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1.  Introduction 

A swarm is a large number of homogenous, simple agents interacting locally 

among themselves, and their environment, with no central control to allow a global 

interesting behaviour to emerge. Swarm-based algorithms have recently emerged as a 

family of nature-inspired, population-based algorithms that are capable of producing low 

cost, fast, and robust solutions to several complex problems [1][2]. Swarm Intelligence 

(SI) can therefore be defined as a relatively new branch of Artificial Intelligence that is 

used to model the collective behaviour of social swarms in nature, such as ant colonies, 

honey bees, and bird flocks. Although these agents (insects or swarm individuals) are 

relatively unsophisticated with limited capabilities on their own, they are interacting 

together with certain behavioural patterns to cooperatively achieve tasks necessary for 

their survival. The social interactions among swarm individuals can be either direct or 

indirect [3]. Examples of direct interaction are through visual or audio contact, such as 

the waggle dance of honey bees. Indirect interaction occurs when one individual changes 

the environment and the other individuals respond to the new environment, such as the 

pheromone trails of ants that they deposit on their way to search for food sources. This 

indirect type of interaction is referred to as stigmergy, which essentially means 

communication through the environment [4]. The area of research presented in this depth 

paper focuses on Swarm Intelligence. More specifically, this paper discusses two of the 

most popular models of swarm intelligence inspired by ants‘ stigmergic behaviour and 

birds‘ flocking behaviour.   

In the past decades, biologists and natural scientists have been studying the 

behaviours of social insects because of the amazing efficiency of these natural swarm 

systems.  In the late-80s, computer scientists proposed the scientific insights of these 

natural swarm systems to the field of Artificial Intelligence. In 1989, the expression 

"Swarm Intelligence" was first introduced by G. Beni and J. Wang in the global 

optimization framework as a set of algorithms for controlling robotic swarm [5]. In 1991, 

Ant Colony Optimization (ACO) [6][7][8] was introduced by M. Dorigo and colleagues 

as a novel nature-inspired metaheuristic for the solution of hard combinatorial 

optimization (CO) problems. In 1995, particle swarm optimization was introduced by J. 

Kennedy et al. [9][10], and was first intended for simulating the bird flocking social 

behaviour. By the late-90s, these two most popular swarm intelligence algorithms started 

to go beyond a pure scientific interest and to enter the realm of real-world applications. It 

is perhaps worth mentioning here that a number of years later, exactly in 2005, Artificial 

Bee Colony Algorithm was proposed by D. Karabago as a new member of the family of 

swarm intelligence algorithms [11][12]. 

Since the computational modeling of swarms was proposed, there has been a 

steady increase in the number of research papers reporting the successful application of 
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Swarm Intelligence algorithms in several optimization tasks and research problems. 

Swarm Intelligence principles have been successfully applied in a variety of problem 

domains including function optimization problems, finding optimal routes, scheduling, 

structural optimization, and image and data analysis [13][14]. Computational modeling of 

swarms has been further applied to a wide-range of diverse domains, including machine 

learning [15], bioinformatics and medical informatics [16], dynamical systems and 

operations research [17]; they have been even applied in finance and business [18].    

The remainder of this paper is organized as follows: The next section presents an 

overview of two natural swarm systems (ant colonies and bird flocks), and also discusses 

and evaluates the two most popular swarm intelligence algorithms inspired by these 

natural swarms, namely, artificial ant colony optimization and particle swarm 

optimization. It further compares them with two of the most popular machine learning 

algorithms: Artificial Neural Networks and Genetic Algorithms. Then, a summary of the 

wide-range applications of swarm intelligence algorithms is presented in many different 

problem domains. The last section summarizes the advantages and limitations of swarm 

intelligence and provides some concluding remarks on the paper and open questions of 

the field.         
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2.  Swarm Intelligence (SI) Models  

Swarm intelligence models are referred to as computational models inspired by 

natural swarm systems.  To date, several swarm intelligence models based on different 

natural swarm systems have been proposed in the literature, and successfully applied in 

many real-life applications. Examples of swarm intelligence models are: Ant Colony 

Optimization [29], Particle Swarm Optimization [9], Artificial Bee Colony [11], Bacterial 

Foraging  [19], Cat Swarm Optimization [20], Artificial Immune System [21], and 

Glowworm Swarm Optimization [22]. In this paper, we will primarily focus on two of the 

most popular swarm intelligences models, namely, Ant Colony Optimization and Particle 

Swarm Optimization.  

2.1 Ant Colony Optimization (ACO) Model  

The first example of a successful swarm intelligence model is Ant Colony 

Optimization (ACO), which was introduced by M. Dorigo et al. [6][7][8], and has been 

originally used to solve discrete optimization problems in the late 1980s. ACO draws 

inspiration from the social behaviour of ant colonies. It is a natural observation that a 

group of ‘almost blind’ ants can jointly figure out the shortest route between their food 

and their nest without any visual information. The following section presents some 

details about ants in nature, and shows how these relatively unsophisticated insects can 

cooperatively interact together to perform complex tasks necessary for their survival.    

2.1.1 Ants in Nature 

 Since tens of millions of years ago, ants have survived different environments, 

climates and ages that dinosaurs, for example, did not. The secret of the remarkable 

ecological success of ants can be explained by a single word: sociality [23].  Ants have 

demonstrated exceptional social organization in several ways: They are inclined to live in 

organized societies made up of individuals that cooperate, communicate, and divide daily 

tasks. Ants have impressive abilities in finding their way, building their nests, and 

locating food supplies. They are not only efficient, but hard-working and thrifty creatures 

that can adapt to different ecosystems and survive harsh weather conditions.     

2.1.1.1 Ants Stigmergic behaviour 

Ants, like many other social insects, communicate with each other using volatile 

chemical substances known as pheromones, whose direction and intensity can be 

perceived with their long, mobile antennae [24]. The term "pheromone" was first 

introduced by P. Karlson and M. Lüscher in 1959, based on the Greek word pherein 

(means to transport) and hormone (means to stimulate) [25].  There are different types of 

pheromones used by social insects. One example of pheromone types is alarm pheromone 
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that crushed ants produce as an alert to nearby ants to fight or escape dangerous predators 

and to protect their colony [26]. Another important type of pheromone is food trail 

pheromone. Unlike flies, most ants live on the ground and make use of the soil surface to 

leave pheromone trails, which can be followed by other ants on their way to search for 

food sources. Ants that happened to pick the shortest route to food will be the fastest to 

return to the nest, and will reinforce this shortest route by depositing food trail 

pheromone on their way back to the nest. This route will gradually attract other ants to 

follow, and as more ants follow the route, it becomes more attractive to other ants as 

shown in Figure 1. This autocatalytic or positive feedback process is an example of a self-

organizing behaviour of ants in which the probability of an ant‘s choosing a route 

increases as the count of ants that already passed by that route increases.  

 

 

 

 

Figure 1: Ants‘ stigmergic behaviour in finding the shortest route between food and nest [49]. 

When the food source is exhausted, no new food pheromone trails are marked by 

returning ants and the volatile pheromone scent slowly evaporates. This negative 

feedback behaviour helps ants deal with changes in their environment. For instance, when 

an already established path to a food source is blocked by an obstacle, the ants leave the 

path to explore new routes. Such trail-laying, trail-following behaviour is called 

stigmergy (interaction through the environment), and can be considered as an indirect 

type of communication in which ants change the environment (soil surface) and the other 

ants detect and respond to the new environment. Stigmergy provides a general 

mechanism that relates individual (local) and colony-level (global) behaviours: individual 

behaviour modifies the environment (trail-laying), which in turn modifies the behaviour 

of other individuals (trail-following) [27]. 

2.1.1.2 The Double Bridge Experiment  

 The pheromone trail-laying and trail-following behaviour of ants has been studied 

in controlled experiments by several researchers. One simple, yet brilliant experiment is 

referred to as the double bridge experiment, which was designed and run by Goss, 

Deneubourg and colleagues in the late 1980s [28]. The experiment was simply made of a 

double bridge connecting a nest of ants and a food source as shown in Figure 2(a).       

Goss et al. considered different versions of the experimental setup over multiple 

experiment runs. In one version, the longer branch of the double bridge was twice as long 

as the short one and both branches are presented from the beginning of the experiment as 
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shown in Figure 2(a)(i). It was noted in this version that most ant traffic (80-100%) was 

eventually concentrated on the short branch in more than 90% of the experiment runs as 

shown in Figure 2(b)(i). Initially, ants left the nest to explore the environment; once they 

arrived at a decision point, they have to choose one of the two branches. Because the two 

unmarked branches initially looked identical to the ants (on individual-level behaviour), 

they were chosen randomly. However, quite surprising at first, the ants (on colony-level 

behaviour) appeared intelligent enough to eventually choose the shorter branch. This is 

because the lucky ants that happened to choose the short branch are the first to reach the 

food and to start their return to the nest. On their return way to the nest, these ants will be 

biased to pick the short branch over again (now probabilistically and not randomly), 

because of the higher level of pheromone they already left on the short branch. Returning 

ants will deposit pheromones once more on the short branch, which causes a faster 

accumulation of the pheromone trails on the short branch as opposed to the lower-level of 

pheromone on the not-yet-completed long branch. This stimulates more ants to choose 

the short branch until eventually it will be adopted by the majority of the ant colony. This 

explains the positive feedback process of ants, which is based on this simple, self-

reinforcement rule: the more number of ants on a branch determines a greater amount of  

                              (i)                                                                 (ii)                                          

Figure 2: (a) In the first version of the experimental setup on Left (i), short and long branches are presented 

from the beginning of the experiment. In the second version of the experimental setup on right (ii), the short 

branch is presented to the colony 30 minutes after the long branch. (b) Distribution of the percentage of ants 

that selected the shorter branch over n experiments (r is the length ratio between the two branches). In both 

versions, the long branch was twice as long as the short branch. Adapted from Goss et al. [28].  
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pheromone, which influences even more ants to choose this branch [23]. Although the 

short branch dominated most ant traffic in an impressive path-exploitation behaviour of 

ants, it can be observed, however, from Figure 2(b)(i) that there is still a small percentage 

of ant traffic that took the longer branch. This may be interpreted as a type of path-

exploration behaviour of ants [29]. 

