering techniques.

3.1 Problem Definition

A pattern is a physical or abstract structure of objects. It is distinguished from
others by a collective set of attributes called features, which together represent
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Algorithm 2: The PSO Algorithm

Input: Randomly initialized position and velocity of the particles: Xi(0) and
Vi(0)

Output: Position of the approximate global optima X∗

1: while terminating condition is not reached do
2: for i = 1 to numberofparticles do
3: Evaluate the fitness: =f(Xi(t));
4: Update P(t)andg(t);
5: Adapt velocity of the particle using Equation 3;
6: Update the position of the particle;
7: end for
8: end while

a pattern (Konar, 2005). Let P = {P1, P2... Pn} be a set of n patterns or data
points, each having d features. These patterns can also be represented by a
profile data matrix Xn×d having n d-dimensional row vectors. The i-th row
vector Xi characterizes the i-th object from the set P and each element Xi,j

in Xi corresponds to the j-th real value feature (j = 1, 2, ....., d) of the i-th
pattern ( i =1,2,...., n). Given such an Xn×d,a partitional clustering algorithm
tries to find a partition C = {C1, C2,......, CK} of K classes, such that the
similarity of the patterns in the same cluster is maximum and patterns from
different clusters differ as far as possible. The partitions should maintain the
following properties:

1. Each cluster should have at least one pattern assigned i.e. Ci 6= Φ∀i ∈
{1, 2, ...,K}.

2. Two different clusters should have no pattern in common. i.e. Ci ∩ Cj =
Φ,∀i 6= j and i, j ∈ {1, 2, ..., K}. This property is required for crisp (hard)
clustering. In Fuzzy clustering this property doesn’t exist.

3. Each pattern should definitely be attached to a cluster i.e.
K
⋃

i=1

Ci = P .

Since the given dataset can be partitioned in a number of ways maintaining
all of the above properties, a fitness function (some measure of the adequacy
of the partitioning) must be defined. The problem then turns out to be one
of finding a partition C∗ of optimal or near-optimal adequacy as compared to
all other feasible solutions C = { C1, C2,........, CN(n,K)} where,

N(n,K) =
1

K!

K
∑

i=1

(−1)i

(

K
i

)i

(K − i)i (7)

is the number of feasible partitions. This is same as,

Optimizef(Xn×d, C)

C
(8)
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where C is a single partition from the set C and f is a statistical-mathematical
function that quantifies the goodness of a partition on the basis of the similar-
ity measure of the patterns. Defining an appropriate similarity measure plays
fundamental role in clustering (Jain et al., 1999). The most popular way to
evaluate similarity between two patterns amounts to the use of distance mea-
sure. The most widely used distance measure is the Euclidean distance, which
between any two d-dimensional patterns Xi and Xj is given by,

d(Xi,Xj) =

√

√

√

√

d
∑

p=1

(Xi,p − Xj,p)2 = ‖Xi − Xj‖ (9)

It has been shown in (Brucker, 1978) that the clustering problem is NP-
hard when the number of clusters exceeds 3.

3.2 The Classical Clustering Algorithms

Data clustering is broadly based on two approaches: hierarchical and parti-
tional (Frigui and Krishnapuram, 1999, Leung et al., 2000). Within each of
the types, there exists a wealth of subtypes and different algorithms for find-
ing the clusters. In hierarchical clustering, the output is a tree showing a
sequence of clustering with each cluster being a partition of the data set (Le-
ung et al., 2000). Hierarchical algorithms can be agglomerative (bottom-up)
or divisive (top-down). Agglomerative algorithms begin with each element as
a separate cluster and merge them in successively larger clusters. Divisive al-
gorithms begin with the whole set and proceed to divide it into successively
smaller clusters. Hierarchical algorithms have two basic advantages (Frigui
and Krishnapuram, 1999). Firstly, the number of classes need not be specified
a priori and secondly, they are independent of the initial conditions. However,
the main drawback of hierarchical clustering techniques is they are static, i.e.
data-points assigned to a cluster can not move to another cluster. In addi-
tion to that, they may fail to separate overlapping clusters due to lack of
information about the global shape or size of the clusters (Jain et al., 1999).

Partitional clustering algorithms, on the other hand, attempt to decom-
pose the data set directly into a set of disjoint clusters. They try to optimize
certain criteria. The criterion function may emphasize the local structure of
the data, as by assigning clusters to peaks in the probability density function,
or the global structure. Typically, the global criteria involve minimizing some
measure of dissimilarity in the samples within each cluster, while maximizing
the dissimilarity of different clusters. The advantages of the hierarchical algo-
rithms are the disadvantages of the partitional algorithms and vice versa. An
extensive survey of various clustering techniques can be found in (Jain et al.,
1999). The focus of this chapter is on the partitional clustering algorithms.

Clustering can also be performed in two different modes: crisp and fuzzy.
In crisp clustering, the clusters are disjoint and non-overlapping in nature.
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Any pattern may belong to one and only one class in this case. In case of
fuzzy clustering, a pattern may belong to all the classes with a certain fuzzy
membership grade (Jain et al., 1999).

