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ABSTRACT Network performance optimization has always been one of the important research subjects
in mobile wireless sensor networks. With the expansion of the application field of MWSNs and the com-
plexity of the working environment, traditional network performance optimization algorithms have become
difficult to meet people’s requirements due to their own limitations. The traditional swarm intelligence
algorithms have some shortcomings in solving complex practical multi-objective optimization problems.
In recent years, scholars have proposed many novel swarm intelligence optimization algorithms, which have
strong applicability and achieved good experimental results in solving complex practical problems. These
algorithms, like their natural systems of inspiration, show the desirable properties of being adaptive, scalable,
and robust. Therefore, the swarm intelligent algorithms (PSO, ACO, ASFA, ABC, SFLA) are widely used
in the performance optimization of mobile wireless sensor networks due to its cluster intelligence and
biological preference characteristics. In this paper, the main contributions is to comprehensively analyze
and summarize the current swarm intelligence optimization algorithm and key technologies of mobile
wireless sensor networks, as well as the application of swarm intelligence algorithm in MWSNSs. Then,
the concept, classification and architecture of Internet of things and MWSNs are described in detail.
Meanwhile, the latest research results of the swarm intelligence algorithms in performance optimization of
MWSNs are systematically described. The problems and solutions in the performance optimization process
of MWSNs are summarized, and the performance of the algorithms in the performance optimization of
MWSNs is compared and analyzed. Finally, combined with the current research status in this field, the issues
that need to be paid attention to in the research of swarm intelligence algorithm optimization for MWSNSs are
put forward, and the development trend and prospect of this research direction in the future are prospected.

INDEX TERMS Internet of things, mobile wireless sensor networks, swarm intelligent optimization

algorithm, performance optimization, multi-objective optimization, energy efficiency, reliability.

I. INTRODUCTION

As an extension and extension of the Internet, the Internet of
Things (IoT) is another major change in the field of infor-
mation technology. The basic characteristics of the Internet
of Things are the comprehensive perception, reliable trans-
mission and intelligent processing of information [1], [2].
The entity information is obtained through the sensing device,
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and transmitted to the relevant service node through the
network, thereby realizing human-object, object-object inter-
connection, and realizing intelligent identification, position-
ing, tracking, monitoring and management of the physical
world [3], [4]. Internet of Things is a heterogeneous archi-
tecture composed of various supporting technologies, such
as physical-oriented RFID and wireless communication tech-
nology, the intelligent terminal-oriented mobile computing
technology, the wireless sensor network technology for sens-
ing nodes, user the data sharing and application services
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FIGURE 1. Architecture of the industrial Internet of Things.

for the Internet [5]. With the development and deepening of
the application of Internet of Things technology in various
fields of economy and society, and the change of access
mode of Internet and energy supply mode of nodes in the
future, a large-scale, low-power wireless sensor network,
which integrates information sensing, data transmission and
processing capabilities, will surely appear in all aspects of our
lives [6], [7].

At the same time, with the deep integration of industri-
alization and informatization, the interconnection of vari-
ous aspects of industrial production has gradually become
possible, and the industrial Internet of Things (IloT) came
into being [8]. The development of the industrial Internet
of Things is one of the important symbols of the industry
entering the era of 4.0, that is, the era in which the phys-
ical and physical worlds merge with each other [9], [10].
As a product of the deep integration of industrialization and
informatization, the industrial Internet of Things monitors,
analyses and adjusts the industrial production through key
technologies such as automation [11], sensors, communi-
cation, large data storage and analysis, so as to achieve
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the goals of improving production efficiency and optimiz-
ing the resource allocation. Industrial Internet of Things
can greatly improve the efficiency and reliability of indus-
trial production, and is an important trend in the future
development of manufacturing [12]. As one of the key tech-
nologies of the industrial Internet of Things, the wireless
communication technology provides a solution for build-
ing an information-based, intelligent production management
and control network [13]. Industrial Internet of Things has
the characteristics of comprehensive sensing, interconnected
transmission, intelligent processing, self-organization and
self-maintenance [14]. It is widely used in many fields such
as intelligent transportation, intelligent factory, smart grid,
intelligent environment detection, etc [15]. In the process of
industrial production, the real-time collection, transmission,
processing of the industrial data and monitoring and control
of the industrial field equipment are realized by using the
monitoring system composed of the Internet of Things tech-
nology [16]. It is of great significance to reduce the overall
production cost of enterprises, improve the level of manage-
ment decision-making and enhance production efficiency.
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Wireless sensor networks (WSNs) are multi-hop self-
organizing network systems formed by a large number of
sensor nodes deployed in the monitoring area [17], [18]. They
are an important technical form of the underlying network of
the Internet of Things. With the maturity of wireless com-
munication, sensor technology, embedded applications and
microelectronics technology, WSNs can obtain the informa-
tion people need at any time, any place, any environmental
conditions, and lay the foundation for the development of
industrial Internet of Things [19]. The application of WSNs
mainly focuses on military, environmental monitoring, secu-
rity monitoring, smart home, disaster site search and rescue,
etc., especially in the harsh environment where humans can’t
reach or can’t work, it can replace humans to collect, trans-
mit and process the required information. As a medium for
the seamless connection between human society and nature,
wireless sensor networks are widely used in all aspects of
life, changing the way people travel and communicate with
nature [20].

Mobile wireless sensor networks (MWSNSs), as the most
important part of the branch of wireless sensor networks, have
extremely wide application value in many aspects [21]. At the
same time, with the rapid development and application of
mobile terminal technology and mobile internet technology,
mobile wireless sensor networks have become a new trend in
the evolution of wireless sensor networks, and become a hot
research field of WSNs [22]. The difference between mobile
wireless sensor networks and wireless sensor networks lies in
the inclusion of mobility, the use of node mobility to improve
the coverage and connectivity of the network, improve the
scalability and reliability of the network, balance the network
energy consumption, and prolong the network’s lifetime [23].
The difference between MWSNs and WSNs is to the mobil-
ity of the nodes, which improves the coverage, efficiency,
and the reliability of the network. Due to the complexity of
the industrial environment and the dynamic changes in the
topological structure, specially during data acquisition and
data transmission, the performance of the MWSNs is easily
affected and may lead to failure of network. MWSNs are
highly flexible and low-energy networks formed by a number
of self-organizing wireless sensor nodes that are randomly
scattered in the surveillance area [24]. Its main features are
the limited energy resources of the sensor nodes in the net-
work, the limited storage space and the dynamic changes of
the topology of the network. MWSNs are mainly used to
collect data of the monitoring objects, so as to achieve the
purpose of research and control of monitoring objects [25].
In recent years, with the continuous development and matu-
rity of swarm intelligence optimization algorithm and arti-
ficial intelligence theory, the swarm intelligent optimization
algorithm has been widely used in the coverage optimiza-
tion strategy, location algorithm, dynamic deployment of the
network, node scheduling, data fusion, reliability and other
aspects of mobile wireless sensor networks. MWSNs have
been applied in many areas such as biological species migra-
tion research, urban environmental monitoring and control,
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and medical health. With the promotion of in-vehicle com-
munication technology, the new application scenarios are
emerging, and mobile wireless sensor networks will become
the key technology for the development of smart cities in the
future [26].

A. PROBLEM STATEMENT AND MOTIVATE

Optimization, especially bio-mimetic  strategy-based
optimization in MWSNSs, is one of the important research
subjects in MWSN5s [27]. Some manuscripts published in this
area are highly diverse in their approaches and implementa-
tions. However, some related work has been done addressing
the various issues individually (e.g., energy efficiency, data
fusion, QoS, reliability and security) and they tend to over-
look the whole scenario of collective optimization approach
which encompasses these two or three MWSNs issues.
Applying these definitions to MWSNs, more specifically,
the swarm intelligence optimization algorithms are important
in MWSNs applications for the following main reasons [28]:

(1) MWSNSs usually monitor the dynamic environments
that change rapidly over time. For example, the communi-
cation capability of the sensor nodes may change due to the
disturbance and change of the external environment. It is
desirable to develop wireless sensor networks that can adapt
and operate efficiently in such a harsh environments [29].

(2) MWSNs may be used for collecting the information
of the sensor nodes about unreachable, dangerous locations
(e.g., underwater monitoring, waste water monitoring and
environmental monitoring in nuclear industry) in exploratory
applications. Due to the unexpected behavior patterns that
may arise in such scenarios, the system designers may
develop the new solutions that initially may not operate as
expected. The sensor system designers would rather have
robust the swarm intelligence optimization algorithms that
are able to calibrate itself to newly acquired knowledge [30].

(3) MWSNs are usually deployed in complicated indus-
trial environments where researchers cannot build accurate
mathematical models to describe the system behavior. Mean-
while, some complex tasks in MWSNs can be prescribed
using simple mathematical models but may still need com-
plex algorithms to solve them, meanwhile, the problem of
latency needs to be considered. (e.g., the reliability problem,
the routing problem [31], [32]). Under similar circumstances,
the swarm intelligence optimization algorithms provide the
best performance for the system model of MWSNSs.

(4) New uses and integrations of MWSNSs, such as in
the multiple-input multiple-output technologies (MIMO)
[33], machine-to-machine (M2M) communications [34], and
industrial Internet of things (IloT) technologies, have been
introduced with a motivation of supporting more intelligent
decision-making and autonomous control [35].

B. CONTRIBUTION

In this paper, aiming at the performance optimization of the
key technologies of MWSNE, first, we provide a review of the
key technology of MWSNs and a detailed classification of
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the swarm intelligence algorithms based on various metrics.
In addition, we present a comprehensive review of the exist-
ing performance optimization methods of MWSNs with the
aim to represent the state-of-the-art technology by including
the most recent approaches and routing proposals. We also
believe that the classification of the MWSNs presented in this
paper introduces the most detailed and accurate perspective
on the subject to date.

Generally, these early surveys of the performance opti-
mization for MWSNs concentrated on the expert system,
neural networks and decision trees which were popular due to
their efficiency in both the theory and practice. In this paper,
we decided instead to include a wide variety of important up-
to-date swarm intelligent algorithms for a comparison of their
strengths and weaknesses. Another distinction between our
survey and earlier works is the way that the swarm intelligent
algorithms are presented. Our work discusses the swarm
intelligent algorithm based on their target of the challenges
for MWSNSs, so as to encourage the adoption of existing
swarm intelligent solutions in MWSNs applications. Finally,
we build on existing surveys and go beyond classifying and
comparing previous efforts, by providing useful and practical
guidelines for MWSNs researchers and engineers who are
interested in exploring the novel swarm intelligent optimiza-
tion algorithm for future research. In comparison with the cur-
rent general selection approaches, the following contributions
are made in this paper:

o A comprehensive survey of the system architecture of
industrial Internet of Things and an overview of the
application area and the key technology for industrial
IoT are provided. Moreover, we explore the relation
between the industrial IoT and MWSNs.

o A review of the characteristics of swarm intelligence
algorithms and a detailed classification of the reviewed
algorithms are provided.

o Compared to other survey papers in the field, this
survey provides a deeper summary of the most
relevant of the swarm intelligence algorithms in
MWSNSs.

« Some research challenges and open research issues
in MWSNs are also discussed, and the performance
comparison of the reviewed algorithms in MWSNs are
described

The remainder of this paper is organized as follows:
Section 2 provides an overview of the characteristics of
MWSNSs and compares with the advantages and disadvan-
tages of WSNs. Section 3 describes the classification meth-
ods and the characteristics for the intelligent optimization
algorithms in detail. Section 4 provides an overview of the
application of swarm intelligence optimization algorithm in
various fields of MWSNSs. In Section 5, we compare the
performance of different swarm intelligence optimization
algorithms in MWSNs. And we systematically analyze the
prominent MWSNs routing protocols with discussion on
their respective merits and demerits. Section 6 discusses the
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open research issues and the future directions of MWSNSs.
Section 7 summarizes and concludes this paper.

