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Abstract—This paper proposes swarm intelligence based 

approach for the real time coordination of groups of UAVs 

(Unmanned Aerial Vehicles) in tasks where values that are 

sensed from the aerial platform can be used to qualify the 

individuals. In particular, as an example application, here we 

consider environmental monitoring UAV teams. Their function is 

to monitor an area and when some undesired environmental 

condition arises, coordinate themselves to find the source as fast 

as possible. The swarm based algorithm has been extensively 

tested using a 3D simulation platform and validated with real 

UAVs flying over an industrial area.  

Keywords-component; Unmanned Aerial Vehicles; Evolution; 

Robot Coordination 

I.  INTRODUCTION  

In the last few years the interest in Unmanned Aerial 
Vehicles (UAVs) and their use for an ever increasing range of 
applications has grown tremendously. This type of aircrafts can 
be controlled remotely or programmed to fly in an autonomous 
way. They have been used for different types of applications as 
individual entities, both in military and civil tasks [1][2][3].  
Research related to this type of systems is being undertaken in 
many areas going from the design of more efficient aircraft 
aimed at specific applications [4], to the development of 
improved control electronics that provide for better 
autonomous behaviors, to optimized path planning strategies 
[5][6], or to opening new application domains [7]. Currently, a 
whole new field of research is opening up in the area of 
coordinating UAV teams to cooperatively perform different 
missions. This field is still in its infancy and many exciting 
new approaches are being explored for different applications 
[8]. Examples of these are works related to trajectory planning 
in UAV teams [9][10], real time target tracking [3], and many 
others [11][12]. 

At the same time, environmental awareness is becoming 
ever more present in our societies. A need has arisen to 
evaluate and control the pollution levels in our lower 
atmosphere and, especially, to determine sources over which it 
would be important to act in order to reduce these levels when 
certain limits are surpassed. There has been a long tradition of 
systems developed to this end, from satellite based monitoring 
systems [13] to the typical local stations in cities or even 
approaches based on public transportation systems [14]. Most 
of these systems have been designed in order to map the 
pollution levels over extensive areas, but usually at ground 

level or integrating information from the whole air column as 
in the case of satellite based systems. However, for many 
applications it would also be very important to have 
information on air quality in different layers of the atmosphere. 
In fact, different sources of pollution such as forest fires or 
chimney plumes cannot be accurately detected by ground based 
systems. They are usually carried overhead and are often 
ignored. This is where monitoring systems based on UAVs 
really can come into play. Some authors have reported results 
on their use for monitoring pollution over different areas. An 
example is the work by Ramanathan et al.  [15] who have used 
a set of UAVs with a combination of remotely controlled and 
preprogrammed strategies.  

In this paper we propose an autonomous coordination 
strategy for UAV based systems that can be used for the 
detection of pollution emitting sources in the environment in an 
autonomous manner by teams of UAVs. The strategy is 
inspired on swarm based approaches to optimization but it has 
been adapted to its operation in real time using real UAVs. 
This use of real elements implies a set of constraints over 
where one of the UAVs can be and how fast they can move 
that are usually not contemplated by traditional optimization 
approaches and which are key for these types of systems to be 
able to operate. 

The paper is structured as follows. Section II describes the 
set of aerial vehicles that were used for this work. Section III 
describes the distributed real time evolutionary coordination 
strategy used for the mission considered. Section IV provides 
information on the experiments that were carried out and on 
some of the results obtained. Finally, section V is devoted to 
the presentation of some conclusions. 

II. AERIAL VEHICLES 

A. Basic Vehicle 

As an initial testing UAV platform we have opted for 
different models of electrically powered UAVs made of 
expanded polypropylene (EPP) having a wingspan of 180 cm, a 
length of 120 cm, a total weight without batteries of 1,5 kg, and 
a payload capability of 1,5 kg. Figure 1 shows pictures of some 
of the units in one of the teams. As these units where intended 
for sensing and visualization purposes, we chose to use mostly 
back propelled airplanes thus avoiding the problems for 
sensing and viewing of front propelled vehicles. 

In terms of flight electronics (as shown in figure 2), to be 
able to generate autonomous flight modes, the units have been 



equipped with an autopilot based on a GPS, a miniature Inertial 
Measurement Unit (IMU) and an Attitude Heading Reference 
System (AHRS). Also a Long Range System (LRS) for UAVs 
has been installed. This system is able to provide telemetry, 
communications and video communications up to 170Km in 
the 869Mhz and 915Mhz ISM bands. The data from the 
different payload sensors, position, and other flight information 
is also transmitted through the video channel embedded within 
the teletext signal as shown in the picture of figure 3. All of 
these data are also recorded on-board using a data-logger and 
can be retrieved after landing. The LRS provides the possibility 
of manually controlling the UAVs if necessary by using a FPV 
(First Person View) system that is also incorporated.  