The most widely used iterative K-means algorithm (MacQueen, 1967) for
partitional clustering aims at minimizing the ICS (Intra-Cluster Spread) which
for K cluster centers can be defined as

ICS(C1, C2, ..., CK) =
K

∑

i=1

∑

Xi∈Ci

‖Xi − mi‖
2

(10)

The K-means (or hard c-means) algorithm starts with K cluster-centroids
(these centroids are initially selected randomly or derived from some a priori
information). Each pattern in the data set is then assigned to the closest
cluster-centre. Centroids are updated by using the mean of the associated
patterns. The process is repeated until some stopping criterion is met.

In the c-medoids algorithm (Kaufman and Rousseeuw, 1990), on the other
hand, each cluster is represented by one of the representative objects in the
cluster located near the center. Partitioning around medoids (PAM) (Kauf-
man and Rousseeuw, 1990) starts from an initial set of medoids, and iteratively
replaces one of the medoids by one of the non-medoids if it improves the total
distance of the resulting clustering. Although PAM works effectively for small
data, it does not scale well for large datasets. Clustering large applications
based on randomized search (CLARANS) (Ng and Han, 1994), using random-
ized sampling, is capable of dealing with the associated scalability issue.

The fuzzy c-means (FCM) (Bezdek, 1981) seems to be the most popular
algorithm in the field of fuzzy clustering. In the classical FCM algorithm,
a within cluster sum function Jm is minimized to evolve the proper cluster
centers:

Jm =
n

∑

j=1

c
∑

i=1

(uij)
m ‖Xj − Vi‖

2
(11)

where Vi is the i-th cluster center, Xj is the j-th d-dimensional data vector
and || . || is an inner product-induced norm in d dimensions. Given c classes, we
can determine their cluster centers Vi for i=1 to c by means of the following
expression:

Vi =

n
∑

j=1

(uij)
mXj

n
∑

j=1

(uij)m

(12)

Here m (m¿1) is any real number that influences the membership grade.
Now differentiating the performance criterion with respect to Vi (treating uij

as constants) and with respect to uij (treating Vi as constants) and setting
them to zero the following relation can be obtained:
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uij =







c
∑

k=1

(

‖Xj − Vi‖
2

‖X − Vi‖
2

)
1/(m − 1)







−1

(13)

Several modifications of the classical FCM algorithm can be found in (Hall
et al., 1999,Gath and Geva, 1989,Bensaid et al., 1996,Clark et al., 1994,Ahmed
et al., 2002,Wang et al., 2004).

3.3 Relevance of SI Algorithms in Clustering

From the discussion of the previous section, we see that the SI algorithms are
mainly stochastic search and optimization techniques, guided by the principles
of collective behaviour and self organization of insect swarms. They are effi-
cient, adaptive and robust search methods producing near optimal solutions
and have a large amount of implicit parallelism. On the other hand, data
clustering may be well formulated as a difficult global optimization problem;
thereby making the application of SI tools more obvious and appropriate.

4 Clustering with the SI Algorithms

In this section we first review the present state of the art clustering algorithms
based on SI tools, especially the ACO and PSO. We then outline a new algo-
rithm which employs the PSO model to automatically determine the number
of clusters in a previously unhandled dataset. Computer simulations under-
taken for this study have also been included to demonstrate the elegance of
the new dynamic clustering technique.

4.1 The Ant Colony Based Clustering Algorithms

Ant colonies provide a means to formulate some powerful nature-inspired
heuristics for solving the clustering problems. Among other social movements,
researchers have simulated the way, ants work collaboratively in the task of
grouping dead bodies so, as to keep the nest clean (Bonabeau et al., 1999). It
can be observed that, with time the ants tend to cluster all dead bodies in a
specific region of the environment, thus forming piles of corpses.

Larval sorting and corpse cleaning by ant was first modeled by Deneubourg
et al. for accomplishing certain tasks in robotics (Deneubourg et al., 1991).
This inspired the Ant-based clustering algorithm (Handl et al., 2003). Lumer
and Faieta modified the algorithm using a dissimilarity-based evaluation of
the local density, in order to make it suitable for data clustering (Lumer and
Faieta, 1994). This introduced standard Ant Clustering Algorithm (ACA). It
has subsequently been used for numerical data analysis (Lumer and Faieta,
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1994), data-mining (Lumer and Faieta, 1995), graph-partitioning (Kuntz and
Snyers, 1994, Kuntz and Snyers, 1999, Kuntz et al., 1998) and text-mining
(Handl and Meyer, 2002, Hoe et al., 2002, Ramos and Merelo, 2002). Many
authors (Handl and Meyer, 2002,Ramos et al., 2002) proposed a number of
modifications to improve the convergence rate and to get optimal number of
clusters. Monmarche et al. hybridized the Ant-based clustering algorithm with
K-means algorithm (Monmarche et al., 1999) and compared it to traditional
K-means on various data sets, using the classification error for evaluation
purposes. However, the results obtained with this method are not applicable
to ordinary ant-based clustering since it differs significantly from the latter.