Il. OVERVIEW OF MOBILE WIRELESS

SENSOR NETWORKS

In the traditional wireless sensor network, whether it is a
planar structure or a layered structure, the sensing nodes
are generally fixed, and the multi-hop routing method is
used to forward the data packets to the sensor nodes [36].
The sensor nodes close to Sink consume energy faster by
forwarding a large number of packets from the distant nodes,
and these nodes form the bottleneck nodes of the network.
However, when the bottleneck node is exhausted, there is
still residual energy left by the sensor nodes away from the
sink node [37]. The introduction of mobile nodes for data
collection can not only avoid the “energy hole” problem, but
also balance the energy consumption of network [38]. There-
fore, energy-saving design based on mobility has become a
new research field in wireless sensor networks. Utilizing the
mobility characteristics of nodes, the network connectivity,
coverage and energy distribution of MWSNs are used for
dynamic node deployment or location adjustment to fill the
routing holes of the network and the detection dead zones of
the sensing nodes [22]. Meanwhile, it is convenient to manage
the network topology, achieve targeted detection, and dynam-
ically adjust the network structure when the network load is
unbalanced. MWSNs have the characteristics of flexibility,
low power consumption and fast networking. They can be
applied in many fields, such as field environment, detection
of harsh industrial sites, etc. MWSNs can be divided into
three categories according to the type of movement of nodes:
1) Sink node move, the ordinary nodes are stationary; 2) Sink
node is stationary, the ordinary nodes move; 3) Both the Sink
node and the ordinary node move [39].

As a centerless, node-movable, topology dynamic change,
wireless multi-hop and highly autonomous network, MWSNs
have the characteristics of short communication distance,
small coverage and strong mobility of nodes [40]. At the
same time, due to the limited energy, calculation and stor-
age capacity of mobile sensor nodes, it is difficult, energy-
intensive and low-efficiency for a single node to complete
complex tasks. The nodes of mobile sensor networks need
to cooperate to complete complex tasks [41]. The Sink node
often has much higher initial energy, computing power, stor-
age capacity and communication distance than the ordinary
sensor nodes. Usually, the task of data collection, data pro-
cessing, storage, transmission and access to the host computer
monitoring center in MWSNs work is handed over to it,
which can save the energy consumption of sensor nodes,
and improve the efficiency of the network and prolong the
network’s lifetime [42].

Compared with the traditional static wireless sensor net-
works, mobile wireless sensor networks have several advan-
tages [43]:

First, the mobility of MWSNs expands the coverage of
wireless sensor networks. The traditional static wireless
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FIGURE 2. The architecture of Mobile Wireless Sensor Networks.

sensor network needs to rely on the layout of a large number
of sensor nodes to complete the coverage of the area, and the
mobility characteristics of mobile wireless sensor network
greatly reduce the number and difficulty of the deployment
of the sensor nodes.

Second, the mobility of MWSNSs reduces the data commu-
nication delays and increases the network throughput. The
static sensors use the multi-hop method to transmit data only
for small-scale wireless networks, once the size of wireless
sensor network increases, the multi-hop transmission method
will bring huge delay and increase the unpredictability of data
transmission [44]. Introducing the mobile node characteris-
tics, MWSNSs can use mobility to transmit data and adopt a
delay-delay routing strategy to complete the data forwarding,
thereby improving the data transmission speed in the net-
work, improving the data throughput and reducing the latency
of the network. The research shows that the number of mobile
nodes increases linearly with the number of static sensors,
and the throughput of mobile wireless sensor networks is
3-5 times that of static wireless sensor networks. At the same
time, reducing multi-hop transmission of data can effectively
reduce errors and packet loss during data transmission, and
improve communication quality of the network [45].

Third, the introduction of mobile nodes by MWSNs can
reduce the energy consumption of the network and prolong
the network’s lifetime. In a static wireless sensor network,
the energy consumption of each node is unbalanced [19].
The sensor node that hops from the Sink node needs to bear
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the multi-hop forwarding task of data from the other sensor
nodes to the base station, which consumes a lot of energy,
which will seriously affect the stability and service life of the
network. Because of the mobility of nodes, MW SN can often
provide the charging power or larger batteries. The energy
consumption will no longer be a problem to be considered
in network optimization design [46]. After the mobile node
is introduced, the static node does not need to wait for the
data forwarding at the moment of waking up, but only needs
to wake up for a short time when the mobile node is close,
and transmits the data to be forwarded to the mobile node,
thereby reducing the energy consumption and prolonging the
network’s lifetime through long-term dormancy. In addition,
after the introduction of the mobile node, the sensor nodes in
the network may communicate with the mobile node through
one hop without transferring the data to the fixed data center
through multiple hops, thereby reduces the burden of one
hop node around the data center and balances the energy
consumption of the sensor nodes in the entire network [47].

Ill. OVERVIEW OF SWARM INTELLIGENCE
OPTIMIZATION ALGORITHMS

The intelligent optimization algorithm [48] is an algorithm
that solves the problem according to the bionics principle by
the law of behavioral habits in nature and biology. It solves
the optimal solution of the optimization problem under com-
plex constraints through certain rules or a certain mecha-
nism and thought search process to meet the needs of users.
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TABLE 1. Classification methods for intelligent optimization algorithm.

Type Common algorithms
Genetic algorithm(GA) [52]
Differential evolution algorithms (DE) [53]

Simulate Genetic programming algorithm (GP) [54]
evolutionary Evolutionary programming algorithms (EP) [55]
process Memetic algorithm (MA) [56]

Multi-objective evolutionary algorithm (MOEA) [57]
Gene expression programming (GEP) [58]

Ant colony optimization (ACO) [59]

Particle swarm optimization (PSO) [60]

Artificial fish swarm algorithm (AFSA) [61]
Artificial bee colony algorithm (ABC) [62]

Bat algorithm (BA) [63]

Firefly algorithm (FA) [64]

Cuckoo search algorithm (CSA) [65]

Shuffled frog leaping algorithm (SFLA) [66]

Fruit fly optimization algorithm (FOA) [67]
bacterial foraging optimization (BFO) [68]
Artificial plant optimization algorithm (APOA) [69]
Chicken swarm optimization algorithm (CSO) [70]
wolf pack algorithm (WPA) [71]

Harmony search algorithm (HS) [72]

Simulate animals or
plants or insects
behavior

Simulate human Teaching-learning-based optimization (TLBO) [73]

social behavior Social emotion optimization algorithm (SEOA) [74]

Social cognitive optimization algorithm (SCO) [75]

The classification of common typical intelligent optimization
algorithm is shown in Table 1. The intelligent optimization
algorithm uses the determined rule order to search the optimal
solution of the problem, and gradually moves to the optimal
solution of the objective function [49]. While the swarm intel-
ligent optimization algorithm uses the probability transfer
rule, which can select different initial points to start searching
for the optimal solution, and can also search the search space
of the optimal solution in parallel [50]. In addition, the intel-
ligent optimization algorithm uses the gradient information
of the search space to search for the optimal solution of the
objective function. However, the swarm intelligent optimiza-
tion algorithm does not need the gradient information of the
search space, and uses the fitness value of the individual to
guide the search [51].

The swarm intelligent optimization algorithm is a very
important branch of the intelligent optimization algo-
rithm [76]. The difference between swarm intelligence opti-
mization algorithm and classical intelligent optimization
algorithm is that a probabilistic search algorithm of swarm
intelligence optimization algorithm does not need prior
knowledge enlightenment, does not depend on the mathe-
matical nature of solving the problem itself, does not need
to derive and continue solving the problem, does not need
to establish the data calculation model related to the problem
itself, and directly solves the optimal solution of the objective
function [77]. It only needs the input information of the
data layer, and can effectively construct a formal model to
solve the problem that the traditional intelligent optimization
algorithm is difficult to solve or cannot solve [78].

The intelligent optimization algorithm mainly includes
genetic  algorithm, simulated annealing algorithm,
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artificial immune algorithm, artificial neural network,
extreme learning machine, differential evolution algorithm,
mixed pure optimization algorithm, fuzzy theory, kernel func-
tion theory, support vector machine, ant colony algorithm,
particle swarm optimization, artificial bee colony algorithm,
firefly algorithm, shuffled frog leaping algorithm and artifi-
cial fish swarm algorithm [79]—[83]. Among them, the swarm
intelligent optimization algorithm is inspired by the living
habits of animal groups, and based on these living habits
combined with intelligent heuristic algorithms generated by
artificial intelligence. The relationship between the intel-
ligent optimization algorithm and the swarm intelligence
optimization algorithm is shown in Figure 3.

The swarm intelligent optimization algorithm is a random
search algorithm established by simulating group behaviors
such as mutual cooperation and sharing information in nature.
Compared with the classical optimization algorithm, it has
the advantages of simple structure and easy implementation.
The swarm intelligent optimization algorithm is an effec-
tive method for solving complex engineering optimization
problems with high dimension and multi-extremum. It has
strong robustness, wide application, parallel computing, and
can be effectively solved in most cases. It has become a
research hotspot in recent years. Taking advantage of the
self-organization and feedback of biological populations, the
special point is that when the global model is unclear,
the swarm intelligent optimization algorithm can quickly find
the optimal solution of complex combinatorial optimization
problems. Especially in the field of bioinformatics, in the
face of the search of massive data information, and without
optimizing the target global model, the swarm intelligent
algorithm can obtain satisfactory results, and has unique
advantages compared with other optimization methods. The
swarm intelligent optimization algorithm opens up a new
way for the system optimization, the NP-hard problem and
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combination optimization with its advantages of distributed
computing, simple implementation, parallelism, flexibility
and robustness. It provides a new solution for practical engi-
neering applications such as power system, communication
network, workshop production scheduling, transportation,
etc. The research of swarm intelligent algorithm has impor-
tant significance and broad application prospects.

The swarm intelligent optimization algorithm is an
emerging intelligent optimization method. It is a meta heuris-
tic search algorithm based on the swarm behavior for multiple
iterations of a given target. At the core of swarm intelligence
is a group of many individual individuals that work together to
achieve goal optimization. Among them, a single individual
in a population has only simple search ability or intelli-
gence, and communication and cooperation are individuals
who communicate with their neighbors or communicate with
other individuals indirectly by changing the environment,
so that they can interact and cooperate. The swarm intelli-
gence algorithm has the following characteristics:

(1) Simple and easy to implement. The individual behavior
of the population is simple, and it follows the rules formulated
within the population. The unity of action and behavior are
consistent, and the realization of swarm intelligence is simple,
so it is simple and easy to perform.

(2) Good scalability. The amount of information that each
individual in the group can perceive is limited, but the
data transmission between them is realized in a non-contact
form (dance, pheromone, etc.), and the individual individuals
cooperate with each other and have better scalability.

(3) Self-organizing. In order for a population group to
complete a complex task, it must cooperate with each other
through individuals.

(4) Strong robustness. When the population searches for
the optimal solution of the combinatorial problem, the indi-
vidual search method is distributed and there is no centralized
control. Even if the individual searches for the optimal solu-
tion, it will not make the whole population lose the solution
of the optimal problem, and will not affect the global optimal
solution, so it has strong robustness [84].

In the intelligent algorithm studied in this paper, we mainly
elaborate on particle swarm optimization algorithm, ant
colony optimization algorithm, artificial fish swarm algo-
rithm, artificial bee colony algorithm and shuffled frog
leaping algorithm.

