

Swarm Intelligence: Concepts, Models

and Applications
Technical Report 2012-585

Hazem Ahmed

Janice Glasgow

School of Computing

Queen's University

Kingston, Ontario, Canada K7L3N6
{hazem, janice}@cs.queensu.ca

February 2012

1

Report Index

1. Introduction .. 2

2. Swarm Intelligence (SI) Models ... 4

2.1 Ant Colony Optimization (ACO) Model .. 4

2.1.1 Ants in Nature .. 4

2.1.1.1 Ants Stigmergic behaviour .. 4

2.1.1.2 The Double Bridge Experiment ... 5

2.1.1.3 Real Ants vs. Artificial Ants.. 8

2.1.2 Ant Colony Optimization Metaheuristic ... 9

2.1.2.1 ACO Example: Traveling Salesman Problem and Ant System ..12

2.1.2.2 ACO Variations: Ant System and its Extensions ...14

2.1.2.3 ACO Discussion ...15

2.2 Particle Swarm Optimization (PSO) Model .. 16

2.2.1 Birds in Nature .. 16

2.2.1.1 Birds Flocking Behaviour ...16

2.2.1.2 Birds‘ Physical Movement vs. Humans‘ Psychological Change ..18

2.2.2 Particle Swarm Optimization Metaheuristic ... 18

2.2.2.1 The Original PSO Algorithm ..19

2.2.2.2 The Refinements and Extensions to the Original PSO ...22

2.2.2.3 PSO Discussion ..27

3. SI Applications .. 31

3.1 ACO Applications .. 31

3.1.1 ACO Relevance to Bioinformatics .. 32

3.2 PSO Applications .. 32

3.2.1 PSO Relevance to Bioinformatics ... 33

4. Summary and Concluding Remarks ... 34

4.1 SI General Advantages .. 34

4.2 SI General Limitations .. 34

4.3 Comparison between the two discussed SI Models: ACO vs. PSO 35

4.4 Other SI Models .. 36

4.5 Concluding Remarks and Open Questions .. 37

References .. 39

2

1. Introduction

A swarm is a large number of homogenous, simple agents interacting locally

among themselves, and their environment, with no central control to allow a global

interesting behaviour to emerge. Swarm-based algorithms have recently emerged as a

family of nature-inspired, population-based algorithms that are capable of producing low

cost, fast, and robust solutions to several complex problems [1][2]. Swarm Intelligence

(SI) can therefore be defined as a relatively new branch of Artificial Intelligence that is

used to model the collective behaviour of social swarms in nature, such as ant colonies,

honey bees, and bird flocks. Although these agents (insects or swarm individuals) are

relatively unsophisticated with limited capabilities on their own, they are interacting

together with certain behavioural patterns to cooperatively achieve tasks necessary for

their survival. The social interactions among swarm individuals can be either direct or

indirect [3]. Examples of direct interaction are through visual or audio contact, such as

the waggle dance of honey bees. Indirect interaction occurs when one individual changes

the environment and the other individuals respond to the new environment, such as the

pheromone trails of ants that they deposit on their way to search for food sources. This

indirect type of interaction is referred to as stigmergy, which essentially means

communication through the environment [4]. The area of research presented in this depth

paper focuses on Swarm Intelligence. More specifically, this paper discusses two of the

most popular models of swarm intelligence inspired by ants‘ stigmergic behaviour and

birds‘ flocking behaviour.

In the past decades, biologists and natural scientists have been studying the

behaviours of social insects because of the amazing efficiency of these natural swarm

systems. In the late-80s, computer scientists proposed the scientific insights of these

natural swarm systems to the field of Artificial Intelligence. In 1989, the expression

"Swarm Intelligence" was first introduced by G. Beni and J. Wang in the global

optimization framework as a set of algorithms for controlling robotic swarm [5]. In 1991,

Ant Colony Optimization (ACO) [6][7][8] was introduced by M. Dorigo and colleagues

as a novel nature-inspired metaheuristic for the solution of hard combinatorial

optimization (CO) problems. In 1995, particle swarm optimization was introduced by J.

Kennedy et al. [9][10], and was first intended for simulating the bird flocking social

behaviour. By the late-90s, these two most popular swarm intelligence algorithms started

to go beyond a pure scientific interest and to enter the realm of real-world applications. It

is perhaps worth mentioning here that a number of years later, exactly in 2005, Artificial

Bee Colony Algorithm was proposed by D. Karabago as a new member of the family of

swarm intelligence algorithms [11][12].

Since the computational modeling of swarms was proposed, there has been a

steady increase in the number of research papers reporting the successful application of

3

Swarm Intelligence algorithms in several optimization tasks and research problems.

Swarm Intelligence principles have been successfully applied in a variety of problem

domains including function optimization problems, finding optimal routes, scheduling,

structural optimization, and image and data analysis [13][14]. Computational modeling of

swarms has been further applied to a wide-range of diverse domains, including machine

learning [15], bioinformatics and medical informatics [16], dynamical systems and

operations research [17]; they have been even applied in finance and business [18].

The remainder of this paper is organized as follows: The next section presents an

overview of two natural swarm systems (ant colonies and bird flocks), and also discusses

and evaluates the two most popular swarm intelligence algorithms inspired by these

natural swarms, namely, artificial ant colony optimization and particle swarm

optimization. It further compares them with two of the most popular machine learning

algorithms: Artificial Neural Networks and Genetic Algorithms. Then, a summary of the

wide-range applications of swarm intelligence algorithms is presented in many different

problem domains. The last section summarizes the advantages and limitations of swarm

intelligence and provides some concluding remarks on the paper and open questions of

the field.