In another version of the experimental setup, initially only the long branch was 

presented to the colony, and then when a stable pheromone trail has formed on the 

initially only available long branch, the short branch was offered after 30 minutes, as 

shown in Figure 2(a)(ii). It is worth mentioning in this version that the longer branch was 

kept twice as long as the later-offered short branch. This version is deigned to examine 

what happens when the ant colony is offered, after convergence, a new better (i.e., 

shorter) path between the nest and the food. It was observed that the short branch was not 

frequently selected (e.g., only 0-20% of ant traffic took the newly-offered short branch in 

almost 50% of the experiment runs), and thus the colony largely remained trapped on the 

initially only-offered long branch as shown in Figure 2(b)(ii).  The fact that the great 

majority of ants continued to choose the long branch can be explained by two reasons: 

The high pheromone concentration on the long branch and the slow evaporation of 

pheromone. Firstly, the high-level pheromone concentration of the already established 

trail on the long branch (compared to the zero-level pheromone-trail concentration on the 

short branch) led to an autocatalytic behaviour that continued to reinforce the long 

branch, even after a shorter one is offered. Secondly, the very slow rate of pheromone 

evaporation did not allow the ant colony to forget the suboptimal path to which they 

initially converged, preventing the new and shorter path to be discovered and 

learned [29]. In fact, the pheromone trails of most ant species were usually observed to be 

persistent for a long time-scale, ranging from at least several hours up to several months 

(depending on the ant species, the colony size, weather conditions, etc.) [27].  

One of the lessons that can be learned from this experiment is that the pheromone 

evaporation rate is a key parameter in the convergence process, because it controls the 

trade-off between path-exploration of new (and hopefully better) paths and path-

exploitation of the already established path. Therefore, in the field of artificial ant colony 

optimization, it is a common practice to set the pheromone evaporation to a sufficiently 

short time-scale [28]. This allows artificial ant colonies to favour the forgetting of errors 

(or bad choices) done in the past to allow a continuous improvement of the learned 

problem [29]. It also helps artificial ant colonies to avoid being trapped on a suboptimal 

solution and to reduce the risk of possibly stucking in local optima – one of the major 

concerns of optimization problems. In fact, the pheromone evaporation rate is an 

interesting example where there is a clear difference between real and artificial ants. The 

next section discusses the other differences between real and artificial ants, and illustrates 

the general framework used to move from a natural phenomenon to an artificial system. 
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2.1.1.3 Real Ants vs. Artificial Ants 

Understanding a natural phenomenon and designing a nature-inspired algorithm 

are two related, yet different tasks. Understanding a natural phenomenon is constrained 

by observations and experiments, while designing a nature-inspired algorithm is only 

limited by one's imagination and available technology. Although the underlying 

principles of ant colony optimization metaheuristic are inspired by the social behaviour of 

ant colonies, some characteristics of artificial ants do not have to be identically the same 

as real ants. Table 1 summarizes the main differences between artificial ants and real ants. 

The artificial ant colony optimization metaheuristic just models the natural ant behaviour. 

Modeling serves as an interface between understanding nature and designing artificial 

systems. In other words, one starts from the observed natural phenomenon, tries to make 

a nature-inspired model of it, and then design an artificial system after exploring the 

model without constraints [27]. Figure 3 illustrates the framework that is generally used to 

move from a natural phenomenon to a nature-inspired algorithm. It is worth emphasizing 

that ―memory‖ is the key difference between real and artificial ants; real ants have no 

memory, while artificial ants are offered a limited form of memory. The use of memory 

helps artificial ants to implement a number of useful behaviours that allow them to 

efficiently build solutions for more complex optimization problems than the simple 

double bridge experiment. One of such useful behaviours is that artificial ants        

evaluate the quality of the solutions generated, and use the solution quality in determining  

Criteria Real Ants Artificial Ants 

Pheromone 
Depositing 
Behaviour 

Pheromone is deposited both 
ways while ants are moving (i.e. 
on their forward and return ways).  

Pheromone is often deposited only on the 
return way after a candidate solution is 
constructed and evaluated.   

Pheromone 
Updating 
Amount  

The pheromone trail on a path is 
updated, in some ant species, 
with a pheromone amount that 
depends on the quantity and 
quality of the food [31]. 

Once an ant has constructed a path, the 
pheromone trail of that path is updated on 
its return way with an amount that is 
inversely proportional to the path length 
stored in its memory. 

Memory 
Capabilities 

Real ants have no memory 
capabilities. 

Artificial ants store the paths they walked 
onto in their memory to be used in 
retracing the return path. They also use its 
length in determining the quantity of 
pheromone to deposit on their return way. 

Return Path 
Mechanism 

Real ants use the pheromone 
deposited on their forward path to 
retrace their return way when 
they head back to their nest 

Since no pheromone is deposited on the 
forward path, artificial ants use the stored 
paths from their memory to retrace their 
return way. 

Pheromone 
Evaporation 
Behaviour 

Pheromone evaporates too slowly 
making it less significant for the 
convergence. 

Pheromone evaporates exponentially 
making it more significant for the 
convergence.  

Ecological 
Constraints 

Exist, such as predation or 
competition with other colonies 
and the colony's level of 
protection. 

Ecological constraints do not exist in the 
artificial/virtual world. 

Table 1: Differences between Real Ants and Artificial Ants 
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the quantity of pheromone to deposit. That is why pheromone is deposited only on the 

return way after a full path (or, a candidate solution) is constructed and evaluated in terms 

of the path length (or, generally, the solution cost).  

 

 

Figure 3:  An illustration to the general framework used to move from a natural phenomenon to a nature-

inspired algorithm. First, nature inspires humans to develop an observation of a particular natural 

phenomenon. Next, they create a model and test it using mathematical simulations, which help to refine 

the original model. Then, the refined model will be used to extract a metaheuristic that can be used as a 

basis to finally design and tune a nature-inspired algorithm.           

2.1.2 Ant Colony Optimization Metaheuristic   

ACO is based on pheromone laying/pheromone following behaviour of real ants 

that helps find the shortest route between their nest and a food source. ACO has been 

used to solve many optimization problems such as sequential ordering [32], 

scheduling [33], assembly line balancing [34], probabilistic Traveling Salesman Problem 

(TSP) [35], DNA sequencing [36], 2D-HP protein folding [37], and protein–ligand 

docking [38].  The main idea is to model the problem to be solved as a search for an 

optimal path in a weighted graph, called construction graph, and to use artificial ants to 

search for quality paths. A construction graph is a graph on which artificial ants 

iteratively deposit pheromone trails to help choose the graph nodes of quality paths that 

correspond to solution components. The behaviour of artificial ants simulates the 

behaviour of real ones in several ways: (i) artificial ants deposit pheromone trails on the 

nodes of quality paths to reinforce the most promising solution components of the 

construction graph, (ii) artificial ants construct solutions by moving through the 
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construction graph and choose their path with respect to probabilities, which depend on 

the pheromone trails previously deposited, and (iii) artificial pheromone trails decrease 

sufficiently quickly at each iteration simulating the slowly-evaporative pheromone trail 

phenomena observed in real ants [39]. A key point in the development of any ACO 

algorithm is to decide the fitness function based on which the components of a problem‘s 

construction graph will be rewarded with a high-level pheromone trail, and to determine 

how ants will exploit these promising components when constructing new solutions. The 

fitness function of ACO is often implicitly formulated as cost minimization of solution 

components, i.e., the goal of artificial ants is to walk on the construction graph and select 

the nodes that minimize the overall cost of the solution path.   

Algorithm 1: Basic flow of ACO (adapted from [29])  
1. Represent the solution space by a construction graph. 
2. Set ACO parameters and initialize pheromone trails 
3. Generate ant solutions from each ant‘s walk on the construction graph mediated by 
pheromone trails.  
4. Update pheromone intensities. 
5. Go to step 3, and repeat until convergence or termination conditions are met. 
 

As shown in the basic flow of ACO above, the objective of ACO‘s third step is to 
construct ant solutions (i.e., find the quality paths on the problem‘s construction graph) 
by stochastically moving through neighbour nodes of the graph. Ants are driven by a 
probability rule to sequentially choose the solution components that make use of 
pheromone trail intensities and heuristic information. The solution of each ant is 
constructed when all solution components are selected by that ant (i.e., when the ant has 
completed a full tour/path on the construction graph). Once an ant has constructed a 
solution, or while the solution is being constructed, the ant evaluates the full (or partial) 
solution to be used by the ACO‘s next step (the pheromone updating step) in determining 
how much pheromone to deposit. The probability rule (equation 1) is called Random-

Proportional Action Choice rule (or State Transition rule). It guides ant movement 
through a stochastic local decision policy that essentially depends on both pheromone 
information and heuristic information [40].  

   

          ( )  {     ( )           ∑     ( )                                                                    ( )                           

 
Where: 

     ( ) is the probability of the k
th ant to move from node i to node j at the tth  

iteration/time step.  

      is the set of nodes in the neighborhood of the  kth ant  in the ith node.  
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     ( ) = 0,          means the ants are not allowed to move to any node not 

in their neighborhood. The neighborhood definition is problem-specific, for 

example, in the Traveling Salesman Problem (as discussed later in                

Section 2.1.2.1) the neighborhood is defined by the adjacent cities in the allowed 

list (the allowed list contains all unvisited cities), while in the Image 

Segmentation problem, the neighborhood can be defined as the 8-connected 

pixels surrounding each pixel on a two-dimensional square lattice. 

     ( )   is the pheromone amount on the arc connecting node i and node j, 

weighted by  (an application-depend constant).  ( ) is the pheromone 

information, or trail intensity value, that encodes a long-term memory about the 

whole ant search process. It is updated by all ants after each iteration t 

(sometimes, however, in more recent ACO versions it is updated by only some 

ants – the best one(s) that constructed the iteration-best or best-so-far solution).  

         is the heuristic value of the arc connecting node i and node j, weighted 

by  (an application-depend constant).   is the heuristic  information, or path 

visibility, that represents a priori information about the problem instance 

definition, or run-time information provided by a different source other than ants. 

The heuristic value      is usually a non-increasing function in the moving cost 

from node i to node j, and it often does not change during algorithm execution 

unless the moving cost is not static.  

   and   are weight parameters that control the relative importance of the 

pheromone versus heuristic information.  

o A high value for α means that pheromone information is very important; 

thus, ants are strongly biased to choose nodes previously chosen by other 

ants. This potentially leads to a stagnation situation in which all the ants 

would eventually follow the same path (usually suboptimal) and construct 

the same tour [29]. 

o A low value of α makes the algorithm very similar to a stochastic multi-

greedy algorithm with m starting points, as there is m number of ants that 

are initially randomly distributed over the construction graph.  

o When α = 0, the ACO performs a typical stochastic greedy search strategy 

in which the next node (problem state) is selected only on the basis of its 

distance (cost) from the current node/state. As a result, the node with the 

minimum cost will be always favoured regardless of how many other ants 

have visited it, and how much its pheromone intensity is [29].     
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o When β = 0, the pheromone information is only used to guide the search 

process, which would reflect the way that ants do in real world (real ants 

do not use any heuristic information in their search process) [41]. 