Like a standard ACO, ant-based clustering is a distributed process that
employs positive feedback. Ants are modeled by simple agents that randomly
move in their environment. The environment is considered to be a low di-
mensional space, more generally a two-dimensional plane with square grid.
Initially, each data object that represents a multi-dimensional pattern is ran-
domly distributed over the 2-D space. Data items that are scattered within
this environment can be picked up, transported and dropped by the agents in
a probabilistic way. The picking and dropping operation are influenced by the
similarity and density of the data items within the ant’s local neighborhood.
Generally, the size of the neighborhood is 3×3. Probability of picking up data
items is more when the object are either isolated or surrounded by dissimilar
items. They trend to drop them in the vicinity of similar ones. In this way, a
clustering of the elements on the grid is obtained.

The ants search for the feature space either through random walk or with
jumping using a short term memory. Each ant picks up or drops objects
according to the following local probability density measure:

f(Xi) = max{0,
1

s2

∑

Xj∈Ns×s(r)
[1 −

d(Xi,Xj)

α(1 + ν−1
νmax

)
(14)

In the above expression, Ns×s(r) denotes the local area of perception sur-
rounding the site of radius r, which the ant occupies in the two-dimensional
grid. The threshold αg cales the dissimilarity within each pair of objects, and
the moving speed v controls the step-size of the ant searching in the space
within one time unit. If an ant is not carrying an object and finds an object Xi

in its neighborhood, it picks up this object with a probability that is inversely
proportional to the number of similar objects in the neighborhood. It may be
expressed as:

Ppick−up(Xi) = [
kp

kp + f(Xi)
]2 (15)

If however, the ant is carrying an object x and perceives a neighbor’s cell in
which there are other objects, then the ant drops off the object it is carrying
with a probability that is directly proportional to the object’s similarity with
the perceived ones. This is given by:
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Pdrop(Xi) =
2.f(Xi) iff(Xi) < kd

1 iff(Xi) ≥ kd

The parameters kp and kd are the picking and dropping constants (Gath
and Geva, 1989) respectively. Function f(Xi) provides an estimate of the
density and similarity of elements in the neighborhood of object Xi. The
standard ACA pseudo-code is summarized in Algorithm 3.

Algorithm 3: Procedure ACA

1: Place every item Xi on a random cell of the grid;
2: Place every ant k on a random cell of the grid unoccupied by ants;
3: iteration count ← 1;
4: while iteration count < maximum iteration do
5: for i = 1 to no of ants do
6: if unladen ant and cell occupied by item Xi then
7: compute f(Xi) and Ppick−up(Xi);
8: else
9: if ant carrying item xi and cell empty then

10: compute f(Xi) and Pdrop(Xi);
11: drop item Xi with probability Pdrop(Xi);
12: end if
13: end if
14: move to a randomly selected, neighboring and unoccupied cell ;
15: end for
16: t ← t + 1
17: end while
18: print location of items;

Kanade and Hall (Kanade and Hall, 2003) presented a hybridization of
the ant systems with the classical FCM algorithm to determine the number
of clusters in a given dataset automatically. In their fuzzy ant algorithm, at
first the ant based clustering is used to create raw clusters and then these
clusters are refined using the FCM algorithm. Initially the ants move the
individual data objects to form heaps. The centroids of these heaps are taken
as the initial cluster centers and the FCM algorithm is used to refine these
clusters. In the second stage the objects obtained from the FCM algorithm
are hardened according to the maximum membership criteria to form new
heaps. These new heaps are then sometimes moved and merged by the ants.
The final clusters formed are refined by using the FCM algorithm.

A number of modifications have been introduced to the basic ant based
clustering scheme that improve the quality of the clustering, the speed of
convergence and, in particular, the spatial separation between clusters on
the grid, which is essential for the scheme of cluster retrieval. A detailed
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description of the variants and results on the qualitative performance gains
afforded by these extensions are provided in (Tsang and Kwong, 2006).

4.2 The PSO Based Clustering Algorithms

Research efforts have made it possible to view data clustering as an optimiza-
tion problem. This view offers us a chance to apply PSO algorithm for evolving
a set of candidate cluster centroids and thus determining a near optimal par-
titioning of the dataset at hand. An important advantage of the PSO is its
ability to cope with local optima by maintaining, recombining and comparing
several candidate solutions simultaneously. In contrast, local search heuris-
tics, such as the simulated annealing algorithm (Selim and Alsultan, 1991)
only refine a single candidate solution and are notoriously weak in coping
with local optima. Deterministic local search, which is used in algorithms like
the K-means, always converges to the nearest local optimum from the starting
position of the search.