A. PARTICLE SWARM OPTIMIZATION ALGORITHM

The particle swarm optimization algorithm (PSO) simulates
the foraging behavior of birds in flight mainly through biolog-
ical principles [85]. According to the experience of searching
for food and previous information sharing, the birds search
for the best food source through individual collaboration [86].
In order to realize the complex characteristics of the whole
particle group behavior and reduce the complexity of the
algorithm technology, the individual birds are represented by
the volumeless and massless particles, and the simple behav-
ior rules are formulated for the particles [87]. To improve the
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performance of the PSO algorithm, the certain information
exchange and information sharing mechanisms are adopted
between individual individuals. The PSO algorithm is called
a typical swarm intelligence optimization algorithm as a dis-
tributed optimization algorithm. The search process of the
particle swarm optimization algorithm simulates the preda-
tion behavior of the bird population, and the individual indi-
viduals move according to the set rules [88]. The predation
behavior of a large number of individual individuals reflects
the swarm intelligence behavior. The algorithm has broad
application prospects in the fields of polynomial function
optimization, traveling salesman problem solving and shop
scheduling [89].

Suppose that in the D-dimensional data space, there are M
particles forming a particle population, and the position of
the i-th particle is assumed to be x; = [xj1, xp2, .. L xplT,
The speed of the particles is v; =[vi1,Vi2,...,viplT, where
i = 1,2,....M. The historical optimal position searched by
the particles i in the population is p;, and the global optimal
position searched by the entire particle population is p,. Then
the parameter x; is substituted into the objective function,
and the fitness value is calculated to find the optimal solution.
For the k£ + 1th iteration, each particle in the PSO updates
its own velocity and the position data calculation formula as
follows:

k1 k k k

V,-,}’ = wv; g +eiripia — X; g) + c2r2(pg.a — X;4) (1)
k1 Lk k1

Xid =%iatVia @)

In the formula (1) and (2), = 1,2,...,D, w are inertia weights,
c1 and ¢, are the cognitive and social parameters, r; and
are the random numbers between [0,1].

The PSO algorithm is a parallel, random intelligent opti-
mization algorithm. It does not need to be optimized, has
the characteristics of being divisible, steerable, continuous,
etc. The algorithm converges faster, the algorithm is simpler,
and the programming is easier to implement [90]. The PSO
algorithm has the following advantages: The algorithm has
good robustness and can adapt to the needs of different
application environments; it has strong distributed process-
ing capability and is easy to implement in parallel; it can
quickly converge to good expected optimization values; it is
easy to combine with other algorithms to improve algorithm
optimization performance [91].

B. ANT COLONY OPTIMIZATION ALGORITHM

The ant colony optimization algorithm is a biomimetic opti-
mization algorithm proposed by Dorigo and Stiitzle [92].
It is a random global optimization technique inspired by the
ant colony foraging behavior. The algorithm is simple and
convenient to combine with other algorithms [93]. When the
ants are looking for food, they will leave a substance called
pheromone in the passing place. The other ants will compare
the size of the pheromone on different paths when advancing,
choose the direction in which the pheromone concentration
is the largest, and leave their own pheromone. In the same
time, the better the path will be accessed by more ants, so that
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the chances of subsequent ants selecting the optimal path will
increase, and finally all ants will take the optimal path to the
food source [94].

At the beginning, the pheromones on every path of the ant
are the same. 7;;(0) = C, the variable C is a constant. The
ant k (k = 1,2,...,m) selects the moving direction according
to the pheromone on the ant motion path during the motion.
At time ¢, the calculation Pg. of the transition probability that
the ant k& chooses from the position 7 to the position j is as
follows:

om0

koo ()P .
PU(I) = ,real%v:ved/‘ Tts(t)nu(t) ,J] € all()W@dk (3)
07
allowed;, = [1,2,--- ,n— 1] — tabuy @)

wherein, the variable allowedy, represents the node that the ant
k can choose at the next step, the variable tabuy records the
node through which the ant k is currently passing, the variable
tabuy, follows the evolution process for dynamic adjustment,
the variable n;; indicates the visibility factor. It is calculated
by the heuristic algorithm that n; = 1/d;; is often taken,
the variable « and the variable B are parameters, indicating
the relative importance of the pheromone trajectory and visi-
bility in the ant selection path. After the n-th time, each cycle
of the ant ends, and the pheromone of each path is adjusted
according to the following formula:

it +n) = (1 — p)73(t) + Aty (%)
Atj = Z Ar,-]; (6)
k=1

wherein, the variable Ari]j‘. represents the amount of
pheromone left by the k-th of the ant in the path (i, j). The
value is determined according to the trait of the ant.
The shorter of the path, the more pheromone is released.
The variable At;; represents the increment of the pheromone
quantity of the path (7, j) in this loop; the parameter p is the
attenuation coefficient of the pheromone trajectory, generally
the parameter p is setas p < 1, thereby preventing the infinite
accumulation of pheromones on the path. The parameter At;;,
A‘L’ik~ ,and Piﬁ have different expressions for different specific
algorithms, and should be specific to specific problems [95].

The ant colony algorithm has the following
advantages [96]:

(1) In general, the ant colony algorithm is a kind of simu-
lated evolutionary algorithm, which combines positive feed-
back mechanism, distributed computing and greedy search
algorithm. Ant colony algorithm generally does not fall into
local optimum in search.

(2) The ant colony algorithm is different from other
algorithms in that it can express complicated phenom-
ena through natural evolution mechanism. It can rely on
pheromone cooperation instead of individual information
exchange mechanism, which makes the algorithm more scal-
able and reliable, meanwhile, it can handle difficult and fast
problems reliably and quickly [97].
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(3) The ant colony algorithm has quite good computational
parallelism, and is extremely suitable for computation on a
computationally intensive parallel machine.

C. ARTIFICIAL FISH SWARM ALGORITHM

The artificial fish swarm algorithm is an intelligent opti-
mization algorithm proposed by Dr. Li Xiaolei [98]. It is
clustered by constructing artificial fish stocks and simulating
the process of fish searching for food. There are three main
behaviors of artificial fish: rear-end hunting, gathering, and
foraging [99]. The ultimate goal of the three behaviors is to
find the best individual. The artificial fish swarm algorithm is
a kind of swarm artificial intelligence stochastic optimization
algorithm. It has strong global search ability, is insensitive to
initial value and parameter selection, robust, simple and easy
to operate [100]. The control parameters of the whole process
of the algorithm are as follows: the sample set of structural
planes is n, the moving step of artificial fish is Step, the field
of vision is V, and the number of iterations is ¢.

The fitness function of the artificial fish swarm algorithm
is calculated as follows: it mainly uses the reciprocal of
the squared sum of the structural plane coordinates to the
convergence distance of the structural plane as the fitness
function. Its fitness function f(x) is calculated as

1
f&x)= - (7)
a5

M=

=t

In the formula (7), the variable k is the number of clus-
ters, the variable n is the total number of sample planes.
|| d(ci — xj) H 2. It is the distance of the sample x from the cen-
ter of gravity c in the grouping plane. Its distance calculation
formula is

d(ci —x) = /1 = (nc - nj)? ®)

In the formula (8), the variable n., n; are the unit normal
vector of the cluster structure plane and the unit normal vector
of the j structure plane [101].

The mobile strategy of the artificial fish swarm algorithm
mainly includes four steps: they are foraging behavior, cluster
behavior, rear-end behavior and bulletin board [102].

(1) The foraging behavior. Under the assumption of initial
aggregation, the artificial fish are randomly searched in the
field of view of the structural sample set, and the search
formula (9) is

X; = X; x Step x Rand() ©)]

In the formula (9), the parameter Step is the moving step size,
the function Rand outputs a random number in (0~1). The
coordinate value of X; can be obtained by moving randomly
at the new position X; according to formula (8). The new
position fitness can be calculated according to the formula (6)
and the formula (7). If the fitness of X; is greater, the forward
formula can be obtained as follows:

Xi—Xi

L_ . Step - Rand() (10)

xtl oyt i
AN P
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In the formula (10), the parameter Xit +1is the position of the
new focus after performing the foraging behavior multiple
times.

(2) The group behavior. The artificial fish X; searches for
the number of partners in the field of view. After the search
is completed, the mean coordinate of the number of fish in
the current field of view is calculated, which is the central
coordinate value. If the center position is more adaptable,
the center coordinate value is output and moved according
to the formula (11) to obtain a new focus coordinate, which
is compared with the central coordinate value, and the center
position calculation method is shown in the formula (12).

Xeen — X!
Xt = x4 2 i Step - Rand()  (11)
t ! HXcen - Xit “
g
Xoy = ij/g (12)

wherein, the parameter X; is the coordinate of a structural
plane in the field of view; the variable g is the number of
partners, and the parameter X, is the new gathering position
of the structural plane obtained by the group of fish.

(3) The rear-end behavior. The artificial fish X; searches for
the partner X,,,,, with the highest fitness in the current field of
view. After finding the largest partner, the artificial fish moves
to the fish within the field of view V of the fish group, and the
movement mode is as shown in the formula (13). According
to the formula (13), the coordinates of the new cluster center
X,ex: can be obtained, and the better ones of X0y and Xiuax
are recorded.

Xl+1 _Xl + dex B

next

H - z ” - Step - Rand() (13)
max

In the formula (13), the parameter X4, is the individual with

the greatest fitness in the field of fish.

(4) The bulletin board. The bulletin board is used to record
the individual state of the optimal artificial fish. After the
artificial fish completes each iterative operation, it compares
its state with the records in the bulletin board. If its own
adaptation value is larger, the content in the bulletin board is
replaced with its current state. Otherwise, the content in the
bulletin board remains the same. When the algorithm iteration
ends, the bulletin board records the optimal state [103].

D. ARTIFICIAL BEE COLONY ALGORITHM

The artificial bee colony algorithm is abbreviated as ABC
algorithm, which is a combination optimization algorithm of
non-numeric calculation, and also belongs to meta-heuristic
intelligent algorithm [104]. In 2005, Dr. Karaboga of the
University of Ergiyes in Turkey proposed a novel intelligent
heuristic artificial bee colony algorithm by observing the for-
aging behavior of bee colonies [105]. The algorithm accom-
plishes the work of collecting honey through the division
of labor and dance between the individual bees to transmit
information, role transformation and unity and cooperation of
the bee colony. In addition, the artificial bee colony algorithm
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does not need to know the prior knowledge of the solution
problem. Through the local search and global search of the
bee colony algorithm, the optimal solution of the optimization
problem is quickly found, and the convergence speed of the
algorithm is faster [106].

During the initialization phase, the ABC algorithm gener-
ates the honey sources are S, the number of bees and honey
sources is equal. The lead bee in the bee colony performs
a P(P = 1,2, ..., N) round search for the honey sources,
and continuously replaces the old honey source position
with a new honey source position during the search process,
wherein, the number of nectar is the fitness Better than the
previous honey source. Finally, when all the above search pro-
cesses are completed, the honey source location information
will be shared with the follower bees, which will be returned
to the place called the dance area, and the following bees will
select the best honey source according to the greedy mecha-
nism [107]. After the bee chooses the honey source, a search
will be carried out in the area near the honey source. If a better
honey source is found, the honey source will be replaced, that
is to say, the better solution will be retained. The formula (14)
is the formula for the location of the honey source exchanged
between the leading and the follower bees [108]:

Vij =X+ vij(xij — xkj) (14)

wherein, the variable k is a honey source different from i, the
variable k is not equal to the variable i, the variable j is a
random number subscript, v;; obeys a uniform distribution on
[—1, 1], it is a random number, and its function is to control
the domain range of x;;. The closer the optimal solution is,
the smaller the scope of the field will be. The follower bee
in the bee colony will select the honey source that the leader
bee to choose. And it will search for more excellent honey
sources in the field, the follower bee’s honey source selection
behavior is determined according to the yield of the honey
source, and the rate of return is quantitatively expressed by the
fitness value. The formula (15) is the selection probability P;
of the honey source, wherein, the parameter fiz; is the fitness
value corresponding to the i-th solution, and the variable § is
the number of connections [109].