The objective of ACO‘s fourth step is to update pheromone trails.  At the very 

beginning,  the pheromone trails of  all  arcs on the construction graph  are initialized to a 

small constant value (  ). Then after a tour (or, a solution path) is constructed, the 

pheromone trails are updated in two ways, as shown in equations 2 and 3. Firstly, the 

pheromone trails of all arcs are decreased according to an evaporation rate (ρ) that allows 

ants to forget the suboptimal paths to which they previously converged. Pheromone 

evaporation rate is usually set to be sufficiently fast in order to favour the exploration of 

new areas of the search space, and avoid a premature convergence of the algorithm 

toward a local optimum.  Secondly, the pheromone trail values of the visited arcs are 

increased with amounts inversely proportional to the cost of their tours (or, in other 

words, directly proportional to their tour quality). The pheromone depositing procedure 

implements a useful form of exploitation of quality paths by increasing their probability 

of being used again by future ants. The quality paths would include the solution 

components that were either used by many ants in the past, or that were used by at least 

one ant and which produced a high quality solution [40][42]. 

    (t+1)   ( 1 – ρ ) *    (t)  + ∑      ( )                       0 ≤ ρ < 1    ( ) 
      ( )  {   ( )⁄            (   )     ( )                                                                  ( ) 

 

Where: Q is an application-specific constant, m is the number of ants, A represents all 

arcs of the problem‘s construction graph,   ( ) is the overall cost function of tour Tk( )  
constructed by the kth ant at the tth iteration, and   ( ) is the set of all arcs visited by ant k 

at the iteration t. Other variations of ACO, however, restrict pheromone depositing to the 

arcs of the best tour Tbest only.  

2.1.2.1 ACO Example: Traveling Salesman Problem and Ant System 

The ACO metaheuristic is a general-purpose algorithmic framework on which 

many heuristic algorithms are based and applied to different optimization problems with           

a relatively few problem-specific modifications.  Ant System (AS) was the first proposed 

ant-based example of ACO metaheuristic in the literature [8]. Illustrating AS                      

as an example of an ACO algorithm in solving a particular optimization problem best 

explains how the ACO metaheuristic operates. The Traveling Salesman Problem (TSP) is 



13 

 

a well-studied combinatorial (discrete) optimization problem [45][46][47] that was first 

applied to the original AS in the early 1990s, and it has later often been used as a 

benchmark to test new ideas and algorithmic modifications [48]. The set of feasible 

solutions of combinatorial optimization problems is discrete, that is, each variable has a 

finite number of values. In TSP, for example, the goal is to find the shortest possible tour 

from the salesman‘s home city to a finite number of customer cities with only one 

constraint that each city must be visited just once before finally returning to the starting 

home city. That is why ants at each construction step are enforced to choose the next city 

from an allowed list that contains all unvisited cities. The TSP can be represented by a 

complete weighted graph G = (V,E), where V is a finite set of cities (graph vertices) and 

E is the set of weighted edges fully connecting the vertices.  Each edge has a weight dij 

representing the distance between cities i and j. The reason why TSP is the intuitive 

example first applied to AS is that the TSP problem is readily modeled as a weighted 

construction graph required by ACO metaheuristic to operate. 

In AS, each edge is initialized by the same initial pheromone value τ0 and each ant is 

initially put on a randomly chosen start city, making the number of ants m equals the 

number of cities n (or, in other words, the ant colony size = |V|).  Each ant k traverses the 

construction graph and makes a probabilistic decision to move from city i to j according 

to a transition probability      ( )  given by equation 4.  While building the solutions, 

each ant iteratively stores the solution components (the graph vertices or cities selected 

from each ant step) in its memory until all cities have been visited. A construction step 

typically starts with one city in each ant‘s memory and terminates after each ant 
completes a tour of all cities.            

    ( )  {  
      ( )     (     ) ∑     ( )     (     )                                                                                                                                           ( ) 

 

Where: the pheromone trail     ( )   refers to the desirability of visiting city j directly 

after i at the construction step t, the heuristic information is inversely proportional to dij 

(the distance between cities i and j), and the         list is a set of feasible 

neighbourhood cities yet to be visited by the k
th

 ant.  

Next, the pheromone trails are updated, as discussed earlier, in two ways using the 
following equations provided in 5 and 6: 

    (t+1)   ( 1 – ρ ) *    (t)  + ∑      ( )                                 ( ) 
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     ( )  {   ( )⁄            (   )     ( )                                                                                ( ) 

 
Where:   ( ) is the overall length of the tour   ( ) constructed by the ant k. It should be 

noted here that the pheromone deposit value,      ( ), between cities i and j is set to be 

inversely proportional to the overall length of the complete tour (   ( )⁄ ), and not merely 

the distance of the arc connecting the city i and the city j (     ( )⁄ ). That is, if the arc 

distance between city i and city j is relatively small but the distance of the complete     

tour   ( ) in which this arc was used is rather big, then the pheromone on this arc         

should NOT receive a big reinforcement and thus the pheromone deposit value         

should be small.     

The values of the aforementioned parameters have a strong influence on the 

algorithm performance and the convergence behaviour.  For example, If α is set to 0, the 

algorithm will always choose the closest city and behaves like a greedy search algorithm.  

Also, if the initial pheromone value τ0 is ignored or set to 0, the search is quickly biased 

by the pheromone deposited during the first tours of ‗less-experienced‘ ants, which often 

does not direct the convergence process to optimal solutions. On the other hand, if the 

initial pheromone τ0 is set to a too high value, the search is strongly biased by τ0 (instead 

of (  ( )   ) for many iterations until pheromone evaporation reduces enough pheromone 

values, and pheromone deposited by ants can actually start to influence the search 

process [29]. Typical parameter settings for TSP are: m = n (i.e., number of ants = 

number of cities), α = 1, β=2 to 5, ρ=0.5, and τ0 = 10-6 [41]. 

2.1.2.2 ACO Variations: Ant System and its Extensions  

Many different variations of the original AS [8] have been proposed in the 

literature, such as, Elitist AS [49], Ant-Q [50], Max-Min AS [51], Rank-Based AS [52], 

Ant Colony System [53], and Hyper-cube AS [54]. One of the principal differences 

between AS and its extensions lies in the pheromone updating procedure; whether a local 

pheromone update is required after each construction step, or the offline pheromone 

updating procedure performed at the end of the construction process is sufficient, whether 

the pheromone update should be done by all ants, or by the best one(s) that have 

constructed the best or best-so-far tour(s), among other differences.  Discussing the 

details of ACO variations is out of the scope of this paper, but interested readers may 

refer to this [29][30] for more details about the differences between AS and its 

extensions.  It should be noted that while ACO was originally proposed to solve 

combinatorial (discrete) optimization problems, some versions of ACO algorithms have 
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been recently proposed to handle not only continuous optimization problems [55][56], 

but also mixed optimization problems with both continuous and discrete variables [57].  

2.1.2.3 ACO Discussion 

A relatively close paradigm to ACO metaheuristic would be the artificial       

neural network (ANN), since both can be considered as a type of a connectionist system 

in which individual units (artificial ants of ACO or artificial neurons of ANN) are 

connected to each other according to a certain pattern [41]. Both ACO and ANN are quite 

similar in some aspects, for example: (i) The knowledge resulted from the learning 

process is numerically embedded in both of them (either in the weights of the network 

connections in case of ANN, or in the pheromone concentrations on the           

construction graph in case of the ACO metaheuristic). (ii) Both ACO and ANN are based 

on the same principle: reinforcement of portions of solutions that belong to good 

solutions either by adding more pheromone amounts in case of ACO or increasing 

network weights in case of ANN. (iii) in ACO the pathways to solutions are usually not 

predefined but emergent, and likewise the pathways to solutions in most ANNs are 

hidden in its black-box nature.   

That being said, ACO differs from ANN in the following ways: (i) the individual 

units of ACO have a mobility feature, unlike ANN‘s individual units (neurons) do not 

have a mobility feature, but they should be preconfigured with a structure that does not 

change in run time. (ii) The dynamic nature of ACO‘s connectivity helps to continuously 

adapt to changes in real time, making ACO more applicable to dynamic problems such as 

urban transportation systems [58] and adaptive routing in telecommunication 

networks [59]. (iii) The two main learning approaches of ANN training (supervised and 

unsupervised learning 1 ) do not get feedback from the environment, whereas ACO 

primarily depends on the feedback from the environment, which is used as a medium of 

coordination and indirect communication among ants (stigmergy).  

Despite the advantages of ACO, it does have some limitations (as many other 

optimization algorithms) that do not let it to always work well [27]. For example, ACO 

does not work well when a large number of edges on the construction graph are equally 

likely to be part of good paths.  This happens when many edges have similar cost and 

therefore similar probability of being selected as portions of good paths (e.g., a TSP 

problem whose cities are uniformly randomly distributed with a relatively equal distance 

from one another). Since ACO‘s objective is to reinforce all edges on the problem‘s 
construction graph that belong to good solutions/paths, a large number of edges will 

receive a relatively equal high amount of pheromone and will be equally likely selected. 

In this case, the original ACO would not perform well as it would take longer time to 

differentiate between such many good paths in an effort to eventually converge/select one 

of them [41]. 

                                                           
1
 It is worth mentioning, however, that a third learning approach for ANN training called the 

“reinforcement learning” does use a feedback response from the environment [67]. 
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2.2 Particle Swarm Optimization (PSO) Model 

The second example of a successful swarm intelligence model is Particle Swarm 

Optimization (PSO), which was introduced by Russell Eberhart, an electrical engineer, 

and James Kennedy, a social psychologist, in 1995 [9][10]. PSO was originally used to 

solve non-linear continuous optimization problems, but more recently it has been used in 

many practical, real-life application problems. For example, PSO has been successfully 

applied to track dynamic systems [60], evolve weights and structure of neural 

networks [61], analyze human tremor [62], register 3D-to-3D biomedical image [63], 

control reactive power and voltage [64], even learning to play games [65] and music 

composition [66]. PSO draws inspiration from the sociological behaviour associated with 

bird flocking. It is a natural observation that birds can fly in large groups with no 

collision for extended long distances, making use of their effort to maintain an optimum 

distance between themselves and their neighbours. This section presents some details 

about birds in nature and overviews their capabilities, as well as their sociological 

flocking behaviour. 

2.2.1 Birds in Nature 

 Vision is considered as the most important sense for flock organization [83]. The 

eyes of most birds are on both sides of their heads, allowing them to see objects on each 

side at the same time. The larger size of birds‘ eyes relative to other animal groups is one 
reason why birds have one of the most highly developed senses of vision in the animal 

kingdom [68]. As a result of such large sizes of birds‘ eyes, as well as the way their heads 

and eyes are arranged, most species of birds have a wide field of view [74]. For example, 

Pigeons can see 300 degrees without turning their head, and American Woodcocks have, 

amazingly, the full 360-degree field of view [75]. Birds are generally attracted by food; 

they have impressive abilities in flocking synchronously for food searching and long-

distance migration. Birds also have efficient social interaction that enables them to be 

capable of: (i) flying without collision even while often changing direction suddenly, (ii) 

scattering and quickly regrouping when reacting to external threats, and (iii) avoiding 

predators [9].   