B. Mission Sensors 

In terms of mission sensing, as the task to be performed is 
related to pollutant measurements, a sensing ensemble has been 
developed that includes the capability of measuring amounts of 
the most common pollutants such as NOx, CO, CO2, and SO2, 
as well as temperature and humidity. The unit is open to the 
addition of more sensors as needed with the only limitation of 
the actual payload the UAV can carry. In the current 
experiments we will not use more than two or three of these 
pollutant sensors at a time, but this is more than enough at 
present for the type of problem that is being considered here.  

 

III. COORDINATION APPROACH 

The swarm intelligence based strategy uses a completely 
distributed approach where every airplane operates 
autonomously and collaborates with surrounding airplanes to 
explore the environment and find pollution sources.  

In this strategy the airplanes have three phases of operation. 
A flow diagram of the behavior of the planes can be seen in 
Figure 4. After take-off, they start a spread out phase for a 
fixed period of time. This first stage is used to place the planes 
in a good positions to start exploring the environment. This 
spread out of the planes in the environment is achieved by 
maximizing the minimum distance between them while at the 
same time flying within a fixed radius of the take-off area, it 
can obviously be implemented in a distributed and local way. 

Once the spread out stage finishes, the planes start the 
monitoring phase. The behavior of the planes continues to be 
the same as in the spread-out phase, they try to maximize the 
minimum distance between them while moving, but in this 
state they are also sensing the environment seeking pollution 
values above a fixed alarm threshold. Also during this stage, 
the planes start broadcasting their sensed data through the 
communications channel so other agents of the system can 
receive it (at least those that are close enough to it). 

As soon as one of the planes detects a pollution value above 
the threshold it enters the search stage. In this stage the plane 
starts collaborating with surrounding planes in order to find the 
pollution source. As each plane is receiving the data sensed and 
broadcast by others surrounding it, it uses the data coming 
from the N nearest neighbors and its own sensing data to select 
a promising direction for continuing its search.  

The sensed data is averaged by each plane before it is 
broadcast by using only the last sensed values, in order to avoid 
peaks and noise. For the tests included in this paper, a simple 
statistical average is performed using the last five sensed 
values. The planes use a one second period for sensing. 
Therefore, the data received by each plane is already averaged. 
The plane uses those data to seek the surrounding plane with 
the maximum pollution value. If it is larger than its own 
pollution value, the plane changes its flight direction towards 
the current position of the airplane that provides the maximum 
value in its surroundings. Otherwise the plane continues 

Figure 3: Sensing and flight information transmitted using the video 
signal from the front facing camera of the UAV 

Figure 2: Schematic diagram of the electronics within each airplane 

Figure 1: Some of the UAVs that make up the team. 



moving in its current course. This decision about which 
direction to follow is taken every D seconds (a parameter of the 
plane that we call ‘decision gap’). Therefore, the plane will 
follow a given direction for at least as long the length of the 
decision gap, and then it will decide if it continues to be 
promising or not. 

When each plane starts detecting a pollution value above 
the threshold and starts collaborating with surrounding planes, 
it is like the plane has become a member of a virtual team that 
is exploring a particular promising area of the environment. 
Therefore this strategy leads to the autonomous emergence of 
different teams of cooperating planes. A team is created when a 
plane starts following other surrounding planes because they 
are reporting positions that are more promising in terms of 
finding a maximum sensed value than its current one.  
Obviously, any plane can leave a team any moment, as long as 
it finds itself a more promising pollution value, thus creating a 
new possible group, or it detects a different surrounding plane 
that has a more promising pollution value.  

The group behavior is controlled, to some extent, by the 
decision gap parameter, which can be said to control the 
exploration exploitation ratio of the search strategy. If this 
parameter is low, the displacements of the plane between 
direction changes will be small, making its behavior much 
more dependent on other planes in its team (increased 
exploitation). However, as the decision gap is increased, the 
displacements of the planes between direction changes will be 
larger, thus increasing the exploration capacity of the strategy 
and, therefore, increasing the probability of finding new 
promising areas. Consequently, as parameter D represents to 
some extent the exploration/exploitation ratio, the algorithm 
can benefit from an increment in the D parameter when the 
number of UAVs is low, as it will increase its exploration 
capabilities and prevent premature convergences to suboptima. 