S
P; =ﬁl‘i/2ﬁl‘i (15)

i#1

Assuming that the honey source has not improved after a
continuous number of cycles, the solution is trapped in local
optimum by taking the position and turning the leading bee
at that position into a scout bee. It can be seen that the above
defined number of cycles is an important parameter of the
ABC algorithm. If the abandoned solution is xi, then the
scouting bee finds a new location and performs the substi-
tution as follows:

=

min

+ rand(0, 1)(x]mdx_x]' ) (16)

min
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E. SHUFFLED FROG LEAPING ALGORITHM

In 2003, Professor Eusuff et al. proposed a sub-heuristic
shuffled frog leaping algorithm (SFLA) [66]. It is a new
intelligent evolutionary search method that mimics the frog
group’s foraging behavior. This kind of algorithm is based on
the idea of frog group classification for meme information
transmission [110]. The SFLA algorithm, inspired by the
frog’s search for food, searches for targets based on synergies
between populations [111]. First, search for different frog
individuals, then exchange the information in a local scope,
construct an information search strategy within the subgroup,
and form internal evolution with the exchange of information
within the subgroup, and then derive different subgroups. The
information reanalysis and exchange among subgroups form
the global information exchange. These two modes interact
with each other and alternate to solve the combinatorial opti-
mization problem. The algorithm has many advantages, such
as fewer parameters to adjust, fast calculation speed, strong
global search and optimization ability, easy realization, etc.
It has been widely used in practical engineering problems
such as multi-objective optimization, resource allocation and
so on [112]. The shuffled frog leaping algorithm combines the
characteristics of bird foraging method and meme algorithm
of genetic bionics, which iteratively searches for the optimal
solution of population behavior. It is widely used in the trav-
eling salesman problem, function processing, power supply
system optimization, machine vision and so on [113].

The mathematical model of the shuffled frog leaping algo-
rithm and the specific calculation process, randomly generate
D frog individuals in a d-dimensional target search space, that
is, the number of solutions of the target optimization function,
forming the initial population of frogs S ={X1,Xs,....Xp}.
The current position of the i-th frog population is the solution
to the current combinatorial optimization problem. Assuming
that X; = (x1,Xi2,. . .,Xiq), the individual fitness function value
f(X;) of each frog can be obtained by arithmetic calculation,
and the obtained frog individual fitness values are arranged
according from good to bad. At the same time, referring to the
frog group division criterion, the whole frog group is divided
into N population groups Y, ¥Y2,..., YN, and each subgroup
group contains M frog individuals, wherein it is satisfied that
D = N x M. The frog division criterion is to divide the first
frog into the first subgroup, the second one into the second
group, and so on, and divide the entire frog group into the
formula (17).

Vi ={Xjyna-n €S 1<l=M,1<j<N (17

A local optimal search is performed in each frog sub-
group, and in each iteration, the following three parameters
are obtained: The optimal individual position X}, the worst
individual position X,, and the global best individual position
X, from the group are then updated, and then the worst frog
individual position is updated, and the update strategy is as
shown in the frog step update in the formula (18).

Qi =rand() x (Xp — X)),  —Omax < 0i < Omax (18)
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The position of the individual frog subgroup is updated
according to the formula (19).

X}, = Xy + O, (19)

The parameter rand() is arandom number between 0 and 1,
and QOpgy is the maximum step size allowed in the frog
subgroup. After executing the update strategy of the above the
formulas (6) and (7), the new position X/, is obtained. If the
newly obtained position X, is better than the previous X,
then the frog is replaced by the X,, from the group current
position X,. Otherwise, update the policy change update the
step size formula according to the formula (20).

Qi = rand() x Xg — Xw),  —Omax < 0i < Omax (20
Xy/v = Xw + Qi (21)

After executing the new update the formulas (20) and (21),
a new frog position can be obtained. The same comparison
with the previous position, just replace the current position,
if the frog position has not been changed, then randomly
generate a new individual position (function solution) instead
of the principle of the frog individual position, can get the
formula (22).

Xv/v/ = rand() X (Omax — Omin) + Omin (22)
wherein, X/ is the current latest position, Oyqy and Oy, are
the maximum and minimum values of the search range among
the frog subgroups, respectively [114].

The iterative update step above is continuously repeated
until the maximum number of iterations set in the previously
set subgroup is satisfied. When all the frog subgroups perform
the local best search and get the best position of the frog indi-
vidual, the global information exchange is performed. The
process of exchange includes mixing, sorting and dividing all
frog individuals into subgroups, and then searching for the
optimal solution in each new subgroup. The optimal solution
is the best position, so it keeps repeating until the pre-set
iteration conditions are satisfied.

In summary, after nearly 30 years of research and
development, the swarm intelligent optimization algorithm
is theoretically perfect, with the advantages of robust-
ness, the self-organization and flexibility, especially the ele-
phant herding optimization (EHO), wolf pack algorithm
(WPA), the butterfly optimization algorithm(BOA) and so on.
For example, in [121], the author proposed the elephant
herding optimization algorithm adopted for solving local-
ization problems in WSNs. In recent years, it has been
widely used in various fields such as the chaotic systems,
financial forecasting, image retrieval, and feature selec-
tion. In order to visually compare the characteristics and
application scenarios between different swarm intelligent
optimization algorithms, the advantages, disadvantages and
applicable scenarios of different swarm intelligent optimiza-
tion algorithms are summarized, as shown in Table 2.
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TABLE 2. Comparison of advantages and disadvantages of the swarm intelligent optimization algorithm.

Algorithms advantages disadvantages Applicable scenario

PSO [87] Parallel computing, easy to Poor search ability, easy to fall into Function optimization, neural network
implement, high precision, fast local optimum training and resource scheduling problems
convergence

ACO [93] Distributed calculation, positive Convergence rate is slow, easy to fall ~ Resource scheduling problems and traveling
feedback mechanism, diversity into local optimum salesman problems

AFSA [99] Parallel computing, fewer Low optimization accuracy, slow Power system planning, sensor network
parameters, faster convergence convergence rate, easy to fall into coverage optimization, path planning

local optimum

ABC [105] High-dimensional problems Convergence is slow, easy to fall into  Image signal processing, feature selection
work well and get local local optimum and resource scheduling issues
convergence quickly

SFLA [114] Simple concept, few parameters,  Easy to fall into local optimum, slow  Clustering problem, resource network
fast parallel operation, easy to convergence optimization and image segmentation
implement

FA[115] Less parameters, simple Early convergence is slow, and late Image processing, clustering problem,
evolution process, strong global convergence is unstable combinatorial optimization problem
search ability

BFA[116] Parallel search, easy to jump out ~ Low optimization accuracy and slow  Pattern recognition, engineering parameter
of local minimum convergence optimization

CA[117] Simple model, few parameters, Slow rate of convergence, easy to Facility layout, clustering problem
strong versatility fall into local optimum

FFOA [118] Less parameters, simple Depends on the initial conditions, Structural engineering design optimization,
structure, easy to implement low optimization accuracy, easy to the node deployment strategy, resource

fall into local optimum scheduling

CSO [119] Less parameters, simple Low optimization accuracy, easy to Function optimization, engineering design
structure, fast operation, easy to fall into local optimum optimization, cluster analysis
implement

EHO[120] Less parameters, simple Slow convergence rate, easy to fall Function optimization,location problem

structure, easy to implement

into local optimum

IV. SWARM INTELLIGENCE APPLICATIONS IN

MOBILE WIRELESS SENSOR NETWORKS

In recent years, with the continuous development and matu-
rity of swarm intelligence optimization algorithm and arti-
ficial intelligence theory, the swarm intelligent optimization
algorithm has been widely used in the coverage optimiza-
tion strategy, location algorithm, dynamic deployment of
the network, node scheduling, data fusion, reliability and
other aspects of mobile wireless sensor networks, bringing
new ideas to solve problems [120]. Through comprehen-
sive literature analysis, mathematical formula derivation and
mathematical modeling, a series of key technical problems
in mobile wireless sensor networks (node deployment, opti-
mal coverage, routing protocol optimization, data collection,
data fusion, optimal clustering, topology optimization, node
location, network security and reliability) are combinatorial
optimization problems and the NP-hard problems [121]. The
application of swarm intelligence optimization algorithm in
mobile wireless sensor networks is shown in Table 3.

As the scale of wireless sensor networks continues to
increase, the structure and node types of networks become
more complex, and the network exhibits dynamic changes.
More and more researchers begin to pay attention to the
application of complex network optimization theory in the
field of mobile wireless sensor networks. There are many
indicators reflecting the performance of mobile wireless
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sensor networks, such as the network energy consumption,
network coverage, network quality of service, network life-
time, packet loss rate, throughput, network transmission
delay, network cost, connectivity and reliability. These indi-
cators may or may not conflict with each other and restrict
each other [122]. The performance optimization of mobile
wireless sensor networks is a multi-objective optimization
problem, which is a complex problem that requires deci-
sion makers to choose a trade-off solution. The relationship
between the performance indicators of mobile wireless sensor
networks is shown in Fig. 4.

A. NODE DEPLOYMENT AND COVERAGE EFFICIENCY

The coverage control and the sensor node deployment deter-
mine the perception and monitoring capability of the net-
work, which directly reflects the quality of service of mobile
wireless sensors. In order to achieve the purpose of reduc-
ing the blind zone covered by MWSNs and improving the
ability of sensor nodes to obtain information, it is neces-
sary to deploy the network nodes reasonably and effectively
[123]. The swarm intelligence algorithm is an optimization
problem, and the dynamic deployment of sensor nodes is
actually an optimization problem. Therefore, the introduction
of swarm intelligence algorithm can optimize the layout of
wireless sensor nodes and improve the service performance
of the entire network [124]. Compared with the traditional
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TABLE 3. Optimization and application in MWSNs’ domain.

Key problem of MWSNs

Problem description

Optimization goal of MWSNs

Optimal deployment of nodes
Optimal coverage of networks

Routing protocol optimization

Optimal data collection

Data fusion

Optimal clustering

Topology optimization

Scheduling and MAC

QoS management

Multi-objective optimization
Multi-objective optimization

Combinatorial optimization

Multi-objective optimization

Multi-dimension

Multi-objective optimization

Combinatorial optimization

Multi-objective optimization

Combinatorial optimization

Localization Multi-dimension
Security Combinatorial optimization
Reliability Combinatorial optimization

Deals with the deployment/design problem of MWSNs
Deals with the optimal coverage problem of MWSNs
Balances the power consumption, transmission delay
and packet loss rate of MWSNs

Deals with the problem of maximizing data collection
Integrates the sensor data from multiple sources to get
the best solution.

Deals with the clustering optimization problem of
MWSNs

Deals with the load balancing problem of MWSNs
Optimizes simultaneously or optimal tradeoff is required
between objectives.

Analytically plans and allocates resources for the best
solution.

Deals with position estimation

Searching for optimal solution from the possible inside
threats, integrity, end-to-end data security, and key
distribution for the best solution.

Deals with the reliability problem of MWSNs
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FIGURE 4. Relationship between the performance indicators of MWSNs.

coverage optimization methods, the swarm intelligence algo-
rithm provides a lot of new effective deployment methods
of the sensor nodes, and the energy of the sensor nodes
is used more reasonably and effectively, which makes the
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MWSNSs technology more exert its great application value.
The application of swarm intelligence algorithm in the cover-
age optimization problem of MWSNs has attracted more and
more scholars’ attention and research. For MW SN, the clas-
sification criteria are different and the coverage optimization
algorithms are classified differently. We divide the cover-
age problem of MWSNs into virtual force-based algorithm
node deployment algorithm, the computational geometry-
based partitioning method, intelligent algorithm-based node
deployment algorithm and heterogeneous hybrid network
deployment algorithm, and then we introduce the research
progress of each node deployment and optimal coverage
algorithm from these four aspects.