2.2.1.1 Birds Flocking Behaviour 

The emergence of flocking and schooling in groups of interacting agents (such as 

birds, fish, penguins, etc.) have long intrigued a wide range of scientists from diverse 

disciplines including animal behaviour, physics, social psychology, social science, and 

computer science for many decades [69][70][71][72][73].  Bird flocking can be defined 

as the social collective motion behaviour of a large number of interacting birds with a 

common group objective. The local interactions among birds (particles) usually emerge 

the shared motion direction of the swarm, as shown in Figure 4. Such interactions are 

based on the ―nearest neighbour principle‖ where birds follow certain flocking rules to 
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adjust their motion (i.e., position and velocity) based only on their nearest neighbours, 

without any central coordination.  In 1986, birds flocking behaviour was first simulated 

on a computer by Craig Reynolds [74]. The pioneering work of  Reynolds proposed three 

simple flocking rules to implement a simulated flocking behaviour of birds: (i) flock 

centering (flock members attempt to stay close to nearby flockmates by flying in a 

direction that keeps them closer to the centroid of the nearby flockmates), (ii) collision 

avoidance (flock members avoid collisions with nearby flockmates based on their relative 

position), and (iii) velocity matching (flock members attempt to match velocity with 

nearby flockmates) [74].  

Although the underlying rules of flocking behaviour can be considered simple, the 

flocking is visually complex with an overall motion that looks fluid yet it is made of 

discrete birds [74]. One should note here that collision avoidance rule serves to 

―establish‖ the minimum required separation distance, whereas velocity matching rule 

helps to ―maintain‖ such separation distance during flocking; thus, both rules act as a 

complement to each other.  In fact, both rules together ensure that members of a 

simulated flock are free to fly without running into one another, no matter how many they 

are. It is worth mentioning that the three aforementioned flocking rules of Reynolds are 

generally known as cohesion, separation, and alignment rules in the literature [76][77]. 

For example, according to the animal cognition and animal behaviour research, 

individuals of animals in nature are frequently observed to be attracted towards other 

individuals to avoid being isolated and to align themselves with neighbours [78][79]. 

Reynolds rules are also comparable to the evaluation, comparison, and imitation 

principles of the Adaptive Culture Model in the Social Cognitive Theory [80].   

 

 

 

 

 

 

 

                 

 

 

 

 

 Figure 4: The flocking behaviour of a group of birds (adapted from [81]). 
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2.2.1.2 Birds’ Physical Movement vs. Humans’ Psychological Change 

The Social Cognitive Theory, used in psychology, education, and communication, 

suggests that portions of knowledge acquired by humans can be directly influenced by 

their neighbours within the context of social interactions and experiences [82].  While 

being different, the birds flocking behaviour can be mapped to the human social 

behaviour, since the concept of bird‘s physical movement is generally analogous to the 

concept of psychological behaviour change in humans. But unlike birds, we tend to 

adjust our ideas, beliefs and attitudes, instead of just adjusting our physical positions, to 

conform to our social peers. Another obvious distinction between humans and birds in 

this context lies in the fact that the same attitudes and beliefs can be concurrently held by 

many individuals without banging with each other, but any two birds must occupy 

different positions in the 3D space to avoid collision [9]. In other words, birds move 

through a three-dimensional physical space, avoiding collisions, whereas humans 

psychologically change in an n-dimensional abstract space, collision-free, in addition to 

moving through a 3D physical space and avoiding collisions. It is worth emphasizing, 

however, that although we learn to avoid physical collision by an early age, decades of 

practice and experience are often required to learn how to efficiently navigate through 

such an abstract n-dimensional, psychological space [9].  

2.2.2 Particle Swarm Optimization Metaheuristic   

Particle Swarm Optimization (PSO) is a heuristic optimization technique 

introduced by Kennedy and Eberhart in 1995 [9][10]. It is inspired by the intelligent, 

experience-sharing, social flocking behaviour of birds that was first simulated on a 

computer by Craig Reynolds [74], and further studied by the biologist Frank 

Heppner [84]. PSO is a population-based search strategy that finds optimal solutions 

using a set of flying particles with velocities that are dynamically adjusted according to 

their historical performance, as well as their neighbours in the search space [85]. While 

ACO solves problems whose search space can be represented as a weighted construction 

graph (refer to Section 2.1.2), PSO solves problems whose solutions can be represented 

as a set of points in an n-dimensional solution space. The term ―particles‖ refers to 
population members, which are fundamentally described as the swarm positions in the    

n-dimensional solution space. Each particle is set into motion through the solution space 

with a velocity vector representing the particle‘s speed in each dimension. Each particle 

has a memory to store its historically best solution (i.e., its best position ever attained in 

the search space so far, which is also called its experience).  

The secret of the PSO success lies in the experience-sharing behaviour in which 

the experience of each particle is continuously communicated to part or the whole swarm, 

leading the overall swarm motion towards the most promising areas detected so far in the 

search space [17]. Therefore, the moving particles, at each iteration, evaluate their current 

position with respect to the problem‘s fitness function to be optimized, and compare the 
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current fitness of themselves to their historically best positions, as well as to the other 

individuals of the swarm (either locally within their neighbourhood as in the local version 

of the PSO algorithm, or globally throughout the entire swarm as in the global version of 

the algorithm). Then, each particle updates its experience (if the current position is better 

than its historically best one), and adjusts its velocity to imitate the swarm‘s global best 

particle (or, its local superior neighbour, i.e., the one within its neighbourhood whose 

current position represents a better solution than the particle‘s current one) by moving 

closer towards it. Before the end of each iteration of PSO, the index of the swarm‘s 
global best particle (or, the local best particle in the neighbourhood) is updated if the 

most recent update of the position of any particle in the entire swarm (or, within a 

predetermined neighbourhood topology) happened to be better than the current position 

of the swarm‘s global best particle (or, the local best particle in the neighbourhood). 

2.2.2.1 The Original PSO Algorithm 

The original PSO was designed as a global version of the algorithm [9], that is, in 

the original PSO algorithm, each particle globally compares its fitness to the entire swarm 

population and adjusts its velocity towards the swarm‘s global best particle. There are, 

however, recent versions of local/topological PSO algorithms, in which the comparison 

process is locally performed within a predetermined neighbourhood 

topology [80][86][87]. Unlike the original version of ACO (refer to Section 2.1.2), the 

original PSO is designed to optimize real-value continuous problems, but the PSO 

algorithm has also been extended to optimize binary or discrete problems [88][89][90]. 

The original version of the PSO algorithm is essentially described by the following two 

simple ―velocity‖ and ―position‖ update equations, shown in 7 and 8 respectively. 

 

       vid(t+1)= vid(t) + c1 R1(pid(t) – xid(t)) + c2 R2 (pgd(t) – xid(t))       (7)             

        xid(t+1) = xid(t) + vid(t+1)                               (8)  

 

Where:  

 vid represents the rate of the position change (velocity) of the ith particle in the dth 

dimension, and t denotes the iteration counter. 

  xid represents the position of the i
th particle in the d

th dimension. It is worth 

noting here that xi is referred to as the i
th particle itself, or as a vector of its 

positions in all dimensions of the problem space. The n-dimensional problem 

space has a number of dimensions that equals to the numbers of variables of the 

desired fitness function to be optimized.  

 pid represents the historically best position of the ith particle in the dth dimension 

(or, the position giving the best ever fitness value attained by xi).  



20 

 

 pgd represents the position of the swarm‘s global best particle (xg) in the d
th 

dimension (or, the position giving the global best fitness value attained by any 

particle among the entire swarm).   

 R1 and R2 are two n-dimensional vectors with random numbers uniformly 

selected in the range of [0.0, 1.0], which introduce useful randomness for the 

search strategy.  It worth noting that each dimension has its own random    

number, r, because PSO operates on each dimension independently [17]. 

 c1 and c2 are positive constant weighting parameters, also called the cognitive and 

social parameters, respectively, which control the relative importance of 

particle‘s private experience versus swarm‘s social experience (or, in other 

words, it controls the movement of each particle towards its individual versus 

global best position [91]). It is worth emphasizing that a single weighting 

parameter, c, called the acceleration constant or the learning factor, was initially 

used in the original version of PSO, and was typically set to equal 2 in some 

applications (i.e., it was initially considered that c1 = c2 = c = 2). But, to better 

control the search ability, recent versions of PSO are now using different 

weighting parameters which generally fall in the range of [0,4] with c1 + c2 = 4 

in some typical applications [17]. The values of c1 and c2 can remarkably affect 

the search ability of PSO by biasing the new position of xi toward its historically 

best position (its own private experiences, Pi), or the globally best position (the 

swarm‘s overall social experience, Pg):     

o High values of c1 and c2 can provide new positions in relatively distant 

regions of the search space, which often leads to a better global 

exploration [17], but it may cause the particles to diverge.  

o Small values of c1 and c2 limit the movement of the particles, which 

generally leads to a more refined local search around the best positions 

achieved [17]. 

o When c1 > c2, the search behaviour will be biased towards particles‘ 
historically best experiences. 

o When c1 < c2, the search behaviour will be biased towards the swarm‘s 

globally best experience. 

The velocity update equation in (7) has three main terms: (i) The first term, vid(t), 

is sometimes referred to as ―inertia‖, ―momentum‖ or ―habit‖ [17]. It ensures that the 

velocity of each particle is not changed abruptly, but rather the previous velocity of the 

particle is taken into consideration [85]. That is why the particles generally tend to 

continue in the same direction they have been flying, unless there is a really major 

difference between the particle‘s current position from one side, and the particle‘s 
historically best position or the swarm‘s globally best position from the other side (which 

means the particle starts to move in the wrong direction). This term has a particularly   
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important role for the swarm‘s globally best particle, xg, This is because if a particle, xi, 

discovers a new position with a better fitness value than the fitness of swarm‘s globally 
best particle, then it becomes the global best (i.e., g←i). In this case, its historically best 

position,  pi, will coincide with both the swarm‘s global best position,  pg, and its own 

position vector, xi, in the next iteration (i.e., pi = xi = pg) [17]. Therefore, the effect of 

last two terms in equation (7) will be no longer there, since in this special case            

pid(t) – xid(t) = pig(t) – xid(t) = 0,     .  This will prevent the global best particle to 

change its velocity (and thus its position), so it will keep staying at its same position for 

several iterations, as long as there was no way to offer an inertial movement and there has 

been no new best position discovered by another particle. Alternatively, when the 

previous velocity term is included in the velocity updating equation (7), the global best 

particle will continue its exploration of the search space using the inertial movement of 

its previous velocity [17]. (ii) The second term, ( pid(t) – xid(t) ), is the ―cognitive‖ part 
of the equation that implements a linear attraction towards the historically best position 

found so far by each particle [91]. This term represents the private-thinking or the self-

learning component from each particle‘s flying experience [85], and is often referred to 

as ―local memory‖, ―self-knowledge‖, ―nostalgia‖ or ―remembrance‖ [17]. (iii) The third 

term, ( pgd(t) – xid(t) ), is the ―social‖ part of the equation that implements a linear 

attraction towards the globally best position ever found by any particle [91]. This term 

represents the experience-sharing or the group-learning component from the overall 

swarm‘s flying experience [85], and is often referred to as ―cooperation‖, ―social 

knowledge‖, ―group knowledge‖ or ―shared information‖ [17]. 