It is important to note that the current swarm strategy has 
very low synchronization requirements. In fact, the airplanes 
can even operate in a completely disconnected fashion. The 
messages broadcast by the planes include the sent date and 
time and the receiver airplanes use this information to check if 
the data is still valid. For the current tests we are considering as 
valid those message sent in the previous thirty seconds. 

IV. SOME EXPERIMENTS 

To test the proposed strategies we have performed a series 
of tests, both on the real planes and on simulations. In fact, 
simulations were used in order to be able to extensively test the 
strategy under different controlled conditions. These results 
were validated by means of real flights. 

A. Simulator 

We developed a 3D simulator that could mimic the 
behavior of the airplanes in a reasonably realistic manner. It 
allows us to easily test different exploration and search 
algorithms, as well as different configurations of plane teams, 
without the high costs and difficulties of testing every 
configuration in the real world. 

Figure 4: Block diagram of the three operation modes of the UAVs using 
swarm intelligence. 



The simulator is implemented as a multi-agent system in 
which the planes are agents interacting in a simulated 3D world 
populated by pollution sources. Figure 5 displays a diagram of 
its components, which are: 

 
� Pollution functions. There are simulated sources of 

pollution in the virtual world and different types of 
functions for the spatial and temporal evolution of 
pollution are supported. In the work presented here, the 
simulated functions use a Gaussian distribution. The 
capability of reading data from the log files of the real 
planes is included in order to be able to run simulations 
using real pollution distributions. 

� World. It is used as an aggregator of the pollution 
functions. When an agent senses a point in the 
environment, the world requests the pollution 
contributions from the different pollution functions and 
mixes each different pollutant, returning a list of 
pollutants and values to the agent. 

� Airplanes. The airplanes are the main agents in the multi-
agent system of the simulator. They have access to the 
world in order to sense it, and they are associated to a 
communications channel to be able to talk with other 
agents of the system. 

� Controller. The controller is an optional agent that can be 
used in some configurations where a central point is 
required. This is not the case here and, thus, it just 
contains a simple controller that only logs the sensing 
information coming from the airplanes. 

� Communications channel. It allows the interchange of 
messages between the different agents that populate the 
simulator. It can have many implementations but, 
currently, we have an implementation that simulates a 
radio communications channel in which every agent that 
shares the communications channel receives every 
message posted on the channel. It can have range 
coverage limitations.  

The simulator software has been implemented using JAVA 
and the jMonkey 3 OpenGL Game Engine for the 3D 
environment as a single threaded process that executes a 
continuous loop. All the airplanes in the simulations contain a 
set of common behaviors that provide them with abilities to 
avoid collisions with other planes or the environment, to take 

off and to move to a goal direction. This motion is constrained 
both in terms of speed and heading changes to values that are 
compatible with the way real planes move. That is, an 
instantaneous 180 degree turn is not possible for a real plane. 

Figure 6: Four instants in the process of finding a source. From top to 
bottom: initial monitoring stage, two intermediate instants of the 

approach to the source and source found. 
Figure 5: Block diagram of the multiagent based 3D simulator. 



In fact it usually requires quite a large turn radius. This is taken 
into account within the simulation environment. 

B. Tests 

To test the efficiency of the algorithm we have performed a 
series of tests. As the objective was to locate pollution sources, 
we created a series of environments with up to three pollution 
sources and ran experiments with the planes taking off from 
points at different distances from the pollution sources and with 
different numbers of planes forming the teams. In terms of the 
the value for the decision gap, which to some extent determines 
the exploration/exploitation ratio, in the current examples it 
was set to a small value, five seconds. The reason is that given 
the relatively small size of the exploration area, the nature of 
the pollution function used, and the existence of a spread out 
stage, once the airplanes are searching for the source it is more 
useful to rely on exploitation. 

In order to provide values for the quality of each run three 
time related measures were created. They correspond to points 
in time determined by the spatial positions of the planes. These 
spatial criteria are: 
� Near area criterion: This spatial condition is activated 

when one of the planes is within a radius of 100 meters 
from the pollution source. It reflects how fast the 
algorithm converges to the interesting area of the 
environment.  

� Lucky plane criterion: It is activated when at least one of 
the planes fly within a radius of 25 meters from the 
pollution source. To a certain extent it reflects the ability 
of the algorithm to explore the interesting area once they 
have found it.  

� And finally, an ‘end’ criterion is activated when the 
maximum value detected by the team is inside a radius of 
40 meters from the pollution source for 15 seconds. It is 
useful to measure the stability of the solution found and 
how fast the algorithm finds the solution. 
 