PSO-based clustering algorithm was first introduced by Omran et al. in
(Omran et al., 2002). The results of Omran et al. (Omran et al., 2002,Omran et
al., 2005a) showed that PSO based method outperformed K-means, FCM and
a few other state-of-the-art clustering algorithms. In their method, Omran et
al. used a quantization error based fitness measure for judging the performance
of a clustering algorithm. The quantization error is defined as:

Je =

K
∑

i=1

∑

∀Xj∈Ci
d(Xj ,Vi)/ni

K
(16)

where Ci is the i-th cluster center and ni is the number of data points be-
longing to the i-th cluster. Each particle in the PSO algorithm represents a
possible set of K cluster centroids as:

         

)(tZ
i

=
1,iV 2,iV ....... Ki

V ,

where Vi,p refers to the p-th cluster centroid vector of the i-th particle. The
quality of each particle is measured by the following fitness function:

f(Zi,Mi) = w1d̄max(Mi,Xi) + w2(Rmax − dmin(Zi)) + w3Je (17)

In the above expression, Rmax is the maximum feature value in the dataset
and Mi is the matrix representing the assignment of the patterns to the
clusters of the i-th particle. Each element mi,k,pindicates whether the pattern
Xpbelongs to cluster Ck of i-th particle. The user-defined constants w1, w2,
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and w3 are used to weigh the contributions from different sub-objectives. In
addition,

d̄max = max
k∈1,2,....,K

{
∑

∀Xp∈Ci,K

d(Xp,Vi,k)/ni,k} (18)

and,

dmin(Zi) = min
∀p,q,p 6=q

{d(Vi,p,Vi,q)} (19)

is the minimum Euclidean distance between any pair of clusters. In the above,
ni,kis the number of patterns that belong to cluster Ci,k of particle i. he
fitness function is a multi-objective optimization problem, which minimizes
the intra-cluster distance, maximizes inter-cluster separation, and reduces the
quantization error. The PSO clustering algorithm is summarized in Algorithm
4.

Algorithm 4: The PSO Clustering Algorithm

1: Initialize each particle with K random cluster centers.
2: for iteration count = 1 to maximum iterations do
3: for all particle i do
4: for all pattern Xp in the dataset do
5: calculate Euclidean distance of Xp with all cluster centroids
6: assign Xp to the cluster that have nearest centroid to Xp

7: end for
8: calculate the fitness function f(Zi, Mi)
9: end for

10: find the personal best and global best position of each particle.
11:

updating formula of PSO.
12: end for

Van der Merwe and Engelbrecht hybridized this approach with the k-
means algorithm for clustering general dataets (van der Merwe and Engel-
brecht, 2003). A single particle of the swarm is initialized with the result of
the k-means algorithm. The rest of the swarm is initialized randomly. In 2003,
Xiao et al used a new approach based on the synergism of the PSO and the
Self Organizing Maps (SOM) (Xiao et al., 2003) for clustering gene expres-
sion data. They got promising results by applying the hybrid SOM-PSO algo-
rithm over the gene expression data of Yeast and Rat Hepatocytes. Paterlini
and Krink (Paterlini and Krink, 2006) have compared the performance of K-
means, GA (Holland, 1975,Goldberg, 1975), PSO and Differential Evolution
(DE) (Storn and Price, 1997) for a representative point evaluation approach
to partitional clustering. The results show that PSO and DE outperformed
the K-means algorithm.

Update the cluster centroids according to velocity updating and coordinate
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Cui et al. (Cui and Potok, 2005) proposed a PSO based hybrid algorithm
for classifying the text documents. They applied the PSO, K-means and a
hybrid PSO clustering algorithm on four different text document datasets. The
results illustrate that the hybrid PSO algorithm can generate more compact
clustering results over a short span of time than the K-means algorithm.

4.3 An Automatic Clustering Algorithm Based on PSO

Tremendous research effort has gone in the past few years to evolve the clusters
in complex datasets through evolutionary computing techniques. However, lit-
tle work has been taken up to determine the optimal number of clusters at
the same time. Most of the existing clustering techniques, based on evolu-
tionary algorithms, accept the number of classes K as an input instead of
determining the same on the run. Nevertheless, in many practical situations,
the appropriate number of groups in a new dataset may be unknown or im-
possible to determine even approximately. For example, while clustering a set
of documents arising from the query to a search engine, the number of classes
K changes for each set of documents that result from an interaction with the
search engine. Also if the dataset is described by high-dimensional feature
vectors (which is very often the case), it may be practically impossible to
visualize the data for tracking its number of clusters.