1) OPTIMAL COVERAGE ALGORITHM

BASED ON VIRTUAL FORCE

Umadevi et al. [125] used the virtual force and particle
swarm optimization for effective node deployment, the vir-
tual force algorithm is used for placement of nodes, and
applied the particle swarm optimization to optimize the best
fit between the neighbor nodes. The authors in [126] analyzed
the convergence and deployment effect of the virtual spring
force algorithm to derive our question, and then presented
an optimized strategy that sensor deployment begins from
the center of the target region by adding an external central
force. In [127], the author used a voronoi diagram for the
case of sensors with the same sensing ranges, and a multi-
plicatively weighted voronoi diagram for the case of sensors
with different sensing ranges. The basic idea of this type of
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algorithm is to regard the sensor nodes in the deployment area
as a positively charged charge, and then the nodes move and
spread in the target area under the action of repulsive forces
and boundary obstacles. Eventually all the nodes reach a rela-
tively stable state. The virtual force algorithm is a widely used
method in the node deployment of mobile wireless sensor
network.

2) PARTITION METHOD BASED ON COMPUTATIONAL
GEOMETRY

The basic idea of the grid-based algorithm is to divide the
target monitoring area into several grids, and then approx-
imate the area coverage by whether the grid is covered by
the nodes. This kind of algorithms can reduce the number
of nodes required by estimating the operation. In addition,
the grid can also be used to estimate the nearsightedness of
the grid position. In [128], the author proposed a novel cov-
erage hole discovery algorithm for wireless sensor networks,
VCHDA, and the proposed algorithm is based on the well-
known Voronoi diagram. It can recognize coverage holes and
label the border nodes of coverage holes effectively. The
authors in [129] introduced the adaptive improved fish swarm
optimization algorithm (AIFS) that extricated each node from
the local optimum and reduced the overlap and overflow
coverage. Drawing on the habits of fish, AFIS ensured the
node mobility with respect to the food concentration at
a certain point.

3) NODE DEPLOYMENT BASED ON INTELLIGENT
ALGORITHMS

The intelligent algorithms have good global search ability
and adaptability, and are widely used in the deployment
of mobile auxiliary nodes in wireless sensor networks. For
example in [130] the authors focused on optimizing the
gateway deployment by minimizing the maximum distance,
proposed an RPSO algorithm to search the optimal gateway
deployment. In order to reduce the cost of sensor deployment,
Su et al. [131] proposed an optimized strategy for mobile
wireless sensor networks node deployment on the basis of
dynamic ant colony algorithm. In order to overcome the
shortcomings of weak local search ability and slow conver-
gence speed for the standard artificial bee colony algorithm,
Su et al. [132] proposed an improved multi-strategy artificial
bee colony algorithm based on multiple populations. For
example in [133] the authors focused on redundant network
nodes, short life cycle and network effective coverage as
optimization goals, and then introduced the inverse Gaussian
mutation algorithms on AFSA, made the improved algorithm
to solve the model, and got the optimal coverage scheme
for mobile wireless sensor networks. In [134], the authors
proposed a new improved discrete shuffled frog leaping algo-
rithm (ID-SFLA) and its application in multi-type sensor net-
work optimization for the condition monitoring of a gearbox,
provided a new quick algorithm and thought for the solution
of related integer NP-hard problem.
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4) NODE DEPLOYMENT ALGORITHMS FOR
HETEROGENEOUS MWSNS

In some applications of mobile wireless sensor networks,
some of them are heterogeneous nodes, which have more and
more powerful functions. For this type of network, the main
idea is to take advantage of the mobility characteristics of het-
erogeneous nodes, move them to the appropriate location, and
then improve the coverage of the entire network. For example
in [135] the authors studied the barrier coverage problem in a
mobile survivability-heterogeneous wireless sensor network,
proposed a novel greedy barrier construction algorithm to
solve the problem, the proposed algorithm efficiently solves
the problem and outperforms other alternatives. In [136],
the authors studied how to efficiently form barrier coverage
by leveraging multiple types of mobile sensors to fill in
gaps between pre-deployed stationary sensors in heteroge-
neous WSNs. Jameii et al. [137] proposed the adaptive multi-
objective optimization framework based on non-dominated
sorting genetic algorithm and learning automata for coverage
and topology control in heterogeneous wireless sensor net-
works, the simulation results demonstrate the efficiency of
the proposed multi-objective optimization approach in terms
of lifetime, coverage and connectivity.

B. DATA COLLECTION

Data collection is one of the main tasks of mobile wireless
sensor networks [138]. The sensor nodes transmit continu-
ously perceived data to the base station in the form of wireless
communication for further processing. Because of the limited
energy, computing power and storage capacity of the sensor
nodes, as well as the influence of the channel interference
and the environment mutation, the data collection of MWSNs
faces many challenges. The main task of data collection
for MWSNSs is to collect the sensory data from the sensor
nodes [139]. The classification of data collection methods for
mobile wireless sensor networks is shown in Fig. 5.

According to the driving method, the data collection of
MWSNSs can be divided into the time-driven and the event-
driven [22]. The time-driven type means that the data collec-
tion is performed periodically, and the sensor node transmits
its own perceived data in a certain manner in each cycle,
and completes one cycle of data collection after receiving
the data sent by all the nodes. The event-driven type refers
to the sensor node monitoring an event of interest in the
monitoring area. Once the event occurs, the sensor node
reports the relevant information to the Sink node in time and
then transmits it to the user [140].

For the time-driven data collection, a batch of collection
points is determined according to the distribution of nodes,
and then the intelligent optimization algorithm is used to
solve the optimal loop through the collection points, and
the data is periodically collected along the loop, which can
effectively shorten the moving distance. For example in [141]
the authors proposed optimal cluster-based mechanisms by
a modified multi-hop layered model for load balancing with
multiple mobile sinks for these problems, and analyzed the
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cluster lifetimes in different situations and achieve balance
to save significant energy. In [134] the authors proposed an
ant-based routing protocol with QoS-effective data collec-
tion mechanism for MWSNSs, the proposed routing protocol
provides reliability by reducing the packet drop and end-to-
end delay when compared to the existing protocols. A veloc-
ity energy-efficient and link-aware cluster-tree (VELCT)
scheme for data collection in mobile WSNs is proposed
which would effectively mitigate the problems of coverage
distance in [143]. A three-layer framework is proposed for
mobile data collection in wireless sensor networks, and a
distributed load balanced clustering (LBC) algorithm is pro-
posed for sensors to self-organize themselves into clusters
in [144]. Wang et al. [145] applied the biogeography-based
optimization to the dynamic deployment of mobile sensor
networks, proposed the Homo-H-VFCPSO algorithm for the
dynamic deployment, achieved better performance by trying
to increase the coverage area of the network.

In the event-driven mobile scheme based on mobile Sink,
the mobile strategy of Sink is determined by the events
received. When the sensor node collects the sensing data,
it sends a short event message to the node, and the mobile
Sink formulates a corresponding mobile policy according
to the event message, and then moves to a specific loca-
tion to collect the node data. For example in [146] the
authors studied the problem of controlling sink mobility in
event-driven applications to achieve maximum network life-
time, and proposed a convex optimization model inspired
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by the support vector regression technique to determine
an optimal trajectory of an MS without considering prede-
fined structures. Gao et al. [147] adopted a hybrid method
called HM-ACOPSO which combines ant colony optimiza-
tion (ACO) and particle swarm optimization (PSO) to sched-
ule an efficient moving path for the mobile agent, and the
presented method outperforms some similar works in terms
of energy consumption and data gathering efficiency. A fish-
swarm based algorithm is designed requiring local informa-
tion at each fish node and maximizing the joint detection
probabilities of distress signals. Optimization of formation
is also considered for the searching control approach and is
optimized by fish-swarm algorithm in [148]. To minimize
the energy consumption on the traveling of the mobile robot,
In [149] the authors applied the concept of artificial bee
colony (ABC) and design an ABC-based path planning algo-
rithm, and validated the correctness and high efficiency of
our proposal. In order to address the energy consumption
problem, in [150] the authors proposed the shuffled frog
leaping algorithm (SFLA) by suitably modifying the frog’s
population generation and off-spring generation phases in
SFLA and by introducing a transfer phase. The experimental
results are encouraging and demonstrated the efficiency of the
proposed algorithm.

C. DATA FUSION

Data fusion methods can improve the accuracy of informa-
tion acquisition, the power of energy conservation, and the
efficiency of data collection [151]. The ultimate goal is to
take advantage of multi-sensor joint operation to improve
the effectiveness of the system. Data fusion is to remove
redundant nodes, the fusion and other operations in the data
collected by the multiple sensor nodes, so that the data is
more concise and accurate. At the same time, the amount
of packet transmission in the network is reduced, and the
power consumption is reduced, the collection efficiency is
improved, and the fault tolerance is strong [152]. Clustering-
based data fusion for MWSNSs is shown in Fig. 6.

In order to achieve efficient data fusion, data fusion is
done through layer-based routing based on the hierarchical
structure of sensor nodes in the network. The data fusion
methods of MWSNs mainly include four types: the cluster-
based data fusion, the chain-based data fusion, the tree-based
data fusion and the grid-based data fusion [153].

1) CLUSTER-BASED DATA FUSION

In the application of large-scale mobile wireless sensor net-
works, if the sensor nodes transmit data directly to the base
station directly, the sensor nodes near the base station will
soon exhaust their energy. For this reason, the entire network
is organized into different clusters, and the cluster heads
fuse the data collected by the sensor nodes in the cluster,
and then directly or indirectly communicate with the base
station through the other cluster heads in a multi-hop man-
ner. For example in [154] the authors proposed the sink
mobility and nodes heterogeneity aware cluster-based data
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aggregation algorithm (MHCDA) for efficient bandwidth
utilization and an increase in network lifetime. Sung and
Chung [155] proposed an improved particle swarm optimiza-
tion (IPSO) approach to data integration optimization calcu-
lations, improved the efficiency of data fusion and prolonged
the lifetime of network. In [134], the authors proposed a new
improved discrete shuffled frog leaping algorithm (ID-SFLA)
and its application in multi-type sensor network optimization
for the condition monitoring of a gearbox, provided a new
quick algorithm and thought for the solution of related integer
NP-hard problem.

2) CHAIN-BASED DATA FUSION
In a cluster-structured mobile wireless sensor network, if the
cluster head is far away from the members of the cluster,
the data transmission will consume a large amount of energy.
In response to this problem, the chain-based data fusion
method advocates that the sensor node only sends data to
the cluster head closest to itself. Before the data is collected,
a node chain is generated to connect all the sensor nodes.
Then select a node as the chain leader, and the choice of the
chain leader is random. The data is transmitted from the two
ends of the chain in the direction of the chain to the chain
head. The intermediate node performs simple data fusion, and
the chain first performs certain data fusion on the received
information, and then transfers the merged data to the Sink
node. In order to provide an improved performance amongst
the existing, a routing algorithm called cluster-chain mobile
agent routing was proposed in this work, it made full use
of the advantages of both low energy adaptive clustering
hierarchy and power-efficient gathering in sensor information
systems [156].

In [157] the authors proposed an intelligent multi-sensor
data fusion method using the relevance vector machine
(RVM) based on an ant colony optimization algorithm
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(ACO-RVM) for the sensors’ fault detection, the ACO-RVM
algorithm has higher fault detection accuracy than the RVM
with normal the cross-validation. In [158] the authors pro-
posed the data collection and data fusion algorithm based on
artificial bee colony for WSNs with mobile Sink, the pro-
posed algorithm can effectively reduce data transmission,
save energy, improve network data collection efficiency and
reliability, and extend the network lifetime.