4

2. Swarm Intelligence (SI) Models

Swarm intelligence models are referred to as computational models inspired by

natural swarm systems. To date, several swarm intelligence models based on different

natural swarm systems have been proposed in the literature, and successfully applied in

many real-life applications. Examples of swarm intelligence models are: Ant Colony

Optimization [29], Particle Swarm Optimization [9], Artificial Bee Colony [11], Bacterial

Foraging [19], Cat Swarm Optimization [20], Artificial Immune System [21], and

Glowworm Swarm Optimization [22]. In this paper, we will primarily focus on two of the

most popular swarm intelligences models, namely, Ant Colony Optimization and Particle

Swarm Optimization.

2.1 Ant Colony Optimization (ACO) Model

The first example of a successful swarm intelligence model is Ant Colony

Optimization (ACO), which was introduced by M. Dorigo et al. [6][7][8], and has been

originally used to solve discrete optimization problems in the late 1980s. ACO draws

inspiration from the social behaviour of ant colonies. It is a natural observation that a

group of ‘almost blind’ ants can jointly figure out the shortest route between their food

and their nest without any visual information. The following section presents some

details about ants in nature, and shows how these relatively unsophisticated insects can

cooperatively interact together to perform complex tasks necessary for their survival.

2.1.1 Ants in Nature

 Since tens of millions of years ago, ants have survived different environments,

climates and ages that dinosaurs, for example, did not. The secret of the remarkable

ecological success of ants can be explained by a single word: sociality [23]. Ants have

demonstrated exceptional social organization in several ways: They are inclined to live in

organized societies made up of individuals that cooperate, communicate, and divide daily

tasks. Ants have impressive abilities in finding their way, building their nests, and

locating food supplies. They are not only efficient, but hard-working and thrifty creatures

that can adapt to different ecosystems and survive harsh weather conditions.

2.1.1.1 Ants Stigmergic behaviour

Ants, like many other social insects, communicate with each other using volatile

chemical substances known as pheromones, whose direction and intensity can be

perceived with their long, mobile antennae [24]. The term "pheromone" was first

introduced by P. Karlson and M. Lüscher in 1959, based on the Greek word pherein

(means to transport) and hormone (means to stimulate) [25]. There are different types of

pheromones used by social insects. One example of pheromone types is alarm pheromone

5

that crushed ants produce as an alert to nearby ants to fight or escape dangerous predators

and to protect their colony [26]. Another important type of pheromone is food trail

pheromone. Unlike flies, most ants live on the ground and make use of the soil surface to

leave pheromone trails, which can be followed by other ants on their way to search for

food sources. Ants that happened to pick the shortest route to food will be the fastest to

return to the nest, and will reinforce this shortest route by depositing food trail

pheromone on their way back to the nest. This route will gradually attract other ants to

follow, and as more ants follow the route, it becomes more attractive to other ants as

shown in Figure 1. This autocatalytic or positive feedback process is an example of a self-

organizing behaviour of ants in which the probability of an ant‘s choosing a route

increases as the count of ants that already passed by that route increases.

Figure 1: Ants‘ stigmergic behaviour in finding the shortest route between food and nest [49].

When the food source is exhausted, no new food pheromone trails are marked by

returning ants and the volatile pheromone scent slowly evaporates. This negative

feedback behaviour helps ants deal with changes in their environment. For instance, when

an already established path to a food source is blocked by an obstacle, the ants leave the

path to explore new routes. Such trail-laying, trail-following behaviour is called

stigmergy (interaction through the environment), and can be considered as an indirect

type of communication in which ants change the environment (soil surface) and the other

ants detect and respond to the new environment. Stigmergy provides a general

mechanism that relates individual (local) and colony-level (global) behaviours: individual

behaviour modifies the environment (trail-laying), which in turn modifies the behaviour

of other individuals (trail-following) [27].

2.1.1.2 The Double Bridge Experiment

 The pheromone trail-laying and trail-following behaviour of ants has been studied

in controlled experiments by several researchers. One simple, yet brilliant experiment is

referred to as the double bridge experiment, which was designed and run by Goss,

Deneubourg and colleagues in the late 1980s [28]. The experiment was simply made of a

double bridge connecting a nest of ants and a food source as shown in Figure 2(a).

Goss et al. considered different versions of the experimental setup over multiple

experiment runs. In one version, the longer branch of the double bridge was twice as long

as the short one and both branches are presented from the beginning of the experiment as

6

shown in Figure 2(a)(i). It was noted in this version that most ant traffic (80-100%) was

eventually concentrated on the short branch in more than 90% of the experiment runs as

shown in Figure 2(b)(i). Initially, ants left the nest to explore the environment; once they

arrived at a decision point, they have to choose one of the two branches. Because the two

unmarked branches initially looked identical to the ants (on individual-level behaviour),

they were chosen randomly. However, quite surprising at first, the ants (on colony-level

behaviour) appeared intelligent enough to eventually choose the shorter branch. This is

because the lucky ants that happened to choose the short branch are the first to reach the

food and to start their return to the nest. On their return way to the nest, these ants will be

biased to pick the short branch over again (now probabilistically and not randomly),

because of the higher level of pheromone they already left on the short branch. Returning

ants will deposit pheromones once more on the short branch, which causes a faster

accumulation of the pheromone trails on the short branch as opposed to the lower-level of

pheromone on the not-yet-completed long branch. This stimulates more ants to choose

the short branch until eventually it will be adopted by the majority of the ant colony. This

explains the positive feedback process of ants, which is based on this simple, self-

reinforcement rule: the more number of ants on a branch determines a greater amount of

 (i) (ii)

Figure 2: (a) In the first version of the experimental setup on Left (i), short and long branches are presented

from the beginning of the experiment. In the second version of the experimental setup on right (ii), the short

branch is presented to the colony 30 minutes after the long branch. (b) Distribution of the percentage of ants

that selected the shorter branch over n experiments (r is the length ratio between the two branches). In both

versions, the long branch was twice as long as the short branch. Adapted from Goss et al. [28].