Finding an optimal number of clusters in a large dataset is usually a chal-
lenging task. The problem has been investigated by several researches (Halkidi
et al., 2001,Theodoridis and Koutroubas, 1999) but the outcome is still un-
satisfactory (Rosenberger and Chehdi, 2000). Lee and Antonsson (Lee and
Antonsson, 2000) used an Evolutionary Strategy (ES) (Schwefel, 1995) based
method to dynamically cluster a dataset. The proposed ES implemented
variable-length individuals to search for both centroids and optimal number
of clusters. An approach to classify a dataset dynamically using Evolutionary
Programming (EP) (Fogel et al., 1966) can be found in Sarkar (Sarkar et al.,
1997) where two fitness functions are optimized simultaneously: one gives the
optimal number of clusters, whereas the other leads to a proper identification
of each cluster’s centroid. Bandopadhyay et al. (Bandyopadhyay and Maulik,
2000) devised a variable string-length genetic algorithm (VGA) to tackle the
dynamic clustering problem using a single fitness function. Very recently, Om-
ran et al. came up with an automatic hard clustering scheme (Omran et
al., 2005c). The algorithm starts by partitioning the dataset into a relatively
large number of clusters to reduce the effect of the initialization. Using bi-
nary PSO (Kennedy and Eberhart, 1997), an optimal number of clusters is
selected. Finally, the centroids of the chosen clusters are refined through the
K-means algorithm. The authors applied the algorithm for segmentation of
natural, synthetic and multi-spectral images.

In this section we discuss a new fuzzy clustering algorithm (Das et al.,
2006), which can automatically determine the number of clusters in a given
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dataset. The algorithm is based on a modified PSO algorithm with improved
convergence properties.

The Modification of the Classical PSO

The canonical PSO has been subjected to empirical and theoretical investi-
gations by several researchers (Eberhart and Shi, 2001, Clerc and Kennedy,
2002). In many occasions, the convergence is premature, especially if the
swarm uses a small inertia weight ω or constriction coefficient (Clerc and
Kennedy, 2002). As the global best found early in the searching process may
be a poor local minima, we propose a multi-elitist strategy for searching the
global best of the PSO. We call the new variant of PSO the MEPSO. The idea
draws inspiration from the works reported in (Deb et al., 2002). We define a
growth rate β for each particle. When the fitness value of a particle of t-th
iteration is higher than that of a particle of (t-1)-th iteration, the β will be
increased. After the local best of all particles are decided in each generation,
we move the local best, which has higher fitness value than the global best
into the candidate area. Then the global best will be replaced by the local
best with the highest growth rate β. Therefore, the fitness value of the new
global best is always higher than the old global best. The pseudo code about
MEPSO is described in Algorithm 5.

Algorithm 5: The MEPSO Algorithm

1: for t = 1 to tmax do
2: if t < tmax then
3: for j = 1 to N do {swarm size is N}
4: j j in

(t − 1)-th time-step then
5: βj = βj +1;
6: end if
7: Update Local bestj .
8: if the fitness of Local bestj > that of Global best now then
9: Choose Local bestj put into candidate area.

10: end if
11: end for
12: Calculate β of every candidate, and record the candidate of βmax .
13: Update the Global best to become the candidate of βmax.
14: else
15:
16: end if
17: end for

if the fitness value of particle in t-th time-step> that of particle

Update the Global best to become the particle of highest fitness value.
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Particle Representation

In the proposed method, for n data points, each p-dimensional, and for a
user-specified maximum number of clusters cmax, a particle is a vector of real
numbers of dimension cmax + cmax × p. The first cmaxentries are positive
floating-point numbers in (0, 1), each of which controls whether the corre-
sponding cluster is to be activated (i.e. to be really used for classifying the
data) or not. The remaining entries are reserved for cmax cluster centers, each
p-dimensional. A single particle can be shown as:

)(tZ
i

             =                                    

        

       
                                                         

                                  

Activation Threshold             Cluster Centroids

1,iV 2,iV max,ciVTi,1 Ti,2 ..... Ti,cmax

flagi,1 flagi,2 ......

.

flagi,kmax

Every probable cluster center mi,j has p features and a binary flagi,j

associated with it. The cluster center is active (i.e., selected for classification)
if flagi,j = 1 and inactive if flagi,j = 0. Each flag is set or reset according
to the value of the activation threshold Ti,j . Note that these flags are latent
information associated with the cluster centers and do not take part in the
PSO-type mutation of the particle. The rule for selecting the clusters specified
by one particle is:

IfTi,j > 0.5Thenflagi, j = 1Elseflagi,j = 0 (20)

Note that the flags in an offspring are to be changed only through the
Tij ’s (according to the above rule). When a particle jumps to a new position,
according to (8), the T values are first obtained which then are used to select
(via equation (6)) the m values. If due to mutation some threshold T in a
particle exceeds 1 or becomes negative, it is fixed to 1 or zero, respectively.
However, if it is found that no flag could be set to one in a particle (all acti-
vation thresholds are smaller than 0.5), we randomly select 2 thresholds and
re-initialize them to a random value between 0.5 and 1.0. Thus the minimum
number of possible clusters is 2.