Table 1 shows the results obtained in an environment with 
one pollution source. The pollution sources are situated 600 
meters and 1000m from the take-off area and the planes are 
limited in their flying area to a radius of 1200 meters and 1500 
meters respectively. In order to reduce the effects of the 
randomness in the approach we have executed each test 10 
times and averaged the results. The table shows the comparison 
of times to achieve the different conditions in the two cases. 
The data in the tables is normalized to the reference of the 
averaged time to detect a pollution source with 15 planes 
taking off 600 meters from the source. That is, the values 
shown in the table are all relative to that reference. It is 
important to note that the time it took the team to find the 
source in this reference case assuming 12m/s speed for the 
planes, a value that was obtained from the motion of the real 
planes, was about 98 seconds. 

Two results can be extracted from the table. On one hand it 
can be seen that the effectiveness of the strategy highly 
depends on the number of airplanes used. For 15 and 8 planes 
the swarm approach always finds the source. While in the case 
of 5 planes, the source is found only 80% and 60% of the runs, 
depending on the distance from the take-off point to the source. 
On the other, it can be clearly seen that the total time for 

finding the source increases in a very contained manner both, 
with a decreasing number of planes and with distance to the 
source of the takeoff point. It must be taken into account that 
the area to be explored increases with this distance and the area 
per plane increases with decreasing number of planes. Figure 6 
displays a sequence of images corresponding to four instants of 
one of the search processes with a single pollution source: from 
the initial monitoring stage to the final concentration of the 
team over the source. 

TABLE I.  RESULTS FROM EXPERIMENTS (NORMALIZED TIMES) 

 Take off 600m from 

source 

Take off 1km from source 

Nº 

planes 

Near 

area 

Lucky 

plane 

End 

condition 

Near 

area 

Lucky 

plane 

End 

condition 

15 0.755 0.892 1  1.59 2.12 2.028 

8 1.018 1.327 1.53 1.698 1.969 2.242 

5 0.782 1.547 1.559  1.576 1.99 2.406  

 
Finally we have tested the strategy with two and three 

pollution sources. Here the swarm team strategy, thanks to its 
ability to divide the team into multiple subteams that explore 
locally interesting areas, was able to detect multiple sources in 
an effective and repeatable fashion. Figure 7 shows the final 
situation achieved by the teams when two and three sources 
were present in the environment. The way the swarm algorithm 
works leads to an autonomous division of the planes into teams 
that concentrate on each one of the sources.  

The tests have shown that there are parameters that 
determine the performance of the strategy when detecting 
multiple sources. In fact, the size of the team and the minimum 

Figure 7: UAVs dividing into teams and finding the pollution 
sources when two and three pollution sources are present. 



number of planes within a subteam that are necessary to be 
able to detect a source are the most important ones.  These two 
parameters are related, as the team size must be large enough to 
allow the planes to build at least one minimum sized team per 
pollution source. Therefore, to detect multiple sources, larger 
teams are required. In the tests we have seen that a minimum 
team size of three planes per pollution source was required. 
With a team of 8 planes they were able to find two pollution 
sources, and with 10 they were able to find three pollution 
sources. Nevertheless, to increase the effectiveness of the 
strategy it is a good idea to increase the team size, as with more 
planes multiple sources are found in a much faster and easier 
manner. 

To ensure the correctness of the approach and the validity 
of the conclusions obtained in the simulations some 
experimental flights were carried out over an industrial area in 
the northwest of Spain. Figure 8 displays a picture of one of the 
UAVs flying over the main pollution source in this area as well 
as the trajectories followed in one of the experiments. The 
results produced in these real flights have qualitatively 
supported the data produced using the simulator. However, it 
must also be said that being reality real, discrepancies in the 
average times obtained were observed without implying any 
change in the conclusions.  

V. CONCLUSIONS 

In this paper we have presented a swarm based approach 
for the coordination of UAV teams that are being used for 
environmental monitoring and pollution source detection. The 
swarm approach is based on a fitness value for each aircraft 
each moment in time given by the pollution sensors they carry. 
Thus, at predefined intervals, each UAV broadcasts its sensed 
values to its surrounding UAVs and from the values it receives 
from the others determines which is the most promising 
direction to move in and takes it.   

This procedure has been shown to be quite effective for 
finding sources of pollution and its parameters can be regulated 
so as to just find the source that produces the highest pollution 
value or to find all the sources in a given area. A UAV team 
has been developed with the appropriate characteristics to be 
able to perform the task in real time. The approach has been 

validated over different scenarios, both in simulation and using 
a real UAV team. 

We are now working on the introduction of new, more 
effective algorithms that improve the speed at which the 
sources are found and that, at the same time, require a smaller 
number of planes. 
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Figure 8: One of the UAVs flying over one of the test zones that includes 
industrial installations (left) and trajectory followed by a team. 