3) TREE-BASED DATA FUSION

In the tree network, the sensor nodes are organized into a tree
with the Sink node as the root and the source node as the
leaf node, and the non-leaf nodes perform data fusion in
the process of data forwarding. The Sink node first floods
the control message. The message consists of five parts: the
ID, the parent node, its own remaining energy, the state, and
the hops (the number of hops from the sink node). The node
that receives the message will select the node with fewer
hops and higher remaining energy as its parent node. This
process continues and finally generates a data fusion tree
with the aggregation node as the root node. For example
in [159] the authors proposed a local-tree-reconstruction-
based scheduling algorithm for the maximum lifetime data
aggregation Tree Scheduling problem (LTRBSA), and used
simulations to evaluate and demonstrate the performance of
the LTRBSA algorithm when the sink node has 2-hop, 3-hop,
and all information in the networks. In [160] the authors
proposed the energy aware routing with ant colony optimiza-
tion, and provided more feasible routing solutions in source
node to sink node and provide significant enhancement on the
lifetime of the sensor network.

4) GRID-BASED DATA FUSION

The data fusion method based on grid is that according
to the location information and communication radius of
nodes. The area monitored by the wireless sensor network
is divided into a number of grids, each of which is assigned
a node as a data fusion node. If a node has data to send,
it can directly send the data to the data fusion node in the
grid. For example in [161] the authors a virtual grid-based
dynamic routes adjustment (VGDRA) scheme that aims to
minimize the routes reconstruction cost of the sensor nodes
while maintaining nearly optimal routes to the latest location
of the mobile sink. A method is proposed to improve the
quality of MWSNs data fusion by optimizing the weights and
thresholds of neural networks, the BP neural network opti-
mized by artificial fish swarm algorithm (AFSABP) neural
network data fusion, the proposed algorithm has significant
improvement in convergence speed and optimization accu-
racy [162]. In [134] the authors proposed a new improved
discrete shuffled frog leaping algorithm (ID-SFLA) and its
application in multi-type sensor network optimization for
the condition monitoring of a gearbox. Abirami and Anan-
damurugan [163] proposed a shuffled frog meta-heuristic
algorithm for cluster heads selection. The proposed method
chooses the cluster head based on energy remaining in the
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nodes, the proposed technique to outperform LEACH and
the Genetic Algorithm based methods in terms of Quality of
Service.

The above are all data fusion methods based on the
hierarchical structure of sensor nodes in mobile wireless
sensor networks, which have advantages and disadvantages in
terms of energy efficiency, scalability, communication band-
width utilization, delay and throughput, and are suitable for
different applications.

D. ROUTING PROTOCOL OPTIMIZATION

The energy of the sensor nodes in the mobile wireless sen-
sor network is limited and cannot be supplemented. There-
fore, the design of the routing protocols for MWSNs should
achieve energy efficient utilization and prolong the node
lifetime in the network. A mobile wireless sensor network is a
multi-hop network in which each node in the network is both
atransmitting node and a relay node [164]. If the sensor nodes
are exhausted due to the energy exhaustion, the network
topology will change dynamically, and the network needs to
be rerouted and configured, which leads to instability of the
topology of the network and the coverage of the network.
In order to improve the energy consumption of the network,
domestic and foreign scholars have proposed a number of
advanced routing protocols. Depending on the partitioning
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criteria used, these routing protocols have different classifi-
cation methods, as shown in Fig. 7.

1) PATH-BASED ROUTING PROTOCOL

According to the method of obtaining the destination node
by the source node, the routing protocols of the mobile
wireless sensor network are classified into active routing,
passive routing, and hybrid routing. The active routing pro-
tocol periodically maintains a routing table for maintenance
in the entire network, that is, a routing table containing the
latest routing information to other sensor nodes. Once the
node needs to send data, it can immediately get the route
to the destination node. For example in [165] the authors
proposed a fuzzy shuffled frog leaping algorithm (FSFLA),
which employs the memetic shuffled frog leaping algorithm
to optimize the mamdani fuzzy rule-base table based on
the application specifications. Chatterjee and Das [166] pro-
posed an enhanced version of the well-known dynamic source
routing scheme based on the ant colony optimization algo-
rithm, which could produce a high data packet delivery ratio
in low end to end delay with low routing overhead and
low energy consumption. In [167] the authors presented the
fuzzy and ant colony optimization based combined MAC,
routing, and unequal clustering cross-Layer protocol for
MWSNs (FAMACROW) consisting of several nodes that sent
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the sensed data to a master station, the proposed algorithm
improved the network’s efficiency and prolongs the network’s
lifetime.

2) NETWORK-BASED ROUTING PROTOCOL

According to the topology of the network, the routing pro-
tocols of mobile wireless sensor network are classified into
three types: plane routing protocol, cluster routing proto-
col and location routing protocol. The plane-based rout-
ing method requires the same function and status of each
node, and the protocol uses a data-centric routing scheme.
In this scheme, the sink node sends a query command
to the sensing node in the selected area, waiting for the
node to feedback information. For example in [168] the
authors proposed a particle swarm optimization based clus-
tering algorithm with mobile sink for wireless sensor net-
work. In this algorithm, the virtual clustering technique is
performed during routing process which makes use of the
particle swarm optimization algorithm. In [169] the authors
proposed an improved ACO algorithm approach for WSNs
that use mobile sinks by considering the cluster heads dis-
tances. In [170] the authors proposed an energy-efficient
network model that dynamically relocates a mobile BS
within a cluster-based network infrastructure using a har-
mony search algorithm. Kumar and Kumar [171] proposed
an energy efficient clustering mechanism, based on artificial
bee colony algorithm and factional calculus to maximize the
network energy and life time of nodes by optimally selecting
cluster-head.

3) WORKING MODE-BASED ROUTING PROTOCOL

Mobile wireless sensor networks have a high degree of
application relevance, and different routing protocols are
used in different application environments. According to
the working mode of the network, the routing protocol can
be divided into multi-path based, query based, negotiation
based, QoS based algorithms. In the multi-path routing pro-
tocol, the source node sends a message to the destination
node to select multiple paths as routes, thereby reducing
the transmission delay and improving network performance.
However, due to the need to periodically send messages to
keep the active state of the path, the communication overhead
is increased. For example in [172] the authors proposed the
ACOA-AFSA fusion routing algorithm, the proposed algo-
rithm could reduce existing routing protocols’ transmission
delay, energy consumption and improve routing protocols’
robustness. A swarm intelligence algorithm was introduced
into the clustering algorithm of wireless sensor network, and
an efficient and reliable clustering algorithm for wireless
sensor networks based on quantum artificial bee colony algo-
rithm was proposed in [173]. Tunca et al. [174] proposed
Ring Routing, a novel, distributed, energy-efficient mobile
sink routing protocol, suitable for time-sensitive applications,
which aimed to minimize this overhead while preserving the
advantages of mobile sinks.
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4) NEXT HOP SELECTION BASED ROUTING PROTOCOL
Based on the next hop routing selection, the routing pro-
tocols of mobile wireless sensor networks are divided into
broadcasting-based, location-based, hierarchical, content-
based and probability-based routing protocols. In a broadcast-
based routing protocol, each node independently decides
whether to forward a message. If the forwarding is rejected,
the message will be discarded. In [175] the authors proposed
the sink mobility based energy balancing unequal clustering
protocol (SMEBUC) for MWSNs with node distribution,
which chose the nodes with more energy as cluster heads and
divides all nodes into clusters of different size through the
improved shuffled frog leaping algorithm (SFLA). In [176]
the authors proposed an improved artificial bee colony
(1IABC) metaheuristic with an improved search equation to
enhance its exploitation capabilities, the proposed clustering
protocol outperforms other algorithms based protocols on the
basis of packet delivery, throughput, energy consumption and
prolong the network lifetime. A novel greedy discrete particle
swarm optimization with memory (GMDPSO) is put forward
to address the energy consumption problem [177]. In [178]
the authors proposed a next hop selection mechanism for
VANETSs which takes the heterogeneous environment into
consideration, the minimum hop count prediction method is
firstly proposed to help the current packet-carrying vehicle
node to estimate the minimum hop counts required from each
neighbor to the destination.

E. ROUTING FAULT TOLERANCE OPTIMIZATION

The route fault tolerance strategy of MWSNs refers to the
failure of the node or communication link in the mobile
sensor network, causing the original data transmission path
to be interrupted, and how to deal with the network faults
adaptively, quickly and effectively, so as to ensure that the
network runs reliably and accurately [179]. How to design
an efficient routing fault-tolerant strategy, provide a stable
and reliable data transmission path, ensure the robustness and
anti-interference ability of data transmission, and improve
network reliability and availability have become an urgent
problem for mobile wireless sensor networks. The fault-
tolerant design of MW SNs mainly focuses on node hardware
fault tolerance, coverage fault tolerance and topology control
fault tolerance, and routing fault tolerance [180]. At present,
the fault tolerance methods proposed by researchers at home
and abroad mainly focus on three aspects: link retransmis-
sion method, error correction code mechanism and multipath
transmission method.

1) LINK RETRANSMITS METHOD

The failure rate of wireless communication links in MWSNs
is much higher than that of limited networks, and increases as
the number of hops transmitted by nodes increases. The link
retransmission mechanism can transmit information to the
required nodes with only one retransmission. Link retrans-
mission is an effective method from the perspective of chan-
nel availability of MWSN. For example in [181], the real-time
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retransmission algorithm based on network coding (NCRR)
was proposed to make the average number of transmissions
as less as possible, the algorithm could effectively reduce
the average number of transmissions and improve the trans-
mission efficiency. In [182] the authors proposed a particle
swarm optimization (PSO)-based unequal and fault tolerant
clustering protocol, the proposed protocol addresses imbal-
anced clustering and fault tolerance issues in the existing
energy-balanced unequal clustering protocol for the long-
run operation of the network. For the problem of deploy-
ing a WSN with a specified minimum level of reliability
at a minimum deployment cost is addressed. An ant colony
optimization algorithm coupled with a local search heuristic
is proposed, the experimental results demonstrate the effec-
tiveness of the proposed approach in finding high-quality
solutions to the problem [183].

2) ERROR CORRECTION CODE MECHANISM

It adopts the method of reconstructing the original data.
The error correction code mechanism can obtain higher net-
work reliability without link retransmission, but it needs
to divide the data packet into diversified code words. This
way, there is a defect and pride. The number of informa-
tion and codewords must be chosen so that the number of
messages cannot exceed the number of bits used to char-
acterize the information [184], the number of codewords
must be less than the capacity used to calculate the external
storage space. In [185] the authors proposed an optimized
cluster head selection using an improved artificial fish swarm
algorithm (AFSA) metaheuristic, the proposed algorithm
improved the network performance and lifetime. In [186]
the authors proposed a reliable spanning tree construction
algorithm, which is called reliable spanning tree construction
in IoT (RST-IoT), the algorithm utilized the artificial bee
colony algorithm to generate proper trees, the proposed algo-
rithm improved the reliability of data gathering in emergency
applications compared to the previous approaches.In [113]
the authors proposed a new back propagation (BP) neural
network based on an improved shuffled frog leaping algo-
rithm (ISFLA), the ISFLA algorithm was developed on the
basis of a chaotic operator and overcome the shortcomings of
conventional shuffled frog leaping algorithm (SFLA).

3) MULTIPATH TRANSMISSION METHOD

The multipath approach is introduced in the fault tolerance of
MWSN. The most important purpose is to achieve extended
network lifetime and improve data transmission reliability
and success rate. The fault-tolerant method of multipath rout-
ing is to establish multiple data transmission paths between
the source node and the destination node. When the Sink
node moves a certain distance away from the communication
range of the node, interference from the external factors or
the communication interruption occurs due to the failure of
the node itself, the current transmission path will fail. This
method can quickly switch to another transmission path, so as
to obtain better fault tolerance and improve the reliability of
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data transmission. For example in [187] the authors proposed
an energy optimized multipath routing protocol (EOMRP) to
improve the packet delivery rate, load balancing and optimize
the nodes energy based on the multipath routing and energy
optimization model of the sensor nodes. In [188] the authors
had developed a new algorithm called, exponential ant colony
optimization (EACO) to route discovery problem in mobile
wireless sensor network after finding the cluster heads using
fractional artificial bee colony (FABC) algorithm. Aiming at
the problem of MWSN multipath routing fault tolerance and
proving it is an NP-hard problem, an immune particle swarm
optimization multipath routing fault tolerant algorithm is pro-
posed in [189]. The algorithm provides fast route recovery
and reconstruction to improve data transmission efficiency
and fault tolerance. In [190] the author proposed a multi-path
fault-tolerant routing algorithm based on artificial immune
algorithm. The artificial immune algorithm was applied to
MWSN multi-path data transmission to establish multiple
disjoint and optimize the transmission path.