Fitness Function

The quality of a partition can be judged by an appropriate cluster valid-
ity index. Cluster validity indices correspond to the statistical-mathematical
functions used to evaluate the results of a clustering algorithm on a quantita-
tive basis. Generally, a cluster validity index serves two purposes. First, it can
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be used to determine the number of clusters, and secondly, it finds out the
corresponding best partition. One traditional approach for determining the
optimum number of classes is to run the algorithm repeatedly with different
number of classes as input and then to select the partitioning of the data re-
sulting in the best validity measure (Halkidi and Vazirgiannis, 2001). Ideally,
a validity index should take care of the following aspects of the partitioning:

1. Cohesion : Patterns in one cluster should be as similar to each other as
possible. The fitness variance of the patterns in a cluster is an indication
of the cluster’s cohesion or compactness.

2. Separation: Clusters should be well separated. The distance among the
cluster centers (may be their Euclidean distance) gives an indication of
cluster separation.

In the present work we have based our fitness function on the Xie-Benni
index. This index, due to (Xie and Beni, 1991), is given by:

XBm =

c
∑

i=1

n
∑

j=1

u2
ij ‖Xj − Vi‖

2

n × mini6=j ‖Vi − Vj‖
2 (21)

Using XBm the optimal number of clusters can be obtained by minimizing
the index value. The fitness function may thus be written as:

f =
1

XBi(c) + eps
(22)

where XBi is the Xie-Benni index of the i-th particle and eps is a very small
constant (we used 0.0002). So maximization of this function means minimiza-
tion of the XB index.

We have employed another famous validity index known as the partition
entropy in order to judge the accuracy of the final clustering results obtained
by MEPSO and its competitor algorithms in case of the image pixel classifi-
cation. The partition entropy (Bezdek, 1981) function is given by,

Vpe =

−
n
∑

j=1

c
∑

i=1

[uij log uij ]

n
(23)

The idea of the validity function is that the partition with less fuzziness
means better performance. Consequently, the best clustering is achieved when
the value Vpe is minimal.

4.4 Avoiding Erroneous particles with Empty Clusters or
Unreasonable Fitness Evaluation

There is a possibility that in our scheme, during computation of the XB
index, a division by zero may be encountered. This may occur when one of
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the selected cluster centers is outside the boundary of distributions of the
data set. To avoid this problem we first check to see if any cluster has fewer
than 2 data points in it. If so, the cluster center positions of this special
chromosome are re-initialized by an average computation. We put n/c data
points for every individual cluster center, such that a data point goes with a
center that is nearest to it.

4.5 Combining All Together

The clustering method described here, is a two-pass process at each iteration
or time step. The first pass amounts to calculating the active clusters as
well as the membership functions for each particle in the spectral domain. In
the second pass, the membership information of each pixel is mapped to the
spatial domain, and the spatial function is computed from that. The MEPSO
iteration proceeds with the new membership that is incorporated with the
spatial function. The algorithm is stopped when the maximum number of
time-steps tmax is exceeded. After the convergence, de-fuzzification is applied
to assign each data item to a specific cluster for which the membership is
maximal.

4.6 A Few Simulation Results

The MEPSO-clustering algorithm has been tested over a number of synthetic
and real world datasets as well as on some image pixel classification prob-
lems. The performance of the method has been compared with the classical
FCM algorithm and a recently developed fuzzy clustering algorithm based
on GA. The later algorithm is referred in literature as Fuzzy clustering with
Variable length Genetic Algorithm (FVGA) the details of which can be found
in (Pakhira et al., 2005). In the present chapter, we first provide the simulation
results obtained over four well-chosen synthetic datasets (Bandyopadhyay and
Maulik, 2000) and two real world datasets. The real world datasets used are
the glass and the Wisconsin breast cancer data set, both of which have been
taken from the UCI public data repository (Blake et al., 1998). The glass
data were sampled from six different type of glass: building windows float
processed (70 objects), building windows non float processed (76 objects), ve-
hicle windows float processed (17 objects), containers (13 objects), tableware
(9 objects), headlamps (29 objects) with nine features each. The Wisconsin
breast cancer database contains 9 relevant features: clump thickness, cell size
uniformity, cell shape uniformity, marginal adhesion, single epithelial cell size,
bare nuclei, bland chromatin, normal nucleoli and mitoses. The dataset has
two classes. The objective is to classify each data vector into benign (239
objects) or malignant tumors (444 objects).

Performance of the MEPSO based algorithm on four synthetic datasets
has been shown in Figures 5 through 8. In Table 1, we provide the mean value
and standard deviation of the Xie Beni index evaluated over final clustering
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results, the number of classes evaluated and the number of misclassified items
with respect to the nominal partitions of the benchmark data, as known to
us. For each data set, each run continues until the number of function eval-
uations (FEs) reaches 50,000. Twenty independent runs (with different seeds
for the random number generator) have been taken for each algorithm. The
results have been stated in terms of the mean best-of-run values and standard
deviations over these 20 runs in each case. Only for the FCM, correct number
of classes has been provided as input. Both FVGA and MEPSO determine
the number of classes automatically on the run.

From Tables 1 and 2, one may see that our approach outperforms the
state-of-the-art FVGA and the classical FCM over a variety of datasets in a
statistically significant manner. Not only does the method find the optimal
number of clusters, it also manages to find better clustering of the data points
in terms of the two major cluster validity indices used in the literature.