According to the aforementioned equations (7) and (8), the basic flow of the 
original PSO algorithm can be described as shown below. 

 
 

Algorithm 2: Basic flow of PSO (adapted from [85])  
1) Initialize the swarm by randomly assigning each particle to an arbitrarily initial 
velocity and a position in each dimension of the solution space. 
2) Evaluate the desired fitness function to be optimized for each particle‘s position. 
3) For each individual particle, update its historically best position so far, Pi, if its current 
position is better than its historically best one. 
4) Identify/Update the swarm‘s globally best particle that has the swarm‘s best fitness 
value, and set/reset its index as g and its position at Pg. 
5) Update the velocities of all the particles using equation (7). 
6) Move each particle to its new position using equation (8). 
7) Repeat steps 2–6 until convergence or a stopping criterion is met (e.g., the maximum 
number of allowed iterations is reached; a sufficiently good fitness value is achieved; or 
the algorithm has not improved its performance for a number of consecutive iterations). 
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2.2.2.2 The Refinements and Extensions to the Original PSO 

The PSO algorithm showed sufficiently good performance on the simple 

optimization problems firstly applied to its original and early versions, but some 

limitations later appeared when PSO was applied to harder optimization problems with 

large search spaces and multiple local optima [17]. As a result, a number of 

parameter/methodology refinements are considered in the later versions of PSO in order 

to (i) prevent what is known as ―swarm explosion‖ by limiting the maximum velocity, (ii) 

facilitate the convergence in harder optimization problems by introducing an inertia 

weight, and (iii) handle optimization problems with multiple local optima by defining a 

neighbourhood topology for a local version of PSO [91].  

(i) Limiting the Maximum Velocity 

In the velocity update equation (7), when xid(t) << pid(t) and xid(t) << pgd(t), 

the new velocity, vid(t+1), will have a very large +ve value, and the algorithm will 

enforce the ith particle‘s current position to be significantly adjusted forward to become 

closer to its historically best position and the swarm‘s global best position. On the other 

hand, when  xid(t) >> pid(t) and xid(t) >> pgd(t), the new velocity, vid(t+1), will have a 

very large -ve value, and the algorithm will enforce the ith particle‘s current position to be 
significantly adjusted back to its historically best position and the swarm‘s global best 
position. It has been observed, however, that too much increase or decrease to the values 

of particles‘ velocities has often led to what is known as ―swarm explosion‖ in the early 

versions of PSO. Swarm explosion refers to the uncontrolled increase of the magnitude of 

particle velocities, |vid(t+1)|, which could lead to swarm divergence (especially when the 

problem‘s search space is very large)  [17]. This issue was addressed by defining a 

problem-dependent maximum velocity threshold (vmax > 0) for the velocity magnitude to 

avoid the particles taking extremely large shifts from their current position, realistically 

simulating the incremental change of human learning [92], as described below: 

 

        |vid(t+1)| ≤ vmax,       i = 1, 2, …, N (particles)   and   d = 1, 2, …., n (dimensions) 

 

If, at any iteration, t, the result of the velocity update equation presented at (7) violates 

the rule above, i.e., |vid(t+1)| > vmax, then the values of the violating particles‘ velocities 
are clamped, as follows: 

                  (   )  {                      (   )         –                  (   )   –             (9) 
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The value of the parameter, vmax, is important because it remarkably affects the 

algorithm behaviour. For example, if vmax is sufficiently big, the particles fly far past the 

target region and could discover even better positions than what they originally set out 

for. This improves the global exploration ability of the algorithm as the particle would be 

able to take sufficiently large steps to escape from local optima.  On the other hand, a 

small value of vmax could cause the particles to be trapped into local optima, and prevent 

them from discovering better solution areas [85]. If necessary, the value of the maximum 

velocity could be not only problem-dependent, but also dimension-dependent according 

to the problem‘s space dimensions [17]. Nevertheless, in order to ensure uniform velocity 

throughout all dimensions, Abido [93] has proposed an equation to govern the maximum 

velocity value, as shown below in equation (10): 

                               –                                           (10) 

 

Where:       and       are the maximum and minimum position values found so far by 

the particles in the dth dimension, and K is a user-defined parameter that controls the shift 

intervals (or, the particles‘ steps in each dimension of the search space), with k = 2 being 

a common choice (i.e., velocities are clamped to at most 50% of the range on each 

dimension [17]).   

(ii) Introducing an Inertia Weight 

The inertia weight is introduced to control the global exploration ability of PSO, 

and provide a balance between the global and local search abilities. It has been observed 

that PSO produces better results when its global exploration ability is more favoured in 

the early optimization stages to allow the exploration of as many promising areas of the 

search space as possible. Then, towards the end of the optimization process, the local 

exploitation ability of the algorithm should be promoted, instead, to allow for a more 

refined search around the best areas previously roughly detected [17]. This is possible by 

reducing the position shifts (or, the velocity) of the particles in the later search stages. 

This means the effect of the previous velocity term, vid(t), of equation (7) (which is 

known as ―inertia‖ or ―momentum‖ as discussed in Section 2.2.2.1) will gradually fade 

over PSO iterations for each particle.  Therefore, a linearly decreasing inertia weight, ω, 
multiplied to that previous velocity term was introduced by Shi and Eberhart [94],  as 

shown in equation (11). Intuitively, the linearly decreasing inertia weight is initially set to 

a high value, ωhi, around 1.0 (typically, from 0.9 to 1.2) in order to allow the particles to 

move freely, and quickly explore the global optimum neighbourhood [17]. Towards the 

later optimization stages, when the optimal regions are roughly identified, the value of 

the inertia weight is decreased to a small amount, ωlow, around 0.2 (typically, from 0.1 to 
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0.4) in order to refine the search, and shift the optimization process from an exploratory 

mode to an exploitative mode [17][91]. 

  vid(t+1)= ω vid(t) + c1 R1(pid(t) – xid(t)) + c2 R2 (pgd(t) – xid(t))       (11)  

    xid(t+1) = xid(t) + vid(t+1)                                      (12)  

The rest of the parameters of equations (11) and (12) remain the same as for the 

equations of the original PSO version presented in equations (7) and (8). Since the inertia 

weight is selected such that the effect of vid(t) gradually fades during the execution of the 

algorithm, a linearly decreasing scheme for the inertia weight is often utilized  [17]. One 

possible definition of such linearly decreasing scheme can be mathematically described, 

as shown in equation (13).                                     ( )        (             )                                     (13) 

Where: t is the iteration counter; ωhi and ωlow are the desired higher and lower bounds of 

the inertia weight, respectively; Tmax is the maximum allowed number of iterations after 

which the algorithm shall terminate.  The definition of that scheme produces a linearly 

decreasing time-dependent inertia weight with initial value, ωhi, at the first iteration,         

t = 0, and final value, ωlow, at the last possible iteration, Tmax [17]. It is worth noting that 

the concept of a linearly decreasing value of the inertia weight could be considered quite 

analogous to the concept of simulated annealing
2  that is often used in global    

optimization problems [95].   

 (iii) Defining a Neighbourhood Topology   

Despite its aforementioned benefits, the introduction of a linearly-decreasing 

inertia weight has a disadvantage; that is, once the inertia weight is faded, the swarm‘s 
exploration ability is almost lost and cannot be recovered [91]. This means no further 

exploration is possible and the particles can only perform local search around their 

convergence point, which most likely exists close to the swarm‘s global best position. 

The instant information-sharing of the swarm‘s global best position can be attributed to 

this disadvantage, because each particle always knows and instantly shares the global 

best position at each iteration [17].  If this information, however, is not instantly shared, 

but rather slowly propagated throughout several local neighbourhoods before affecting 

the entire swarm, the particles‘ exploration ability will generally be retained longer to 

explore more areas in the search space, which solves that disadvantage and decreases the 

                                                           
2 Simulated Annealing (SA), inspired by the annealing in solids [96], simulates the process of material 
cooling in a heat bath, which is known as the process of physical annealing. SA is a stochastic search 
technique with good abilities to escape local optima by taking a random walk through the search space at 
successively lower temperatures, following a Boltzmann distribution. 
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chance of premature convergence [97]. The main idea of using the concept of local 

neighbourhood is as follows: the information of the swarm‘s best particle position is 
initially shared only to its neighbours and successively to the rest of the entire swarm‘s 
particles through their neighbours, allowing the wisdom to gradually emerge instead of 

trying to impose it. It is worth mentioning, however, that while the aforementioned 

disadvantage did not particularly appear for simple optimization problems with unimodal 

or convex fitness functions, it remarkably appeared for high-dimensional, multimodal, 

and complex optimization problems [17].  

Neighbourhoods are either based on randomly assigned indices to the particles, 

the actual distances of the particles in the search space, or a particular predefined 

topological neighbourhood structure [17][87][98]. The original global version of PSO can 

be considered a special case of the local version with its neighbourhood being defined as 

the entire swarm.  The neighbourhood of the global version of PSO can, therefore, be 

conceptualized as a fully connected network in which each particle has access to the 

information of all other particles in the swarm (Figure 5(a)), as opposed to just its 

immediate local neighbours in a predefined neighbourhood topology. The two most 

common local neighbourhood topologies are ring (or, circle) and star (or, wheel) 

topologies [91]. As for the ring topology, particles are arranged in a ring-like structure in 

which each particle is directly connected with its two immediate neighbours to its right 

and left (Figure 5(b)). Whereas, for the star topology, particles are not directly connected to 

one another; rather they are all connected to a selected one particle called the focal point 

to which all the swarm information is shared and communicated, as shown in Figure 5 (c). 

There are also many other regular predefined neighbourhood topologies, such as the 

pyramid topology and the von Neumann topology. As its name implies, the particles in 

the pyramid topology are arranged in a pyramid-like structure in which each particle is 

directly connected to its three immediate neighbours, as shown in Figure 5 (d).  Whereas, in 

the Von Neumann structure, particles are arranged in a grid-like structure or  a two-

dimensional lattice network where each particle is connected to at most four of its 

immediate neighbours (above, below, right and left), as shown in Figure 5(e).  