It can be seen from the above literature that the routing
fault tolerance of mobile wireless sensor network main-
tains the ability of the sensor network system to continue
to operate normally in the event that a few sensor nodes
fail or the wireless network is partially disconnected. The
link retransmission is a more effective method based on
the effectiveness of channel usage in mobile wireless sensor
networks. However, in some special applications, the defect
of the link retransmission mechanism is also obvious, it will
affect the utilization of the channel, and the sensor node
needs to keep the information to the next hop of the route
confirmation, which will occupy the node and its limited
memory space, which is obviously inappropriate in mobile
wireless sensor networks. In multipath routing fault toler-
ance, when a known link fails during transmission, the pre-
prepared alternate path is enabled, which effectively improves
the network’s tolerance for errors. In the multipath routing
fault tolerance of MWSNSs, how to establish multiple paths
from data nodes to Sink nodes is also a key issue to be
considered.

F. TOPOLOGY OPTIMIZATION

In the key technologies of mobile wireless sensor networks,
the network topology control optimization capability is a
key factor in the performance of the entire network. The
reasonable topology control structure of MWSNSs can effec-
tively improve the execution efficiency of network commu-
nication protocols and play a fundamental role in the over-
all performance of the network and other service support
technologies [191]. The reasonable topology of MWSNs is
beneficial to extend the overall life cycle of the network.
Therefore, the topology control optimization technology of
MWSNs is the key to determine the comprehensive perfor-
mance of the sensor network. The topology control optimiza-
tion technology of MWSNs is to ensure the performance
of network coverage and connectivity. The node selection
policy changes the state of the node itself and avoids the
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communication link redundancy between the sensor nodes to
form a performance-optimized network structure [192].

The topology control of MWSNS is mainly divided into
the power control and the hierarchical topology control.
The power control is to optimize the overall performance
of the network by reasonably adjusting the transmit power
of the corresponding nodes in the WSNs, balancing the
energy consumption of the nodes and the number of nodes.
For example in [193], a lightweight algorithm of adaptive
transmission power control for wireless sensor networks.
In ATPC algorithm, each node builds a model for each of its
neighbors, describing the correlation between transmission
power and link quality. To overcome high connectivity redun-
dancy and low structure robustness in traditional methods,
a PSO-optimized minimum spanning tree-based topology
control scheme is proposed in [194]. In [195] the authors pro-
posed a novel routing algorithm that utilizes ACO-inspired
routing based on residual energy of terminals, the operational
evaluation revealed its potential to ensure balanced energy
consumption and to boost network performance.

Another the core of hierarchical topology control is clus-
tering, which divides the network into different clusters by
clustering in the network. The cluster head selection mech-
anism is used to select the cluster head node and the clus-
ter head node performs data processing and forwarding in
the cluster to form a cluster transmission system to achieve
the effect of balancing the network load and prolonging the
network’s lifetime [196]. In [197] the authors proposed a
hybrid routing algorithm by combining the Artificial Fish
Swarm Algorithm (AFSA) and ACO to address the prob-
lem of unstable topological structure, and utilized the AFSA
algorithm to perform the initial route discovery in order
to find feasible routes quickly. In [198] the authors pro-
posed a hybrid shuffled frog leaping algorithm (AASFLA)
with antipredator capabilities to avoid the local minima,
improved the performance and lifetime for MWSNs. In [199]
the authors proposed an evolutionary multi-objective opti-
mization approach based on nondominated sorting genetic
algorithm-II (NSGA-II), the proposed algorithm can improve
the network lifetime and coverage while maintaining the
network connectivity. In [200] the authors proposed a com-
pact artificial bee colony optimization method (cABC) for
applying to the topology optimization of mobile wireless
sensor networks, the proposed cABC method could provide
the highest robust structure and lowest contention topology
schemes.

It can be seen from the above topology optimization
algorithm that most of the proposed algorithms construct a
network topology to reduce the energy consumption value for
MWSNSs. However, in the practical application of MWSNSs,
the robustness, connectivity and reliability of the network
are not considered, and it is also an important performance
indicator. At the same time, although these algorithms are
optimized from one aspect of the topology, they do not con-
sider the complexity of the algorithm.
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G. LOCATION OPTIMIZATION

The node location technology of MWSNs is a method for
filtering related data information carried by hardware devices
by means of mutual communication between known sensor
nodes, such as position coordinates, RSSI values, etc., and
calculating the position of unknown nodes according to the
algorithm model. The location of the sensor nodes in the
MWSNs is the process of determining the phase or absolute
position of an unknown node in a plane or space by the
location of a known node in the network. In the general
positioning calculation of sensor networks, a certain number
of known location nodes are arranged in advance, and then
the known nodes broadcast their own data to the neighboring
nodes through flooding mode, so that the unknown nodes
determine their estimated spatial position by calculating the
angle data and vector distance data of the known location
nodes [201].

According to different positioning criteria, the positioning
algorithms can be mainly divided into the following methods:
based on ranging and non-ranging, based on beacon nodes
and no beacon nodes, centralized and distributed, concurrent
and incremental. At present, among the many algorithms for
the node location, there are mainly two types of position-
ing algorithms that have been extensively studied: the posi-
tioning algorithms based on ranging and non-ranging. The
non-ranging based positioning algorithm realizes the position
prediction of unknown nodes through the information such as
the connectivity of the network and also reduces the require-
ments of the node hardware [202]. The typical algorithms
include DV-Hop, centroid positioning, amorphous, APIT,
MDS-MAP, and convex programming. However, the non-
ranging positioning algorithm has the lower accuracy of the
positioning and the larger communication overhead, and has
the certain limitations in practical applications. The ranging-
based positioning algorithm mainly measures the distance
between nodes according to a certain algorithm, and performs
node positioning according to the obtained distance informa-
tion, and the positioning accuracy is generally relatively high.
At present, the commonly used techniques for ranging are
TOA, AOA, TDOA, RSSI, etc.

There are two main methods for node location of MW SNss:
ranging-based positioning algorithm and non-ranging based
positioning algorithm. For example in [203] the authors pro-
posed two novel collaborative location-based sleep schedul-
ing (CLSS) schemes for WSNs integrated with the mobile
cloud computing, the proposed algorithm could prolong the
lifetime of WSNs while still satisfying the data requests
of mobile users. The untapped vast potential of the artifi-
cial bee colony (ABC) algorithm had inspired the research
presented in [204], the ABC algorithm has been investi-
gated as a tool for anchor-assisted sensor localization in
MWSNs, and the ABC algorithm delivers higher accuracy
of localization than the PSO algorithm. To improve the
unreasonable distribution of sensors’ random deployment and
increase network coverage rate, an optimization method of
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FIGURE 8. Summary of swarm intelligence optimization algorithms based optimizers in MWSNs.

wireless sensor networks coverage based on improved shuf-
fled frog leaping algorithm (ISFLA) was proposed in [205].
A feed-forward neural network type and the levenberg-
marquardt training algorithm were used to estimate the dis-
tance between the mobile node and the coach. The hybrid
PSO-ANN algorithm significantly improved the distance
estimation accuracy more than the traditional LNSM method
without additional components [206]. Due to the network
cost and the restricted energy of the sensor nodes, most of
the localization algorithms are not well suitable for wireless
sensor networks and furthermore the positioning accuracy is
relatively low, in [207] the authors presented a localization
algorithm based on shuffled frog leaping algorithm (SFLA)
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and particle swarm optimization (PSO), the proposed location
algorithm has a higher accuracy. A novel iterative localization
algorithm based on improved particle swarm optimiza-
tion (PSO) was proposed for monitoring environment like
lakes, rivers or other water bodies [208]. A clustering ant
colony algorithm (KACO) with three immigrant schemes is
proposed to address the dynamic location routing problem,
the proposed algorithm may lead to a new technique for track-
ing the environmental changes by utilizing its clustering and
evolutionary characteristics [209]. In [210] the authors inves-
tigated and proposed a method for improving a traditional
range-free-based localization method (centroid) that used soft
computing approaches in a hybrid model. This model inte-
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TABLE 4. Comparison of routing algorithms for MWSNs.

Routing Architecture Location ~ Network Query-  Event- Energy Latency Lifetime  Reliability
Protocol Flat Hierarchical awareness size driven driven Efficiency

Optimization

FSFLA [165] N N N N N
ACO [166] \ S N N N \
FAMAC[167] N «/ N \ S
PSO [168] N «/ N v S

ABC[171] x/ R S v \

AFSA[172] v R v v <
RR[174] v R v R

SFLA[175] N N N v \

IABC[176] N N N v \
GMDPSO[177] N S v v S
VANETs[178] v N v S
NCRR[181] v \ v v <
PSOFT[182] N N v \
ACOFT[183] N N N v \
BAFSA[185] S N N \

RST[186] N S v \ \
ISFLA[116] v S \/ v \
EOMRP[187] v S v v <
EACO[188] v \/ v v R
ECPSO[189] v v N \
AIFT[190] v N N N \ \

grated a fuzzy logic system into centroid and uses an extreme
learning machine (ELM) optimization technique to capitalize
on the strengths of both approaches A range-free localiza-
tion method known as mobile anchor positioning - mobile
anchor & neighbor (MAP-M&N) is used to calculate the loca-
tion of the sensor nodes, the MAP-M&N with artificial fish
swarm algorithm (MAP-M&N with AFSA) is the proposed
meta-heuristic approach to calculate the location of sensor
nodes with minimal error [211]. In [212] the authors proposed
a new DV-Hop algorithm based on shuffled frog leaping
algorithm (Shuffled Frog Leaping DV-Hop Algorithm, SFLA
DV-Hop), compared with the traditional DV-Hop algorithm,
based on not increasing the sensor node hardware over-
head, the proposed algorithm could effectively reduce the
positioning error.

From the above research status, it is clear that the scholars
and researchers so far tried to implement the swarm intel-
ligence optimization algorithms in a number of key tech-
nologies of mobile wireless sensor network. Every approach
addressed in this field attempted to solve a specific prob-
lem with their own specific set of parameter configurations
and claimed to show better simulation results with regard
to some previous traditional approaches. Also some schol-
ars and researchers utilized the hybrid strategies to solve a
single problem. But to our knowledge, there is no exten-
sive work, which addresses the comparative study between
two or more swarm intelligence optimization algorithms to
solve the related problems for MWSNs, so a comparison
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between these algorithms in the key technologies specific
view is not a trivial task. In Fig. 8, we summarize PSO, ACO,
AFSA, ABC and SFLA based optimizers that are used in
WSNs and their addressed areas.

V. PERFORMANCE COMPARISON OF MWSNS

BASED ON SWARM INTELLIGENCE

OPTIMIZATION ALGORITHMS

With respect to the limitations of the sensor nodes, the key
idea behind the development of this algorithms category is to
balance network traffic and resource utilization throughout
the network. This section is dedicated to describe some of the
most recently proposed methods by the swarm intelligence
optimization algorithms. TABLE 4 provides an in-depth
comparison of routing algorithms for MWSNss.

At the same time, the key findings of the study have been
summarized in Table 5, the comparison of routing protocols
for MWSN s based on mobility is shown in TABLE 5. In sum-
marizing, the characteristics such as the mobility pattern,
the network size, the movement of Sink, the mobile speed,
the network density, the architecture and application, etc.
are considered. The issues are shown as addressed or not
addressed. Table 5 presents the total number of research
works considered in this survey (non-exhaustive list) in recent
years covering the optimization techniques for MWSNs
based on mobility.