7

pheromone, which influences even more ants to choose this branch [23]. Although the

short branch dominated most ant traffic in an impressive path-exploitation behaviour of

ants, it can be observed, however, from Figure 2(b)(i) that there is still a small percentage

of ant traffic that took the longer branch. This may be interpreted as a type of path-

exploration behaviour of ants [29].

In another version of the experimental setup, initially only the long branch was

presented to the colony, and then when a stable pheromone trail has formed on the

initially only available long branch, the short branch was offered after 30 minutes, as

shown in Figure 2(a)(ii). It is worth mentioning in this version that the longer branch was

kept twice as long as the later-offered short branch. This version is deigned to examine

what happens when the ant colony is offered, after convergence, a new better (i.e.,

shorter) path between the nest and the food. It was observed that the short branch was not

frequently selected (e.g., only 0-20% of ant traffic took the newly-offered short branch in

almost 50% of the experiment runs), and thus the colony largely remained trapped on the

initially only-offered long branch as shown in Figure 2(b)(ii). The fact that the great

majority of ants continued to choose the long branch can be explained by two reasons:

The high pheromone concentration on the long branch and the slow evaporation of

pheromone. Firstly, the high-level pheromone concentration of the already established

trail on the long branch (compared to the zero-level pheromone-trail concentration on the

short branch) led to an autocatalytic behaviour that continued to reinforce the long

branch, even after a shorter one is offered. Secondly, the very slow rate of pheromone

evaporation did not allow the ant colony to forget the suboptimal path to which they

initially converged, preventing the new and shorter path to be discovered and

learned [29]. In fact, the pheromone trails of most ant species were usually observed to be

persistent for a long time-scale, ranging from at least several hours up to several months

(depending on the ant species, the colony size, weather conditions, etc.) [27].

One of the lessons that can be learned from this experiment is that the pheromone

evaporation rate is a key parameter in the convergence process, because it controls the

trade-off between path-exploration of new (and hopefully better) paths and path-

exploitation of the already established path. Therefore, in the field of artificial ant colony

optimization, it is a common practice to set the pheromone evaporation to a sufficiently

short time-scale [28]. This allows artificial ant colonies to favour the forgetting of errors

(or bad choices) done in the past to allow a continuous improvement of the learned

problem [29]. It also helps artificial ant colonies to avoid being trapped on a suboptimal

solution and to reduce the risk of possibly stucking in local optima – one of the major

concerns of optimization problems. In fact, the pheromone evaporation rate is an

interesting example where there is a clear difference between real and artificial ants. The

next section discusses the other differences between real and artificial ants, and illustrates

the general framework used to move from a natural phenomenon to an artificial system.

8

2.1.1.3 Real Ants vs. Artificial Ants

Understanding a natural phenomenon and designing a nature-inspired algorithm

are two related, yet different tasks. Understanding a natural phenomenon is constrained

by observations and experiments, while designing a nature-inspired algorithm is only

limited by one's imagination and available technology. Although the underlying

principles of ant colony optimization metaheuristic are inspired by the social behaviour of

ant colonies, some characteristics of artificial ants do not have to be identically the same

as real ants. Table 1 summarizes the main differences between artificial ants and real ants.

The artificial ant colony optimization metaheuristic just models the natural ant behaviour.

Modeling serves as an interface between understanding nature and designing artificial

systems. In other words, one starts from the observed natural phenomenon, tries to make

a nature-inspired model of it, and then design an artificial system after exploring the

model without constraints [27]. Figure 3 illustrates the framework that is generally used to

move from a natural phenomenon to a nature-inspired algorithm. It is worth emphasizing

that ―memory‖ is the key difference between real and artificial ants; real ants have no

memory, while artificial ants are offered a limited form of memory. The use of memory

helps artificial ants to implement a number of useful behaviours that allow them to

efficiently build solutions for more complex optimization problems than the simple

double bridge experiment. One of such useful behaviours is that artificial ants

evaluate the quality of the solutions generated, and use the solution quality in determining

Criteria Real Ants Artificial Ants

Pheromone
Depositing
Behaviour

Pheromone is deposited both
ways while ants are moving (i.e.
on their forward and return ways).

Pheromone is often deposited only on the
return way after a candidate solution is
constructed and evaluated.

Pheromone
Updating
Amount

The pheromone trail on a path is
updated, in some ant species,
with a pheromone amount that
depends on the quantity and
quality of the food [31].

Once an ant has constructed a path, the
pheromone trail of that path is updated on
its return way with an amount that is
inversely proportional to the path length
stored in its memory.

Memory
Capabilities

Real ants have no memory
capabilities.

Artificial ants store the paths they walked
onto in their memory to be used in
retracing the return path. They also use its
length in determining the quantity of
pheromone to deposit on their return way.

Return Path
Mechanism

Real ants use the pheromone
deposited on their forward path to
retrace their return way when
they head back to their nest

Since no pheromone is deposited on the
forward path, artificial ants use the stored
paths from their memory to retrace their
return way.

Pheromone
Evaporation
Behaviour

Pheromone evaporates too slowly
making it less significant for the
convergence.

Pheromone evaporates exponentially
making it more significant for the
convergence.