The choice of neighbourhood topology has a significant effect on the propagation 

of the best solution found by the swarm. For example, in the global version of PSO, the 

propagation of the best solution is very fast, since the global best solution is instantly 

shared among all the particles [97]. However, in the ring and Von Neumann topologies, 

on the other hand, the best solution is slowly propagated throughout several local 

neighbourhoods before reaching all particles in the swarm.  Kennedy et al. suggested that 

the global version of PSO converges fast but it may get trapped in local optimum or 

increase the chance of premature convergence, while the local version results in a larger 

diversity and increases the chances to find the global optimal solution, although with 

slower convergence rate [80]. Kennedy and Mendes tested and evaluated PSO 

performance with all aforementioned regular topologies, shown in Figure 5, as well as PSO 
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performance with randomly generated neighbours [87]. In their experiments, with a fixed 

swarm size of 20 particles, they observed that the best performance occurred in the case 

of randomly generated neighbours with an average size of five neighbouring particles. As 

for regular shaped topologies, the authors recommended Von Neumann topology over all 

other regular shaped topologies, since it consistently performed better, in their 

experiments, compared to all other topologies, including the global and the local (e.g., 

ring) version [87]. It is worth emphasizing, however, that selecting the most efficient 

neighbourhood topology largely depends on the type of problem. One topology may 

perform more effectively on specific types of problems; however, it could have a worse 

performance on other problems [91]. Kennedy believed that regular shaped topologies 

with fewer connections might perform better on highly multimodal problems, while 

highly interconnected topologies would be better and faster for unimodal problems [86]. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Common regular shaped neighbourhood topologies: (a) the fully connected network topology (PSO’s original 
global version), (b) the ring (circle) topology, (c) the star (wheel) topology, (d) the pyramid topology, and (e) the Von 

Neumann topology (the generally recommended neighbourhood topology). Adapted from [91]. 

In addition to the three previously-discussed core refinements to the original 

PSO [9], several different variations and extensions to the original PSO have been 

proposed in the literature, such as Constriction Coefficient/Canonical PSO [99][100], 

Dissipative PSO [101], Stretching PSO [102], Gaussian PSO [103], PSO with 

Mutation [104], Fully-informed PSO [105], Species-based PSO [106], Self-organizing 

Hierarchical PSO [107], Cooperative PSO [108] and Comprehensive Learning 

PSO [109], among many other variations. The details of PSO variations are beyond the 

scope of this paper, but interested readers may refer to these references [80][85][91] for 

more information.   
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2.2.2.3 PSO Discussion 
This section summarizes the strengths and limitations of PSO, as well as it highlights 

the similarities and dissimilarities between PSO, as one of the most competitive emerging 
computing techniques versus Genetic Algorithms (GA) as an example of evolutionary 
computing techniques. Lastly, it discusses the advantages of using PSO over GA.    

 PSO Strengths: 

 PSO uses memory to store the particle‘s historically best position and the 
swarm‘s global best position, which helps not only each particle to keep track 
of its own individual experience, but also helps the most superior particle to 
communicate its social experience to the other particles. This generally directs 
the convergence to the most promising areas on the search space and 
accelerates the optimization process towards the optimal solution [80].  

 PSO is not only characterized by its fast convergence behaviour, but also by 
its simplicity. The core mathematical equations of PSO (namely, velocity 

update, position update, and memory update) are easily calculated. Thus, the 
implementation of PSO procedure is simple and generally requires just a 
relatively few lines of code [9]. 

 PSO has an inherit potential to adapt to a changing environment, which can 
expand its ability from just locating optima in static environments to further 
track them in dynamic environments [111].  

 PSO Limitations: 

 The typical PSO problems are those whose solutions can be represented as a 
set of points in an n-dimensional Cartesian coordinate system, as it would be 
easy, in such problems, to determine the previous and next positions for each 
point (i.e., particle). On the other hand, PSO fails to work if the problem 
representation does not offer a clear way to uniquely define what the next and 
previous particle positions are to help search in the solution space [112].  

 The original PSO assumes all particles of the entire swarm are completely 
homogenous, and therefore employs the same value settings of inertia weight, 
cognitive and social parameters (c1 and c2) for the entire swarm. This 
assumption, however, ignores the internal differences among birds of the same 
swarm in real life, such as ages, catching skills, flying experiences, and 
muscles' stretching. It also neglects the relative flying position within the 
swarm, although it provides an important influence on particles. For example, 
particles flying in the outer side of the swarm often make more choices than 
those in the swarm center, and thus should receive more attention [123].  

 The original PSO fails to locate multiple optima, since the idea of the original 
PSO was to adjust the swarm direction closer to the swarm‘s global best 
particle to guide the entire swarm to converge to a single optimum. However, 
many variations of the original PSO have been proposed in the literature to 
overcome such a limitation. For example, Li proposed a species-based PSO 
(SPSO), which divides the swarm into multiple species (groups of particles 
sharing similar characteristics) and enables them to concurrently search for 
multiple optima [106]. 
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Although PSO and GA are based on totally different philosophical metaphors 
(namely, the evolution metaphor for GA, and the bird flocking metaphor for PSO), both 
PSO and GA share some common features, besides many other different characteristics. 
The comparison between PSO and GA has generally been popular in the literature [114]-
[118], as it highlights what the novelty of the PSO metaphor is and what‘s new PSO can 
offer compared to the other metaphorical models. The comparison also demonstrates the 
fact that the general SI metaphor is not merely giving new names to existing operations, 
but there are fundamental differences in the core optimization processes/functions 
between it and other metaphorical models. 

Before going to the comparison details, let us first briefly overview the basics of 
Genetic Algorithms (GA). In the mid-1970s, John Holland was the first to rigorously 
present the main concepts of GA [119], drawing inspiration from the evolution metaphor 
of the Darwinian Theory, and following basic genetics principles. GA employ three 
operators to propagate its population from one generation to another: Selection, 
Crossover and Mutation. (i) The selection operator mimics the natural selection‘s 
principal (Survival of the Fittest), in which the most fitted population individuals are 
selected for future generations over weaker, less-fit individuals. (ii) The crossover 
operator mimics the reproduction behaviour observed in biological populations. It 
propagates the good characteristics/chromosomes of the current generation to future ones 
by allowing fit individuals to produce more offspring than less-fit individuals, which help 
improve the average fitness of new generations as the algorithm progresses. (iii) The 
mutation operator promotes the exploration ability of the algorithm by introducing useful 
diversity in population characteristics, which acts as necessary randomness to reduce the 
probability of getting tapped into local optima. The details of GA are beyond the scope of 
this paper, but interested readers may refer to these references [120]-[122] for more 
information.  

 PSO Similarities to GA 

 Initialization Mechanism: Both PSO and GA are stochastic population-based 
algorithms that start with a number of randomly generated 
individuals/particles.  

 Fitness Function: Both PSO and GA use a specific fitness function (that is 
desired to be optimized) to evaluate the population members (i.e., either 
individuals‘ genetic encodings in GA or particles‘ positions in PSO), and 
accordingly assign fitness values to them.  

 Nature-inspired Properties: Both PSO and GA update their population 
according to a number of nature-inspired properties.  For instance, the velocity 
update equation in PSO and the arithmetic crossover operator in GA are both 
nature-inspired properties that can actually be considered quite analogous to 
each other [113].  

 Parameter Tuning: Both GA and PSO have several numerical parameters that 
remarkably affect the convergence process, and therefore need to be carefully 
selected.  For example, population size, crossover and mutation rates are 
required to be carefully selected in GA. Also, swarm size, inertia weight, 
cognitive and social parameters (c1 and c2) need to be cleverly decided upon in 
PSO [114]. 
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 PSO Dissimilarities to GA  

 Different Conceptual Bases: The conceptual bases of PSO and GAs are 
intrinsically different: GAs are based on the intelligence of natural selection, 
whereas PSO algorithms are based on the intelligent social behaviour of 
swarms in nature. 

 Cooperation vs. Competition: PSO algorithms choose the path of 
―cooperation‖, i.e., convergence is driven through learning from cooperative 
peers/particles, while GAs choose the path of ―competition‖, i.e., the 
convergence is driven through learning from competitive individuals 
(following the survival of the fittest principle) [123]. 

 Selection Mechanism: The objective of the selection mechanism in GA is to 
apply natural selection‘s principle (survival of the fittest), in such a way that 
the best individuals with the highest performance on the optimization problem 
are selected and individuals with poor performance are discarded.  On the 
other hand, PSO does not explicitly include a selection mechanism for its 
convergence strategy; rather it relies on each particle‘s memory of its 
historically best position and the swarm‘s global/local best position. It is 
worth noting that the particle‘s best position (the individual experience) in 
PSO largely resembles the parent‘s role in GA with the distinction that no new 
individuals in PSO are created, but instead are updated relative to their own 
individual experience, or for analogy purposes, their own parents [115]. 

 Population Adapting vs. Population Replacement: In PSO, instead of 
explicitly using genetic operators like crossover and mutation, each particle 
adjusts its velocity (and therefore position) according to its own flying 
experience, as well as the flying experience of its peers, so the changes are 
driven through learning from peers and not through genetic recombination and 
mutations [94]. In other words, PSO iteratively uses a velocity update 
equation through a process of ―adapting‖ the current population (so, the 
convergence is performed by attracting the particles to positions with good 
solutions), while GAs use crossover and mutation operators through a process 
of ―replacing‖ the previous population with a new one (resembling the death 
and birth of successive generations in nature). In contrast, PSO population is 
more stable, as its particles are not destroyed or created, but rather they are 
just influenced by the best performance of themselves and their peers [123]. 

 Conscious Mutation vs. Random Mutation: The position update equation in 
PSO, which adds the velocity to the current position to generate the new/next 
position, is quite analogous to the arithmetic mutation operation in GA. 
However, the "mutation" process in PSO is not randomly performed (as in 
GA); rather it is guided by particle‘s own flying experience and the flying 
experience of its peers. In other words, the position update equation of PSO 
performs some sort of conscious mutation, as opposed to the random mutation 
performed in GA (using a predefined mutation operator and rate) [94]. 

 Memory Capabilities: Since the original PSO has a built-in memory 
capability, each particle in PSO benefits from its previous experience. In 
contrast, individuals in GA do not benefit from their history because the 
standard GA has no memory [91], plus the population in each iteration of GAs 
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replace itself, anyway, in a number of generations that are successively 
destroyed and created.  

 Information Sharing Mechanism: In GAs, chromosomes mutually share their 
genetic information with each other through a genetic recombination process 
known as crossover. In PSO, however, only the global/local best particle 
communicates its position information to other particles in a one-way 
information sharing mechanism [123].    

 Problems Types: The standard GA is an inherently discrete algorithm, i.e., it 
encodes its design variables into bits of 0‘s and 1‘s, making it generally 
suitable for discrete/binary problems [116]. In contrast, the original PSO is an 
inherently continuous algorithm, but it was later modified to handle 
discrete/binary problems. It has been observed that the binary PSO is 
generally faster, more robust and performs better than GAs, particularly on 
high dimensional problems [117][118].    