Moreover, we compare the swarm intelligence optimiza-
tion algorithms for improving the performance of MWSNss.
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TABLE 5. Comparison of routing protocols for MWSNs based on mobility.

Scheme Mobility Network Mobile Sink Mobile Network Architecture  Applications
Pattern size node movement speed density
Ang [138] Controlled Large Sink Peripheral Variable Moderate Hierarchical ~ Event-driven
Mitra [22] Controlled Moderate Sink Random Variable Moderate Hierarchical ~ Event-driven
Mang [140] Controlled Large Sink Peripheral Variable Small Hierarchical ~ Event-driven
Zhang [141] Random Moderate Sink Peripheral Variable Moderate Flat Event-driven
Farzana [142] Controlled Small Sink Peripheral Adaptive High Hierarchical Monitoring
Velmani [143]  Predefined Large Sink Controlled Variable Moderate Flat Event-driven
Zhao [144] Predefined Moderate Nodes Peripheral Adaptive Moderate Hierarchical =~ Event-driven
Gao [147] Controlled Moderate Sink Peripheral Variable Moderate Hierarchical Time-driven
Mantri [154] Controlled Moderate Sink Controlled Peripheral Moderate Hierarchical ~ Event-driven
Yue[158] Controlled Large Sink Random Variable Moderate Hierarchical ~ Event-driven
Khan [161] Controlled Moderate Sink Peripheral Variable Moderate Flat Event-driven
Wang [168] Predefined Moderate Sink Peripheral Adaptive Moderate Hierarchical Event-driven
Wang [169] Controlled Moderate Sink Peripheral Variable Moderate Hierarchical ~ Event-driven
Tunca [174] Controlled Moderate Sink Peripheral Variable Moderate Hierarchical ~ Event-driven
Hu [191] Controlled Moderate Nodes Peripheral Adaptive Moderate Hierarchical Time-driven
Han [201] Predefined Moderate Sink Controlled Variable Moderate Hierarchical ~ Event-driven
Zheng [202] Controlled Large Sink Controlled Variable Moderate Hierarchical ~ Event-driven

A detailed network performance comparison of the routing
protocols for MWSNs based on energy-efficiency, latency,
load balancing, scalability, packet loss rate, lifetime, connec-
tivity and reliability is shown in TABLE 6. It identifies those
protocols that perform significantly better in terms of energy
consumption and low transmission overhead in the MWSNs
and also assesses the protocols using other performance
criteria such as packet loss rate, throughput, connectivity,
availability, invulnerability, and reliability.

VI. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

In the optimization of key technologies of mobile wireless
sensor networks, the desired goals of optimization include,
but are not limited to, the maximization of coverage, the max-
imization of the network’s lifetime, the maximization of
the network energy conservation, minimization of costs,
minimization of data transmission delays, maximization of
throughput, and maximization of the connectivity and reli-
ability of the network. Different practical scenarios related
to optimization give rise to different nature of optimiza-
tion problem. Obviously, most of the optimization problems
for MWSNs and its mathematical models can be described
by the NP-Hard hard problems. For example, in the opti-
mization of connectivity, coverage, cost, network lifetime
and quality of service of MWSNs, it can be determined
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as an NP-Hard optimization problem. Summarize the cur-
rent research status of mobile wireless sensor networks and
the swarm intelligent optimization technologies, the swarm
intelligence optimization algorithm has made some progress
in the node deployment and optimal coverage optimization,
the location for sensor node, energy optimization, data fusion,
routing protocol optimization, topology optimization and
the connectivity and reliability of the network in MWSNss.
The statistics of the swarm intelligent optimization algorithm
in the optimization technology of MWSNSs in the past six
years are shown in Fig. 9. The percentage of the swarm
intelligent optimization algorithm in the key technologies of
MWSNs is shown in Fig. 10.

The swarm intelligent optimization algorithm proposed in
this paper solves many problems in mobile wireless sensor
networks, such as the optimal deployment of the sensor
nodes, optimal routing protocols and data fusion, the security
of the network and the reliability of the network, data col-
lection and QoS management. However, there are still some
open research challenges. In particular, it is necessary to con-
duct in-depth research in weighing the energy consumption,
QoS, security, and reliability of the network. In addition,
most of the previous work only optimized the performance
of MWSNs from a single perspective. Moreover, there are
a few drawbacks and limitations that should be considered
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TABLE 6. Network performance comparison of the routing protocols of MWSNs.

Routing Energy Latency  Throughp  Scalability Connectivit Load Packet Reliabilit ~ Complexity
protocol Efficiency ut y balance loss rate y
FSFLA[165] High Small High High High Small High Small Moderate
ACO [166] High Small High High Moderate Moderate ~ Moderate ~ Moderate Moderate
FAMACI167] Low Small High High Small Small Small Small Moderate
PSO [168] Low Small Moderate High NA Small High Moderate Small
ABCJ[171] High Small High Low High High High High Moderate
AFSA[172] Low Moderate Small High Moderate Moderate High Moderate Moderate
RR[174] High Small High Moderate High Small High Small High
SFLA[175] Low Small Low High High Small High Moderate Moderate
IABC[176] High High Low High High Small High Moderate Moderate
GMDPSO[177] Low Small Low High High Moderate High Moderate Moderate
VANETs[178] High Small Low High Moderate Small High Small Moderate
NCRR[181] High Small Low High High Small High Small Moderate
PSOFT[182] High Small Low High High Small High High Moderate
ACOFT[183] High Small High Moderate Moderate Moderate ~ Moderate ~ Moderate Moderate
BAFSA[185] High Moderate Low High High Small Moderate ~ Moderate Moderate
RST[186] High High Low High High Small High Small Small
ISFLA[116] High High Low High Moderate Small High Moderate Small

when using swarm intelligence optimization algorithms in
mobile wireless sensor networks. Hence, research in this area
addressing the coexistence of the key issues is limited. Some
of these are:

1) THE OPTIMIZATION PROBLEM OF MWSNS COMBINED
WITH THE LATEST SWARM INTELLIGENT

OPTIMIZATION ALGORITHM

After continuous efforts by domestic and foreign schol-
ars to research and improve the swarm intelligent
optimization algorithm, the swarm intelligent optimization
algorithm has been applied in the performance optimiza-
tion of MWSNSs, and some achievements have been made.
The experimental results also prove that the use of the
swarm intelligent optimization algorithm has better clas-
sification effect in MWSNs clustering, and has achieved
good results in optimal coverage. With the development of
swarm intelligence optimization algorithm, especially the
emergence of chicken swarm optimization algorithm [213],
wolf swarm optimization algorithm [214], swarm spider opti-
mization [215] and Emperor butterfly [216] in 2016, further
research in this field can be continued in the future.
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2) SWARM INTELLIGENCE OPTIMIZATION

ALGORITHM COMBINES OTHER

OPTIMIZATION METHODS

The swarm intelligent optimization algorithm is not limited to
introducing various characteristics of biological populations
into the algorithm for improvement. Some scholars at home
and abroad have introduced some of the biological character-
istics of human beings into traditional intelligent algorithms,
such as the population adaptation and human autoimmune
mechanisms. In the future, we can continue to study from
human-related biological characteristics and further improve
the algorithm.

3) DISCRETE OPTIMIZATION PROBLEM

The vast majority of practical application problems are
discrete problems, such as the load balancing of sensor
nodes and resource scheduling. In order to optimize discrete
problems, swarm intelligence algorithm needs to model and
design parameters and coding methods according to practical
problems. However, the improved algorithm cannot guaran-
tee the better results under the condition of setting optimal
parameters. How to improve the algorithm to obtain more
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FIGURE 9. Comparison of the number of publications in the optimization
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FIGURE 10. Percentage of swarm intelligence optimization algorithms in
key technologies of MWSNs.

reasonable and efficient practical modeling needs further
study and discussion.

4) COMPREHENSIVELY BALANCE THE PROBLEMS OF
ENERGY CONSUMPTION, TRANSMISSION DELAY,

SAFETY AND RELIABILITY OF MWSNS

Although the proposed method solves many problems related
to optimization in MWSNs, some research problems are still
relatively unresolved, such as comprehensive balancing the
energy consumption, transmission delay, safety and relia-
bility of MWSNs. Especially in some special application
areas, such as wireless body area networks, Internet of vehi-
cles and other mobile wireless sensor network applications,
it is necessary to consider the energy consumption, trans-
mission delay, security and reliability of the network. There-
fore, the use of swarm intelligence optimization algorithms
to consider these issues of MWSNSs is a potential future
direction.
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5) THE ALGORITHM’'S COMPUTATIONAL REQUIREMENTS
As a resource limited framework, MWSNs drain a con-
siderable percentage of its energy budget to predict the
accurate hypothesis and extract the consensus relationship
among data samples. Therefore, the designers should con-
sider the trade-off between the algorithm’s computational
requirements and the energy consumption of the network.
Specifically, the higher of the required accuracy required by
the algorithm, the higher of the computational requirements,
and the higher of the energy consumptions.

6) CROSS-LAYER OPTIMIZATION DESIGN ISSUES

In general, different layers of network protocol stack support
for MWSNS are considered to be optimization problems. For
example, energy efficiency is a problem that needs to be at
each level of the protocol stack, so a strict layering approach
is not required, but a cross-layer design is required. The
cross-layer optimization design issues are a problem to be
considered in the optimization process of WMSNS.

7) PLACEMENT OF IMPLEMENTATION PROBLEM

The implementation of most existing swarm intelligent
optimization algorithms is in a base station or receiver
(centralized), which requires communication between the
sensor nodes. In the real world of dynamic MWSNS, this
type of communication can be very frequent and expensive.
And the distributed implementation of these algorithms in
lightweight form could be a potential future direction.

8) COMBINED WITH PRACTICAL APPLICATIONS

From the above research, it is found that many swarm intel-
ligent optimization methods perform better than the tradi-
tional methods in some environments. However, most of the
existing swarm intelligent optimization methods are based on
simulation, and only a few have been evaluated in the real
environment of MWSNs. Implementing these methods in a
real environment of MWSNSs or test platform may be a fruitful
future research direction.

VIl. CONCLUSION

This paper provides a comprehensive analysis and summary
of the most recently proposed swarm intelligent optimization
algorithms for mobile wireless sensor networks. Nowadays,
the swarm intelligent optimization algorithms are consid-
ered an efficient approach to improve network capacity and
resource utilization under heavy traffic conditions. With
respect to the recent advances in the development of the
performance optimization for mobile wireless sensor net-
works, there is a need to investigate the significance as well
as the detailed operation and classification of the proposed
approaches. To fill this gap, in this paper we have made a
comprehensive review and analysis the concept, classification
and architecture of MWSNs are described in detail. Then,
according to the classification of the performance optimiza-
tion for MWSN, the latest research of the swarm intelligence
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algorithms in performance optimization of MWSNs are sys-
tematically described. The problems and solutions in the per-
formance optimization process of MWSNs are summarized,
and the performance of the algorithms in the performance
optimization of MWSNSs is compared and analyzed.

Although in the past years the performance optimization of
mobile wireless sensor network has been researched through
numerous studies, nevertheless, there are several important
research issues that should be further investigated. These pos-
sible areas can be summarized as follows: First, swarm intel-
ligence optimization algorithm combines other optimization
methods, we can continue to study from the human-related
biological characteristics and further improve the algorithms.
Second, the emergence of chicken swarm optimization algo-
rithm, wolf swarm optimization algorithm, swarm spider
optimization algorithm, further research in this field can be
continued in the future. Finally, most of the existing swarm
intelligent optimization methods are based on simulation, and
only a few have been evaluated in the real environment of
MWSNSs. Implementing these methods in a real environment
of MWSNSs or test platform may be a fruitful future research
direction.
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