Ecological
Constraints

Exist, such as predation or
competition with other colonies
and the colony's level of
protection.

Ecological constraints do not exist in the
artificial/virtual world.

Table 1: Differences between Real Ants and Artificial Ants

9

the quantity of pheromone to deposit. That is why pheromone is deposited only on the

return way after a full path (or, a candidate solution) is constructed and evaluated in terms

of the path length (or, generally, the solution cost).

Figure 3: An illustration to the general framework used to move from a natural phenomenon to a nature-

inspired algorithm. First, nature inspires humans to develop an observation of a particular natural

phenomenon. Next, they create a model and test it using mathematical simulations, which help to refine

the original model. Then, the refined model will be used to extract a metaheuristic that can be used as a

basis to finally design and tune a nature-inspired algorithm.

2.1.2 Ant Colony Optimization Metaheuristic

ACO is based on pheromone laying/pheromone following behaviour of real ants

that helps find the shortest route between their nest and a food source. ACO has been

used to solve many optimization problems such as sequential ordering [32],

scheduling [33], assembly line balancing [34], probabilistic Traveling Salesman Problem

(TSP) [35], DNA sequencing [36], 2D-HP protein folding [37], and protein–ligand

docking [38]. The main idea is to model the problem to be solved as a search for an

optimal path in a weighted graph, called construction graph, and to use artificial ants to

search for quality paths. A construction graph is a graph on which artificial ants

iteratively deposit pheromone trails to help choose the graph nodes of quality paths that

correspond to solution components. The behaviour of artificial ants simulates the

behaviour of real ones in several ways: (i) artificial ants deposit pheromone trails on the

nodes of quality paths to reinforce the most promising solution components of the

construction graph, (ii) artificial ants construct solutions by moving through the

10

construction graph and choose their path with respect to probabilities, which depend on

the pheromone trails previously deposited, and (iii) artificial pheromone trails decrease

sufficiently quickly at each iteration simulating the slowly-evaporative pheromone trail

phenomena observed in real ants [39]. A key point in the development of any ACO

algorithm is to decide the fitness function based on which the components of a problem‘s

construction graph will be rewarded with a high-level pheromone trail, and to determine

how ants will exploit these promising components when constructing new solutions. The

fitness function of ACO is often implicitly formulated as cost minimization of solution

components, i.e., the goal of artificial ants is to walk on the construction graph and select

the nodes that minimize the overall cost of the solution path.

Algorithm 1: Basic flow of ACO (adapted from [29])
1. Represent the solution space by a construction graph.
2. Set ACO parameters and initialize pheromone trails
3. Generate ant solutions from each ant‘s walk on the construction graph mediated by
pheromone trails.
4. Update pheromone intensities.
5. Go to step 3, and repeat until convergence or termination conditions are met.

As shown in the basic flow of ACO above, the objective of ACO‘s third step is to
construct ant solutions (i.e., find the quality paths on the problem‘s construction graph)
by stochastically moving through neighbour nodes of the graph. Ants are driven by a
probability rule to sequentially choose the solution components that make use of
pheromone trail intensities and heuristic information. The solution of each ant is
constructed when all solution components are selected by that ant (i.e., when the ant has
completed a full tour/path on the construction graph). Once an ant has constructed a
solution, or while the solution is being constructed, the ant evaluates the full (or partial)
solution to be used by the ACO‘s next step (the pheromone updating step) in determining
how much pheromone to deposit. The probability rule (equation 1) is called Random-

Proportional Action Choice rule (or State Transition rule). It guides ant movement
through a stochastic local decision policy that essentially depends on both pheromone
information and heuristic information [40].

 () { () ∑ () ()

Where:

 () is the probability of the k
th ant to move from node i to node j at the tth

iteration/time step.

 is the set of nodes in the neighborhood of the kth ant in the ith node.

11

 () = 0, means the ants are not allowed to move to any node not

in their neighborhood. The neighborhood definition is problem-specific, for

example, in the Traveling Salesman Problem (as discussed later in

Section 2.1.2.1) the neighborhood is defined by the adjacent cities in the allowed

list (the allowed list contains all unvisited cities), while in the Image

Segmentation problem, the neighborhood can be defined as the 8-connected

pixels surrounding each pixel on a two-dimensional square lattice.

 () is the pheromone amount on the arc connecting node i and node j,

weighted by (an application-depend constant). () is the pheromone

information, or trail intensity value, that encodes a long-term memory about the

whole ant search process. It is updated by all ants after each iteration t

(sometimes, however, in more recent ACO versions it is updated by only some

ants – the best one(s) that constructed the iteration-best or best-so-far solution).

 is the heuristic value of the arc connecting node i and node j, weighted

by (an application-depend constant). is the heuristic information, or path

visibility, that represents a priori information about the problem instance

definition, or run-time information provided by a different source other than ants.

The heuristic value is usually a non-increasing function in the moving cost

from node i to node j, and it often does not change during algorithm execution

unless the moving cost is not static.

 and are weight parameters that control the relative importance of the

pheromone versus heuristic information.

o A high value for α means that pheromone information is very important;

thus, ants are strongly biased to choose nodes previously chosen by other

ants. This potentially leads to a stagnation situation in which all the ants

would eventually follow the same path (usually suboptimal) and construct

the same tour [29].

o A low value of α makes the algorithm very similar to a stochastic multi-

greedy algorithm with m starting points, as there is m number of ants that

are initially randomly distributed over the construction graph.

o When α = 0, the ACO performs a typical stochastic greedy search strategy

in which the next node (problem state) is selected only on the basis of its

distance (cost) from the current node/state. As a result, the node with the

minimum cost will be always favoured regardless of how many other ants

have visited it, and how much its pheromone intensity is [29].