 

 PSO Advantages over GA 

 The key advantage of PSO over GA is that it is algorithmically simpler, yet 
more robust and generally converges faster than GA [97][116]. In fact, the 
simplicity of PSO allowed scientists from different backgrounds, not 
necessarily related to computer science or programming skills, to use PSO as 
an efficient optimization tool to a wide-range of application domains.    

 PSO is more able to control convergence than GA. Although manipulating 
rates of crossover and mutation can have an effect on controlling GA‘s 
convergence, such controlling effect is not as significant compared to the level 
of control that can be achieved in PSO through manipulating its inertia 
weight [114]. For example. It has been shown that the decrease of inertia 
weight dramatically increases the swarm‘s convergence [124].  

 Because of the various studies available in the literature to address the 
parameter selection issue in PSO, the PSO parameters are now more easily 
selected and more robustly tuned/controlled than GA parameters [94][125]. 

 PSO has an impressive ability to perform well without having a large swarm 
size. In fact, it has been observed that PSO with smaller swarm sizes perform 
comparably to GAs with larger populations [97]. It has also been observed 
that the PSO performance is not too sensitive to the population size, as long as 
the population size is not too small. This observation with first suggested by 
Shi and Eberhart [94], and then verified by Løvberg and Krink [126][127]. 

Hybrid approaches combining PSO and GA were attempted by Veeramachaneni et al. 
in 2003 [128]. The main idea of their work is to take the population of one algorithm 
(when there has been no fitness improvement) and use it as the starting population for the 
other one, instead of just employing the traditional random initialization mechanism [97]. 
Two versions were proposed in this study: GA-PSO and PSO-GA. In GA-PSO, the GA 
population is used to initialize the PSO population, while in PSO-GA, the PSO 
population is used to initialize the GA population. The study results showed that:         
GA & GA-PSO << PSO < PSO-GA, i.e., PSO-GA was the best-performing version, and 
it even had a slightly better performance than PSO. Furthermore, both PSO and PSO-GA 
performed remarkably better than both GA and GA-PSO [97][128]. 
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3.  SI Applications  

The purpose of this section is to present some real-life problems and applications in 

which the use of swarm-based optimization algorithms has been successfully made in the 

literature, but not providing readers with an extensive survey on swarm intelligence 

applications. More details on SI applications can, however, be found 

here [1][2][14][16][17][29][80][85][91]. The impressive performance of SI algorithms in 

discrete and continuous optimization problems has increased the attention of many 

researchers with different backgrounds to apply SI algorithms into their own research 

areas.   As a result, there has been an almost exponential increase in the number of 

research papers reporting the successful application of SI-based algorithms in a wide 

range of domains, including combinatorial optimization problems, function optimization, 

finding optimal routes, scheduling, structural optimization, image analysis, data mining, 

machine learning, bioinformatics, medical informatics, dynamical systems, industrial 

problems, operations research, and even finance and business.  

The potential of SI is yet far from being exhausted with many interesting applications 

still to be explored, especially in bioinformatics. In the past few years, there has been a 

slow, yet steady increase in the number of research papers that have successfully applied 

SI algorithms in bioinformatics. This is because several tasks in bioinformatics involve 

optimization of different criteria (such as, energy, alignment score, overlap strength, etc.), 

and the various applications of SI algorithms proved them to be efficient, robust and 

computationally inexpensive optimization techniques, which made their applications in 

bioinformatics more obvious and appropriate [16].  

It is worth noting, however, that SI-based algorithms do not fully show their 

competitive edge over other optimization techniques on static problems whose 

characteristics and conditions do not change over time. Nevertheless, they are often more 

competitive to deterministic approaches3 in dealing with uncertainty, as well as general-

purpose heuristics (e.g., hill climbing and simulated annealing approaches) in dealing 

with stochastic time-varying problem domains, due to their inherit adaptive 

capabilities [27].     

3.1 ACO Applications 

The scientific community has raised remarkable interest in ACO algorithms due 

to their amazing capabilities. According to a recent (2010) book chapter surveying ACO 

applications [48], there are hundreds of implementations of the ACO metaheuristic 

successfully applied to numerous optimization problems in various domains, including 

famous NP-hard combinatorial optimization problems. While ACO was initially 

                                                           
3
 Deterministic approaches are those with no parameter tuning or randomness involved, 

such as the least square optimization. 
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introduced with an application to the TSP as a proof-of-concept/classical application, 

ACO algorithms have later been successfully applied to a wide-range of optimization 

problems. This ranges from fundamental combinatorial problems, such as sequential 

ordering problems, assignment problems, scheduling problems,  the maximum clique 

problem, graph coloring, assembly line balancing and vehicle routing problems, to more 

recent continuous, multi-objective or dynamic problems in machine learning, data 

mining, telecommunication networks and bioinformatics [141]. 

3.1.1 ACO Relevance to Bioinformatics  

Despite a number of differences [138], most of the ordering problems in 
bioinformatics, (e.g., sequence alignment, fragment assembly problem, and gene 
mapping) are quite similar to the TSP, one of the most classical and famous ordering 
problem [16]. As previously discussed how TSP can be efficiently solved by the ant 
systems (Section 2.1.2.2), ACO can be (and has actually been) efficiently applied to 
many of such ordering problems in bioinformatics [141]. Thus, bioinformatics and 
biomedical fields, in particular, have shown a steady growing interest in ACO [16]. 
Examples of ACO applications in bioinformatics and biomedical problems include: DNA 
sequencing by hybridization [36], the 2D and 3D hydrophobic polar protein folding [37], 
protein–ligand docking [38], constructing phylogenetic trees [139], multiple sequence 
alignment [142], DNA fragment assembling [143], and the prediction of major 
histocompatibility complex (MHC) class II binders [144]. 
 

3.2 PSO Applications 

The first practical application of PSO was in the field of neural networks, in 1995, 
when PSO was able to train and adjust the weights of a feed-forward multilayer 
perceptron neural network as effectively as the conventional error back-propagation 
approach [9]. Since then, a nearly-exponential growing number of PSO applications have 
been explored in several domains due to their simplicity, efficiency and fast-convergence 
nature. A comprehensive technical report in [145] has made an extensive review of over 

1,100 PSO publications. Among those over one thousand PSO publications, the review 
report considered around 350 papers as proposals for improvements and extensions to the 
original ―1995-version‖ of PSO. Such large proposed number of PSO variations and 
extensions has made PSO capable of solving several optimization problems ranging from 
unconstrained, single-objective or static problems to constrained, multi-objective or 
dynamic problems. The report further considered the remaining ~700 papers as PSO 
applications, although many of them also introduced different customizations and 
extensions to PSO method to fit their particular application. Of those ~700 papers, PSO 
applications have been classified into 26 different categories. The massive number and 
scope of successful PSO applications fall under a broad domain of research areas, ranging 
from combinatorial optimization problems to computational intelligence applications,  
from electrical and electromagnetic applications to signal processing and graphics, from 
image analysis and robotics to bioinformatics and medical applications.     
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Among the 26 proposed categories of PSO applications, the ―Image and Video 

Analysis‖ application category was the biggest one with about 9% of the total surveyed 

PSO applications at the time of the report.  Examples of image analysis applications 

include: IRIS recognition [146], fruit quality grading [147], face detection and 

recognition [148], image segmentation [149], synthetic aperture radar imaging [150], 

locating treatment planning landmarks in orthodontic x-ray images [151], image 

classification [152], inversion of ocean colour reflectance measurements [153], traffic 

stop-sign detection [154], defect detection [155], image retrieval [156], human detection 

in infrared imagery [157], image registration [63], pixel classification [158], detection of 

objects [159], pedestrian detection and tracking [160], texture synthesis [161], microwave 

imaging [162], scene matching [163], photo time-stamp recognition [164], contrast 

enhancement [165], 3D recovery with structured beam matrix [166], auto cropping for 

digital photographs [167], character recognition [168], shape matching [169], image 

noise cancellation [170]. Examples of video analysis applications include: MPEG 

optimization [171], motion estimation [172], object tracking [173], body posture 

tracking [174], and traffic incident detection [175].         

3.2.1 PSO Relevance to Bioinformatics  

The key challenge of bioinformatics problems lies in the huge amount of their 

data, and thereby their computational complexity. As a result, many bioinformatics 

problems do not always need the exact optimal solution; an approximation to the solution 

is often used instead. Bioinformatics problems, therefore, require optimal or even near-

optimal solutions that are computationally inexpensive, and can be produced in a fast and 

robust means, which PSO algorithms are actually distinguished by.  That is why PSO 

algorithms have been efficiently applied in many bioinformatics problems. Furthermore, 

the laboratory operations on DNA, for instance, inherently involve errors and uncertainty, 

which are more tolerable in PSO algorithms compared to deterministic algorithms. 

Actually, these errors may be considered beneficial in PSO to some extent, as they may 

introduce useful randomness and contribute to population diversity – a desirable property 

for PSO convergence [17].   

The review report in [145] has surveyed more than 25 different applications in 

bioinformatics, biomedical and pharmaceutical problems. Applications include: human 

tremor analysis for the diagnosis of Parkinson‘s disease [62], inference of gene regulatory 

networks [176], human movement biomechanics optimization [177], phylogenetic tree 

reconstruction [178], cancer classification [179], cancer survival prediction [180], DNA 

motif detection [181], gene clustering [182], identification of transcription factor binding 

sites in DNA [183], biomarker selection [184], protein structure prediction [185], 

protein–ligand docking [186], drug design [187], radiotherapy planning [188], analysis of 

brain MEG data [189], RNA secondary structure determination [190], EEG 

analysis [191], and biometrics [192]. 
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4.  Summary and Concluding Remarks 

Because of its many advantages, SI is now being considered as one of the most 
promising AI techniques with steady growing scientific attention. This can be supported 
by the increasing produced number of successful SI research output, as well as the 
rapidly expanded conferences and journals dedicated for Swarm Intelligence [110].  

4.1 SI General Advantages 

 Scalability: SI systems are highly scalable; their impressive abilities are generally 
maintained when using groups ranging from just sufficiently few individuals up to 
millions of individuals. In other words, the control mechanisms used in SI 
systems are not too dependent on swarm size, as long as it is not too small [3].   

 Adaptability: SI Systems respond well to rapidly changing environments, making 
use of their inherit auto-configuration and self-organization capabilities. This 
allows them to autonomously adapt their individuals‘ behaviour to the external 
environment dynamically on the run-time, with substantial flexibility [3].   

 Collective Robustness: SI Systems are robust as they collectively work without 
central control, and there is no single individual crucial for the swarm to continue 
to function (due to the redundancy of their individuals). In other words, the fault-
tolerance capability of SI systems is remarkably high, since these systems have no 
single point of failure. A single point of failure is a part of any system that puts 
the entire system into risk of a complete failure, if it ceased to function [129]. 