               

(a)                                                                        (b)       

Fig. 5. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

4.7 Image Segmentation through Clustering

Image segmentation may be defined as the process of dividing an image into
disjoint homogeneous regions. These homogeneous regions usually contain
similar objects of interest or part of them. The extent of homogeneity of
the segmented regions can be measured using some image property (e.g. pixel
intensity (Jain et al., 1999)). Segmentation forms a fundamental step towards
several complex computer-vision and image analysis applications including
digital mammography, remote sensing and land cover study. Image segmen-
tation can be treated as a clustering problem where the features describing
each pixel correspond to a pattern, and each image region (i.e., segment)
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Fig. 6. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

Fig. 7. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO

Fig. 8. (a) The unlabeled synthetic dataset 1 (b) Automatic Clustering with the
MEPSO
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Table 1. Final solution (mean and standard deviation over 20 independent runs)
after each algorithm was terminated after running for 50,000 function evaluations
(FE) with DB Measure based fitness function.

Problem Algorithm Average no.
of clusters
found

Final DB
measure

Mean No. of
misclassified
Items

Synthetic Data 1

MEPSO 5.05±0.0931 3.0432±0.021 5.25±0.096
FVGA 8.15±0.0024 4.3432±0.232 15.75±0.154
FCM NA 5.3424±0.343 19.50±1.342

Synthetic Data 2

MEPSO 6.45±0.0563 1.4082±0.006 4.50±0.023
FVGA 6.95±0.021 1.5754±0.073 10.25±0.373
FCM NA 1.6328±0.002 26.50±0.433

Synthetic Data 3

MEPSO 5.25±0.0241 0.9224±0.334 9.15±0.034
FVGA 5.75±0.0562 1.2821±0.009 15.50±0.048
FCM NA 2.9482±0.028 17.25±0.275

Synthetic Data 4

MEPSO 4.00±0.00 1.0092±0.083 1.50±0.035
FVGA 4.75±0.0193 1.5152±0.073 4.55±0.05
FCM NA 1.8371±0.034 8.95±0.15

Glass

MEPSO 6.05±0.0248 1.0802±0.083 8.35±0.662
FVGA 5.95±0.0193 1.5152±0.073 14.35±0.26
FCM NA 1.8371±0.034 18.65±0.85

Breast Cancer

MEPSO 2.05±0.0563 0.5003±0.006 25.00±0.09
FVGA 2.50±0.0621 0.5754±0.073 26.50±0.80
FCM NA 0.6328±0.002 30.23±0.46

corresponds to a cluster (Jain et al., 1999). Therefore, many clustering al-
gorithms have widely been used to solve the segmentation problem (e.g.,
K-means (Tou and Gonzalez, 1974), Fuzzy C-means (Trivedi and Bezdek,
1986), ISODATA (Ball and Hall, 1967), Snob (Wallace and Boulton, 1968)
and recently the PSO and DE based clustering techniques (Omran et al.,
2005a,Omran et al., 2005b)).

Here we illustrate the automatic soft segmentation of a number of grey
scale images by using our MEPSO based clustering algorithm. An important
characteristic of an image is the high degree of correlation among the neigh-
boring pixels. In other words, these neighboring pixels possess similar feature
values, and the probability that they belong to the same cluster is great. This
spatial relationship (Ahmed et al., 2002) is important in clustering, but it is
not utilized in a standard FCM algorithm. To exploit the spatial information,
a spatial function is defined as:

hij =
∑

k∈δ(Xj)

uik (24)

where δ(Xj)represents a square window centered on pixel (i.e. data point) Xj

in the spatial domain. A 5×5 window was used throughout this work. Just like
the membership function, the spatial function hij represents the probability



304 Ajith Abraham, Swagatam Das, and Sandip Roy

that pixel Xjbelongs to i-th cluster. The spatial function of a pixel for a cluster
is large if the majority of its neighborhood belongs to the same clusters. We
incorporate the spatial function into membership function as follows:

u′
ij =

ur
ijh

t
ij

c
∑

k=1

ur
kjh

t
kj

(25)

Here in all the cases we have used r = 1, t = 1after considerable trial and
errors.

Although we tested our algorithm over a large number of images with
varying range of complexity, here we show the experimental results for three
images only, due to economy of space. Figures 4.7 to 4.7 show the three original
images and their segmented counterparts obtained using the FVGA algorithm
and the MEPSO based method. In these figures the segmented portions of an
image have been marked with the grey level intensity of the respective cluster
centers. In Table 2, we report the mean value the DB measure and partition
entropy calculated over the ‘best-of-run’ solutions in each case. One may note
that the MEPSO meets or beats the competitor algorithm in all the cases.
Table 3 reports the mean time taken by each algorithm to terminate on the
image data. Finally, Table 4 contains the mean and standard deviations of
the number of classes obtained by the two automatic clustering algorithms.