12

o When β = 0, the pheromone information is only used to guide the search

process, which would reflect the way that ants do in real world (real ants

do not use any heuristic information in their search process) [41].

The objective of ACO‘s fourth step is to update pheromone trails. At the very

beginning, the pheromone trails of all arcs on the construction graph are initialized to a

small constant value (). Then after a tour (or, a solution path) is constructed, the

pheromone trails are updated in two ways, as shown in equations 2 and 3. Firstly, the

pheromone trails of all arcs are decreased according to an evaporation rate (ρ) that allows

ants to forget the suboptimal paths to which they previously converged. Pheromone

evaporation rate is usually set to be sufficiently fast in order to favour the exploration of

new areas of the search space, and avoid a premature convergence of the algorithm

toward a local optimum. Secondly, the pheromone trail values of the visited arcs are

increased with amounts inversely proportional to the cost of their tours (or, in other

words, directly proportional to their tour quality). The pheromone depositing procedure

implements a useful form of exploitation of quality paths by increasing their probability

of being used again by future ants. The quality paths would include the solution

components that were either used by many ants in the past, or that were used by at least

one ant and which produced a high quality solution [40][42].

 (t+1) (1 – ρ) * (t) + ∑ () 0 ≤ ρ < 1 ()
 () { ()⁄ () () ()

Where: Q is an application-specific constant, m is the number of ants, A represents all

arcs of the problem‘s construction graph, () is the overall cost function of tour Tk()
constructed by the kth ant at the tth iteration, and () is the set of all arcs visited by ant k

at the iteration t. Other variations of ACO, however, restrict pheromone depositing to the

arcs of the best tour Tbest only.

2.1.2.1 ACO Example: Traveling Salesman Problem and Ant System

The ACO metaheuristic is a general-purpose algorithmic framework on which

many heuristic algorithms are based and applied to different optimization problems with

a relatively few problem-specific modifications. Ant System (AS) was the first proposed

ant-based example of ACO metaheuristic in the literature [8]. Illustrating AS

as an example of an ACO algorithm in solving a particular optimization problem best

explains how the ACO metaheuristic operates. The Traveling Salesman Problem (TSP) is

13

a well-studied combinatorial (discrete) optimization problem [45][46][47] that was first

applied to the original AS in the early 1990s, and it has later often been used as a

benchmark to test new ideas and algorithmic modifications [48]. The set of feasible

solutions of combinatorial optimization problems is discrete, that is, each variable has a

finite number of values. In TSP, for example, the goal is to find the shortest possible tour

from the salesman‘s home city to a finite number of customer cities with only one

constraint that each city must be visited just once before finally returning to the starting

home city. That is why ants at each construction step are enforced to choose the next city

from an allowed list that contains all unvisited cities. The TSP can be represented by a

complete weighted graph G = (V,E), where V is a finite set of cities (graph vertices) and

E is the set of weighted edges fully connecting the vertices. Each edge has a weight dij

representing the distance between cities i and j. The reason why TSP is the intuitive

example first applied to AS is that the TSP problem is readily modeled as a weighted

construction graph required by ACO metaheuristic to operate.

In AS, each edge is initialized by the same initial pheromone value τ0 and each ant is

initially put on a randomly chosen start city, making the number of ants m equals the

number of cities n (or, in other words, the ant colony size = |V|). Each ant k traverses the

construction graph and makes a probabilistic decision to move from city i to j according

to a transition probability () given by equation 4. While building the solutions,

each ant iteratively stores the solution components (the graph vertices or cities selected

from each ant step) in its memory until all cities have been visited. A construction step

typically starts with one city in each ant‘s memory and terminates after each ant
completes a tour of all cities.

 () {
 () () ∑ () () ()

Where: the pheromone trail () refers to the desirability of visiting city j directly

after i at the construction step t, the heuristic information is inversely proportional to dij

(the distance between cities i and j), and the list is a set of feasible

neighbourhood cities yet to be visited by the k
th

 ant.

Next, the pheromone trails are updated, as discussed earlier, in two ways using the
following equations provided in 5 and 6:

 (t+1) (1 – ρ) * (t) + ∑ () ()

14

 () { ()⁄ () () ()

Where: () is the overall length of the tour () constructed by the ant k. It should be

noted here that the pheromone deposit value, (), between cities i and j is set to be

inversely proportional to the overall length of the complete tour (()⁄), and not merely

the distance of the arc connecting the city i and the city j (()⁄). That is, if the arc

distance between city i and city j is relatively small but the distance of the complete

tour () in which this arc was used is rather big, then the pheromone on this arc

should NOT receive a big reinforcement and thus the pheromone deposit value

should be small.

The values of the aforementioned parameters have a strong influence on the

algorithm performance and the convergence behaviour. For example, If α is set to 0, the

algorithm will always choose the closest city and behaves like a greedy search algorithm.

Also, if the initial pheromone value τ0 is ignored or set to 0, the search is quickly biased

by the pheromone deposited during the first tours of ‗less-experienced‘ ants, which often

does not direct the convergence process to optimal solutions. On the other hand, if the

initial pheromone τ0 is set to a too high value, the search is strongly biased by τ0 (instead

of (()) for many iterations until pheromone evaporation reduces enough pheromone

values, and pheromone deposited by ants can actually start to influence the search

process [29]. Typical parameter settings for TSP are: m = n (i.e., number of ants =

number of cities), α = 1, β=2 to 5, ρ=0.5, and τ0 = 10-6 [41].