 Individual Simplicity: SI systems consist of a number of simple individuals with 
fairly limited capabilities on their own, yet the simple behavioural rules at the 
individual level are practically sufficient to cooperatively emerge a sophisticated 
group behaviour [129].  

4.2 SI General Limitations 

The potential of swarm intelligence is indeed fast-growing and far-reaching. It 
offers an alternative, untraditional way of designing complex systems that neither require 
centralized control nor extensive pre-programming. That being said, SI systems still have 
some limitations, such as: 

 Time-Critical Applications: Because the pathways to solutions in SI systems are 
neither predefined nor pre-programmed, but rather emergent, SI systems are not 
suitable for time-critical applications that require (i) on-line control of systems, 
(ii) time critical decisions, and (iii) satisfactory solutions within very restrictive 
time frames, such as the elevator controller and the nuclear reactor temperature 
controller. It remains to be useful, however, for non-time critical applications that 
involve numerous repetitions of the same activity [3]. 

 Parameter Tuning: Tuning the parameters of SI-inspired optimization techniques 
is one of the general drawbacks of swarm intelligence, like in most stochastic 
optimization methods, and unlike deterministic optimization methods. In fact, 
however, since many parameters of SI systems are problem-dependent, they are 
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often either empirically pre-selected according to the problem characteristics in a 
trial-and-error manner [130], or even better adaptively adjusted on run time (as in 
the adaptive ACO [131] and the fuzzy adaptive PSO [132]). 

 Stagnation: Because of the lack of central coordination, SI systems could suffer 
from a stagnation situation or a premature convergence to a local optimum (e.g., 
in ACO, stagnation occurs when all the ants eventually follow the same 
suboptimal path and construct the same tour [29]). This limitation, however, can 

be controlled by carefully setting algorithm parameters, e.g., the parameter   in 

ACO (Section 2.1.2), or the parameter ω of PSO (Section 2.2.2.2 (ii)). Different 
variations of ACO and PSO algorithms could further reduce the probability of that 
limitation (e.g., by explicitly or implicitly limiting the amount of pheromone 
trials, as proposed in Max-Min AS [51] or Ant Colony Systems [53], as well as by 

varying inertia weight, ω, exponentially (rather than linearly), as lately proposed 
in a recent PSO variation called Exponential PSO [133]).      

4.3 Comparison between the two discussed SI Models: ACO vs. PSO 

The objective of this paper was to present the main principles and concepts of 

Swarm Intelligence, with a particular focus on two of the most popular SI models, 

namely, ACO (Section 2.1.2) and PSO (Section 2.2.2). Despite both models are 

principally similar in their inspirational origin (the intelligence of swarms), and are based 

on nature-inspired properties, they are fundamentally different in the following aspects. 

Criteria ACO PSO 

Communication 
Mechanism 

ACO uses an indirect communication 
mechanism among ants, called 
stigmergy, which means interaction 
through the environment. 

The communication among 
particles in PSO is rather direct 
without altering the environment. 

Problem Types 

ACO was originally used to solve 
combinatorial (discrete) optimization 
problems, but it was later modified to 
adapt continuous problems. 

PSO was originally used to solve 
continuous problems, but it was 
later modified to adapt binary/ 
discrete optimization problems. 

Problem 
Representation 

ACO’s solution space is typically 

represented as a weighted graph, called 
construction graph. 

PSO’s solution space is typically 

represented as a set of    
n-dimensional points. 

Algorithm 
Applicability 

ACO is commonly more applicable to 
problems where source and destination 
are predefined and specific. 

PSO is commonly more applicable 
to problems where previous and 
next particle positions at each point 
are clear and uniquely defined. 

Algorithm 
Objective 

ACO’s objective is generally searching 

for an optimal path in the construction 
graph. 

PSO’s objective is generally finding 

the location of an optimal point in a 
Cartesian coordinate system. 

Examples of 
Algorithm 

Applications 

Sequential ordering [32], 
scheduling [33], assembly line 
balancing [34], probabilistic TSP [35], 
DNA sequencing [36], 2D-HP protein 
folding [37], and protein–ligand 
docking [38]. 

Track dynamic systems [60], 
evolve NN weights [61], analyze 
human tremor [62], register 3D-to-
3D biomedical image [63], control 
reactive power and voltage [64], 
and even play games  [65]. 

Table 2: Comparison between ACO and PSO 
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4.4 Other SI Models 

While ACO and PSO are two of the most common examples of optimization 
techniques inspired by swarm intelligence, there are several other optimization 
techniques based on SI principles have been proposed in the literature, including 
Artificial Bee Colony [11], Bacterial Foraging [19], Cat Swarm Optimization [20], 
Artificial Immune System  [21] and Glowworm Swarm Optimization [22], among many 
others. All these SI models intrinsically share the principal inspirational origin of the 
intelligence of different swarms in nature, such as swarms of E. coli bacteria as in 
Bacterial Foraging, swarms of cells and molecules as in Artificial Immune System, and 
the amazing swarms of honey bees as in the Artificial Bee Colony System.  

What is amazing about honey bee colonies is that they are very efficient in 
exploiting the best food sources (in terms of distance and quality) based on a group of 
forager bees.  When a forager bee (recruiter) decides to attract more bee mates to a newly 
discovered good food source, it returns to the hive and starts performing what is known 
as the ―waggle dance‖ to communicate spatial and profitability information about the 
discovered food source, and recruit more honey bees (dancer followers) to exploit it. The 
language of waggle dance and its orientation patterns were first deciphered by von Frisch 
in 1967 [137]. The waggle dance consists of a series of waggle phases. A waggle phase 
starts when the recruiter bee vigorously shakes its body from side to side [134]. The time 
interval between each waggle phase is called a return phase, in which the recruiter bee 
makes an abrupt turn to the left or right before starting another waggle phase. The waggle 
dance encodes both (a) spatial and (b) profitability information of the target food source 
to dance followers [140].  

(a) As for spatial information, the waggle dance encodes two important pieces of 
information: (i) the direction and (ii) the distance to the target. (i) Direction information 
is encoded in the waggle dance orientation [140]. During the waggle dance, the recruiter 
bees amazingly align their body with an angle representing the direction of food location 
relative to current sun direction. This means food sources located directly in line with the 
current sun direction are represented by a series of waggle phases oriented to the 
upward/vertical direction. If food sources, however, are located with an angle to the right 
or left of the sun, their direction is encoded in the waggle dance orientation by a 
corresponding angle to the right or left of the upward direction. What is more astounding 
is that recruiter bees have an internal clock that helps them adjust the angles of their 
dances relative to the sun directional changes throughout the day, even after they have 
been in their almost dark hive for extended time [137]. (ii) On the other hand, distance 
information is encoded in the waggle phase duration, i.e., dances for close targets have 
short waggle phases, while dances for remote targets have long waggle phases. Dance 
followers need both direction and distance information to reach the target food source, 
which could be several kilometers away from the hive, as they fly in a three-dimensional 
space, unlike most ants that just normally walk on the ground searching for nearby food 
sources.   

(b) As for profitability information, it is encoded in the overall waggle dance 

duration and the return phase duration (or the time interval between waggle phases). The 
larger the number of waggle phases (or the longer the overall duration of waggle dance), 
and the shorter time interval between waggle phases, the more profitable the target food 
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source [140]. Even more astoundingly, the nervous system of even beginner recruiter 
bees has been internally calibrated to assess the profitability of food sources based on 
different factors: (i) the sugar content of their nectar, (ii) their distance from the colony, 
and (iii) the ease with which nectar (or pollen) can be collected. After recruiter bees 
assess these factors, they decide on two things: firstly, if the food source worth foraging 
for (by themselves), and secondly if it worth recruiting more honey bees [135]. 

The foraging behaviour of a honey bee colony can be summarized as follows: 
When a forager bee finds a food source, it first returns to the hive and relinquishes its 
nectar to worker bees to store it in the hive. At that point, the forager bee has three 
options/decisions to take: (i) it can become a recruiter bee and performs a waggle dance 
to recruit more bees (the dance followers) to join it in foraging for the food source, if it is 
worthwhile, (ii) it can remain as a forager bee by just going back to the food source and 
continue foraging there by itself, if it is not really worth advertising for, or (iii) it can 
become an uncommitted follower by abandoning the food source when it is completely 
exhausted – in this case, the uncommitted-follower bee starts to watch for any waggle 
dances being performed by other recruiter bees and potentially become a dance-follower 
bee [136]. The details of natural honey bee colonies and the Artificial Bee Colony 
optimization algorithm, as well as other SI-inspired optimization techniques are beyond 
the scope of this paper, but interested readers may refer to these references [11][12][19]-
 [22] for more information. 

4.5 Concluding Remarks and Open Questions 

In this paper, the main concepts and principles of Swarm Intelligence are presented, 
with a particular focus on two of the most successful and popular SI-inspired 
optimization techniques: Ant Colony Optimization and Particle Swarm Optimization. The 
aim here, in this last section, is suggesting the concluding remarks on the topic, as well as 
presenting the current open research questions of the field. It was both challenging and 
interesting to study and research on this topic.  On one hand, it was completely new to 
me, as well as relatively recent and interdisciplinary.  On the other hand, it was very 
interesting to learn how astoundingly-intelligent the social collective behaviour of 
swarms in nature, and see how amazing is it to uncover some of nature‘s secrets, as well 
as realize how knowledge from different disciplines (such as, animal behaviour, physics, 
social psychology and social sciences) can actually work in harmony together, and 
practically be used in computer science and beyond.     

 Concluding Remarks: 

 Nature is a rich inspirational source and there is still much to learn from. 
 We can take advantage of the social collective behaviour of swarms to solve our 

real-life problems, by observing how these swarms have survived and solved their 
own challenges in nature.  

 Several simple agents interacting locally among themselves can eventually 
emerge a sophisticated global behaviour.   

 Different SI-based computational models are fast-growing, as they are generally 
computationally inexpensive, robust, and simple. 

 SI-based optimization techniques are far-reaching in many domains, and have a 
wide-range of successful applications on different areas. 
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 Swarm intelligence is an active field in Artificial Intelligence and Emerging 
Computing, and its potential is still far from being exhausted, with many studies 
are exponentially growing and going on. 

 

 Open Questions: 

 Should the individual agents of artificial swarms remain simple? If not, how 
complex should they be?  

 Should the individual agents remain identical or homogenous? If not, how 
different should they be?  

 Should the individual agents have the ability to learn on their own?  
 How local should their knowledge of the environment be?  
 How to efficiently tune the parameters of SI systems. Despite different studies in 

the literature had tried to solve this problem [99][131][132] (e.g., by adaptively 
changing the parameters of SI systems on run time), this is still a current open 
research question. 

 Should SI approaches remain bottom-up, and the pathways to their solutions 
remain emergent (i.e., not predefined)? If not, is it possible to clearly define the 
pathways linking between the lower-level individual interactions and the upper-
level emergent group behaviour? 
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