Fig. 9. (a) The original Texture image. (b) Segmentation by FVGA (c= 3) (c)
Segmentation by MEPSO based method (c = 3)
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Fig. 10. (a) The original Pepper image. (b) Segmentation by FVGA (c= 7) (c)
Segmentation by MEPSO based method (c = 7)

Table 2. Automatic clustering result for three real life grayscale images (over 20
runs; each run continued up to 50,000 FE)

Image Validity Index
Mean and Std Dev of the validity indices
over the final clustering results of 20 in-
dependent runs
AFDE FVGA FCM

Texture
Xie-Beni 0.7283

(0.0001)
0.7902
(0.0948)

0.7937
(0.0013)

Partition En-
tropy

2.6631
(0.7018)

2.1193
(0.8826)

2.1085
(0.0043)

MRI Image of Brain
Xie-Beni 0.2261

(0.0017)
0.2919
(0.0583)

0.3002
(0.0452)

Partition En-
tropy

0.1837
(0.0017)

0.1922
(0.0096)

0.1939
(0.0921)

Pepper Image
Xie-Beni 0.05612

(0.0092)
0.09673
(0.0043)

0.09819
(0.0001)

Partition En-
tropy

0.8872
(0.0137)

1.1391
(0.0292)

1.1398
(0.0884)
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Fig. 11. (a) The original MRI image. (b) Segmentation by FVGA (c= 5) (c) Seg-
mentation by MEPSO (c = 5)

Table 3. Comparison among the mean execution time taken by the different algo-
rithms

Image Optimal No. of Clusters
Mean and Std Dev of the num-
ber of classes estimated by the
competitor algorithms
FVGA MEPSO

Texture 3 3.75±0.211 3.05±0.132

MRI 5 5.05±0.428 5.25±0.212

Pepper 7 8.15±0.772 6.95±0.982

Table 4. Automatic clustering results for the three real-life grayscale images (over
20 runs; each runs continued for 50,000 FE)

Image
Mean and Std Dev of the execution time
(in seconds) taken by the competitor al-
gorithms
FVGA MEPSO

Texture 32.05±0.076 47.25±0.162

MRI 24.15±0.016 34.65±0.029

Pepper 49.20±0.201 67.85±0.817
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5 Conclusion and Future Directions

In this Chapter, we introduced some of the preliminary concepts of Swarm
Intelligence (SI) with an emphasis on particle swarm optimization and ant
colony optimization algorithms. We then described the basic data clustering
terminologies and also illustrated some of the past and ongoing works, which
apply different SI tools to pattern clustering problems. We proposed a novel
fuzzy clustering algorithm, which is based on a deviant variety of the PSO. The
proposed algorithm can automatically compute the optimal number of clusters
in any dataset and thus requires minimal user intervention. Comparison with
a state of the art GA based clustering strategy, reveals the superiority of the
MEPSO-clustering algorithm both in terms of accuracy and speed.

Despite being an age old problem, clustering remains an active field of
interdisciplinary research till date. No single algorithm is known, which can
group all real world datasets efficiently and without error. To judge the qual-
ity of a clustering, we need some specially designed statistical-mathematical
function called the clustering validity index. But a literature survey reveals
that, most of these validity indices are designed empirically and there is no
universally good index that can work equally well over any dataset. Since, ma-
jority of the PSO or ACO based clustering schemes rely on a validity index
to judge the fitness of several possible partitioning of the data, research effort
should be spent for defining a reasonably good index function and validating
the same mathematically.

Feature extraction is an important preprocessing step for data clustering.
Often we have a great number of features (especially for a high dimensional
dataset like a collection of text documents) which are not all relevant for a
given operation. Hence, future research may focus on integrating the auto-
matic feature-subset selection scheme with the SI based clustering algorithm.
The two-step process is expected to automatically project the data to a low
dimensional feature subspace, determine the number of clusters and find out
the appropriate cluster centers with the most relevant features at a faster
pace.

Gene expression refers to a process through which the coded information
of a gene is converted into structures operating in the cell. It provides the
physical evidence that a gene has been ”turned on” or activated for protein
synthesis (Lewin, 1995). Proper selection, analysis and interpretation of the
gene expression data can lead us to the answers of many important problems
in experimental biology. Promising results have been reported in (Xiao et al.,
2003) regarding the application of PSO for clustering the expression levels of
gene subsets. The research effort to integrate SI tools in the mechanism of
gene expression clustering may in near future open up a new horizon in the
field of bioinformatic data mining.

Hierarchical clustering plays an important role in fields like information
retrieval and web mining. The self-assembly behavior of the real ants may
be exploited to build up new hierarchical tree-structured partitioning of a
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data set according to the similarities between those data items. A description
of the little but promising work already been undertaken in this direction
can be found in (Azzag et al., 2006). But a more extensive and systematic
research effort is necessary to make the ant based hierarchical models superior
to existing algorithms like Birch (Zhang et al., 1997).
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