2.1.2.2 ACO Variations: Ant System and its Extensions

Many different variations of the original AS [8] have been proposed in the

literature, such as, Elitist AS [49], Ant-Q [50], Max-Min AS [51], Rank-Based AS [52],

Ant Colony System [53], and Hyper-cube AS [54]. One of the principal differences

between AS and its extensions lies in the pheromone updating procedure; whether a local

pheromone update is required after each construction step, or the offline pheromone

updating procedure performed at the end of the construction process is sufficient, whether

the pheromone update should be done by all ants, or by the best one(s) that have

constructed the best or best-so-far tour(s), among other differences. Discussing the

details of ACO variations is out of the scope of this paper, but interested readers may

refer to this [29][30] for more details about the differences between AS and its

extensions. It should be noted that while ACO was originally proposed to solve

combinatorial (discrete) optimization problems, some versions of ACO algorithms have

15

been recently proposed to handle not only continuous optimization problems [55][56],

but also mixed optimization problems with both continuous and discrete variables [57].

2.1.2.3 ACO Discussion

A relatively close paradigm to ACO metaheuristic would be the artificial

neural network (ANN), since both can be considered as a type of a connectionist system

in which individual units (artificial ants of ACO or artificial neurons of ANN) are

connected to each other according to a certain pattern [41]. Both ACO and ANN are quite

similar in some aspects, for example: (i) The knowledge resulted from the learning

process is numerically embedded in both of them (either in the weights of the network

connections in case of ANN, or in the pheromone concentrations on the

construction graph in case of the ACO metaheuristic). (ii) Both ACO and ANN are based

on the same principle: reinforcement of portions of solutions that belong to good

solutions either by adding more pheromone amounts in case of ACO or increasing

network weights in case of ANN. (iii) in ACO the pathways to solutions are usually not

predefined but emergent, and likewise the pathways to solutions in most ANNs are

hidden in its black-box nature.

That being said, ACO differs from ANN in the following ways: (i) the individual

units of ACO have a mobility feature, unlike ANN‘s individual units (neurons) do not

have a mobility feature, but they should be preconfigured with a structure that does not

change in run time. (ii) The dynamic nature of ACO‘s connectivity helps to continuously

adapt to changes in real time, making ACO more applicable to dynamic problems such as

urban transportation systems [58] and adaptive routing in telecommunication

networks [59]. (iii) The two main learning approaches of ANN training (supervised and

unsupervised learning 1) do not get feedback from the environment, whereas ACO

primarily depends on the feedback from the environment, which is used as a medium of

coordination and indirect communication among ants (stigmergy).

Despite the advantages of ACO, it does have some limitations (as many other

optimization algorithms) that do not let it to always work well [27]. For example, ACO

does not work well when a large number of edges on the construction graph are equally

likely to be part of good paths. This happens when many edges have similar cost and

therefore similar probability of being selected as portions of good paths (e.g., a TSP

problem whose cities are uniformly randomly distributed with a relatively equal distance

from one another). Since ACO‘s objective is to reinforce all edges on the problem‘s
construction graph that belong to good solutions/paths, a large number of edges will

receive a relatively equal high amount of pheromone and will be equally likely selected.

In this case, the original ACO would not perform well as it would take longer time to

differentiate between such many good paths in an effort to eventually converge/select one

of them [41].

1
 It is worth mentioning, however, that a third learning approach for ANN training called the

“reinforcement learning” does use a feedback response from the environment [67].

16

2.2 Particle Swarm Optimization (PSO) Model

The second example of a successful swarm intelligence model is Particle Swarm

Optimization (PSO), which was introduced by Russell Eberhart, an electrical engineer,

and James Kennedy, a social psychologist, in 1995 [9][10]. PSO was originally used to

solve non-linear continuous optimization problems, but more recently it has been used in

many practical, real-life application problems. For example, PSO has been successfully

applied to track dynamic systems [60], evolve weights and structure of neural

networks [61], analyze human tremor [62], register 3D-to-3D biomedical image [63],

control reactive power and voltage [64], even learning to play games [65] and music

composition [66]. PSO draws inspiration from the sociological behaviour associated with

bird flocking. It is a natural observation that birds can fly in large groups with no

collision for extended long distances, making use of their effort to maintain an optimum

distance between themselves and their neighbours. This section presents some details

about birds in nature and overviews their capabilities, as well as their sociological

flocking behaviour.

2.2.1 Birds in Nature

 Vision is considered as the most important sense for flock organization [83]. The

eyes of most birds are on both sides of their heads, allowing them to see objects on each

side at the same time. The larger size of birds‘ eyes relative to other animal groups is one
reason why birds have one of the most highly developed senses of vision in the animal

kingdom [68]. As a result of such large sizes of birds‘ eyes, as well as the way their heads

and eyes are arranged, most species of birds have a wide field of view [74]. For example,

Pigeons can see 300 degrees without turning their head, and American Woodcocks have,

amazingly, the full 360-degree field of view [75]. Birds are generally attracted by food;

they have impressive abilities in flocking synchronously for food searching and long-

distance migration. Birds also have efficient social interaction that enables them to be

capable of: (i) flying without collision even while often changing direction suddenly, (ii)

scattering and quickly regrouping when reacting to external threats, and (iii) avoiding

predators [9].

2.2.1.1 Birds Flocking Behaviour

The emergence of flocking and schooling in groups of interacting agents (such as

birds, fish, penguins, etc.) have long intrigued a wide range of scientists from diverse

disciplines including animal behaviour, physics, social psychology, social science, and

computer science for many decades [69][70][71][72][73]. Bird flocking can be defined

as the social collective motion behaviour of a large number of interacting birds with a

common group objective. The local interactions among birds (particles) usually emerge

the shared motion direction of the swarm, as shown in Figure 4. Such interactions are

based on the ―nearest neighbour principle‖ where birds follow certain flocking rules to

17

adjust their motion (i.e., position and velocity) based only on their nearest neighbours,

without any central coordination. In 1986, birds flocking behaviour was first simulated

on a computer by Craig Reynolds [74]. The pioneering work of Reynolds proposed three

simple flocking rules to implement a simulated flocking behaviour of birds: (i) flock

centering (flock members attempt to stay close to nearby flockmates by flying in a

direction that keeps them closer to the centroid of the nearby flockmates), (ii) collision

avoidance (flock members avoid collisions with nearby flockmates based on their relative

position), and (iii) velocity matching (flock members attempt to match velocity with

nearby flockmates) [74].

Although the underlying rules of flocking behaviour can be considered simple, the

flocking is visually complex with an overall motion that looks fluid yet it is made of

discrete birds [74]. One should note here that collision avoidance rule serves to

―establish‖ the minimum required separation distance, whereas velocity matching rule

helps to ―maintain‖ such separation distance during flocking; thus, both rules act as a

complement to each other. In fact, both rules together ensure that members of a

simulated flock are free to fly without running into one another, no matter how many they

are. It is worth mentioning that the three aforementioned flocking rules of Reynolds are

generally known as cohesion, separation, and alignment rules in the literature [76][77].

For example, according to the animal cognition and animal behaviour research,

individuals of animals in nature are frequently observed to be attracted towards other

individuals to avoid being isolated and to align themselves with neighbours [78][79].

Reynolds rules are also comparable to the evaluation, comparison, and imitation

principles of the Adaptive Culture Model in the Social Cognitive Theory [80].

 Figure 4: The flocking behaviour of a group of birds (adapted from [81]).

18

2.2.1.2 Birds’ Physical Movement vs. Humans’ Psychological Change

The Social Cognitive Theory, used in psychology, education, and communication,

suggests that portions of knowledge acquired by humans can be directly influenced by

their neighbours within the context of social interactions and experiences [82]. While

being different, the birds flocking behaviour can be mapped to the human social

behaviour, since the concept of bird‘s physical movement is generally analogous to the

concept of psychological behaviour change in humans. But unlike birds, we tend to

adjust our ideas, beliefs and attitudes, instead of just adjusting our physical positions, to

conform to our social peers. Another obvious distinction between humans and birds in

this context lies in the fact that the same attitudes and beliefs can be concurrently held by

many individuals without banging with each other, but any two birds must occupy

different positions in the 3D space to avoid collision [9]. In other words, birds move

through a three-dimensional physical space, avoiding collisions, whereas humans

psychologically change in an n-dimensional abstract space, collision-free, in addition to

moving through a 3D physical space and avoiding collisions. It is worth emphasizing,

however, that although we learn to avoid physical collision by an early age, decades of

practice and experience are often required to learn how to efficiently navigate through

such an abstract n-dimensional, psychological space [9].

2.2.2 Particle Swarm Optimization Metaheuristic

Particle Swarm Optimization (PSO) is a heuristic optimization technique

introduced by Kennedy and Eberhart in 1995 [9][10]. It is inspired by the intelligent,

experience-sharing, social flocking behaviour of birds that was first simulated on a

computer by Craig Reynolds [74], and further studied by the biologist Frank

Heppner [84]. PSO is a population-based search strategy that finds optimal solutions

using a set of flying particles with velocities that are dynamically adjusted according to

their historical performance, as well as their neighbours in the search space [85]. While

ACO solves problems whose search space can be represented as a weighted construction

graph (refer to Section 2.1.2), PSO solves problems whose solutions can be represented

as a set of points in an n-dimensional solution space. The term ―particles‖ refers to
population members, which are fundamentally described as the swarm positions in the

n-dimensional solution space. Each particle is set into motion through the solution space

with a velocity vector representing the particle‘s speed in each dimension. Each particle

has a memory to store its historically best solution (i.e., its best position ever attained in

the search space so far, which is also called its experience).

The secret of the PSO success lies in the experience-sharing behaviour in which

the experience of each particle is continuously communicated to part or the whole swarm,

leading the overall swarm motion towards the most promising areas detected so far in the

search space [17]. Therefore, the moving particles, at each iteration, evaluate their current

position with respect to the problem‘s fitness function to be optimized, and compare the

19

current fitness of themselves to their historically best positions, as well as to the other

individuals of the swarm (either locally within their neighbourhood as in the local version

of the PSO algorithm, or globally throughout the entire swarm as in the global version of

the algorithm). Then, each particle updates its experience (if the current position is better

than its historically best one), and adjusts its velocity to imitate the swarm‘s global best

particle (or, its local superior neighbour, i.e., the one within its neighbourhood whose

current position represents a better solution than the particle‘s current one) by moving

closer towards it. Before the end of each iteration of PSO, the index of the swarm‘s
global best particle (or, the local best particle in the neighbourhood) is updated if the

most recent update of the position of any particle in the entire swarm (or, within a

predetermined neighbourhood topology) happened to be better than the current position

of the swarm‘s global best particle (or, the local best particle in the neighbourhood).

2.2.2.1 The Original PSO Algorithm

The original PSO was designed as a global version of the algorithm [9], that is, in

the original PSO algorithm, each particle globally compares its fitness to the entire swarm

population and adjusts its velocity towards the swarm‘s global best particle. There are,

however, recent versions of local/topological PSO algorithms, in which the comparison

process is locally performed within a predetermined neighbourhood

topology [80][86][87]. Unlike the original version of ACO (refer to Section 2.1.2), the

original PSO is designed to optimize real-value continuous problems, but the PSO

algorithm has also been extended to optimize binary or discrete problems [88][89][90].

The original version of the PSO algorithm is essentially described by the following two

simple ―velocity‖ and ―position‖ update equations, shown in 7 and 8 respectively.

 vid(t+1)= vid(t) + c1 R1(pid(t) – xid(t)) + c2 R2 (pgd(t) – xid(t)) (7)

 xid(t+1) = xid(t) + vid(t+1) (8)

Where:

 vid represents the rate of the position change (velocity) of the ith particle in the dth

dimension, and t denotes the iteration counter.

 xid represents the position of the i
th particle in the d

th dimension. It is worth

noting here that xi is referred to as the i
th particle itself, or as a vector of its

positions in all dimensions of the problem space. The n-dimensional problem

space has a number of dimensions that equals to the numbers of variables of the

desired fitness function to be optimized.

 pid represents the historically best position of the ith particle in the dth dimension

(or, the position giving the best ever fitness value attained by xi).

20

 pgd represents the position of the swarm‘s global best particle (xg) in the d
th

dimension (or, the position giving the global best fitness value attained by any

particle among the entire swarm).

 R1 and R2 are two n-dimensional vectors with random numbers uniformly

selected in the range of [0.0, 1.0], which introduce useful randomness for the

search strategy. It worth noting that each dimension has its own random

number, r, because PSO operates on each dimension independently [17].

 c1 and c2 are positive constant weighting parameters, also called the cognitive and

social parameters, respectively, which control the relative importance of

particle‘s private experience versus swarm‘s social experience (or, in other

words, it controls the movement of each particle towards its individual versus

global best position [91]). It is worth emphasizing that a single weighting

parameter, c, called the acceleration constant or the learning factor, was initially

used in the original version of PSO, and was typically set to equal 2 in some

applications (i.e., it was initially considered that c1 = c2 = c = 2). But, to better

control the search ability, recent versions of PSO are now using different

weighting parameters which generally fall in the range of [0,4] with c1 + c2 = 4

in some typical applications [17]. The values of c1 and c2 can remarkably affect

the search ability of PSO by biasing the new position of xi toward its historically

best position (its own private experiences, Pi), or the globally best position (the

swarm‘s overall social experience, Pg):

o High values of c1 and c2 can provide new positions in relatively distant

regions of the search space, which often leads to a better global

exploration [17], but it may cause the particles to diverge.

o Small values of c1 and c2 limit the movement of the particles, which

generally leads to a more refined local search around the best positions

achieved [17].

o When c1 > c2, the search behaviour will be biased towards particles‘
historically best experiences.

o When c1 < c2, the search behaviour will be biased towards the swarm‘s

globally best experience.

The velocity update equation in (7) has three main terms: (i) The first term, vid(t),

is sometimes referred to as ―inertia‖, ―momentum‖ or ―habit‖ [17]. It ensures that the

velocity of each particle is not changed abruptly, but rather the previous velocity of the

particle is taken into consideration [85]. That is why the particles generally tend to

continue in the same direction they have been flying, unless there is a really major

difference between the particle‘s current position from one side, and the particle‘s
historically best position or the swarm‘s globally best position from the other side (which

means the particle starts to move in the wrong direction). This term has a particularly

21

important role for the swarm‘s globally best particle, xg, This is because if a particle, xi,

discovers a new position with a better fitness value than the fitness of swarm‘s globally
best particle, then it becomes the global best (i.e., g←i). In this case, its historically best

position, pi, will coincide with both the swarm‘s global best position, pg, and its own

position vector, xi, in the next iteration (i.e., pi = xi = pg) [17]. Therefore, the effect of

last two terms in equation (7) will be no longer there, since in this special case

pid(t) – xid(t) = pig(t) – xid(t) = 0, . This will prevent the global best particle to

change its velocity (and thus its position), so it will keep staying at its same position for

several iterations, as long as there was no way to offer an inertial movement and there has

been no new best position discovered by another particle. Alternatively, when the

previous velocity term is included in the velocity updating equation (7), the global best

particle will continue its exploration of the search space using the inertial movement of

its previous velocity [17]. (ii) The second term, (pid(t) – xid(t)), is the ―cognitive‖ part
of the equation that implements a linear attraction towards the historically best position

found so far by each particle [91]. This term represents the private-thinking or the self-

learning component from each particle‘s flying experience [85], and is often referred to

as ―local memory‖, ―self-knowledge‖, ―nostalgia‖ or ―remembrance‖ [17]. (iii) The third

term, (pgd(t) – xid(t)), is the ―social‖ part of the equation that implements a linear

attraction towards the globally best position ever found by any particle [91]. This term

represents the experience-sharing or the group-learning component from the overall

swarm‘s flying experience [85], and is often referred to as ―cooperation‖, ―social

knowledge‖, ―group knowledge‖ or ―shared information‖ [17].

According to the aforementioned equations (7) and (8), the basic flow of the
original PSO algorithm can be described as shown below.

Algorithm 2: Basic flow of PSO (adapted from [85])
1) Initialize the swarm by randomly assigning each particle to an arbitrarily initial
velocity and a position in each dimension of the solution space.
2) Evaluate the desired fitness function to be optimized for each particle‘s position.
3) For each individual particle, update its historically best position so far, Pi, if its current
position is better than its historically best one.
4) Identify/Update the swarm‘s globally best particle that has the swarm‘s best fitness
value, and set/reset its index as g and its position at Pg.
5) Update the velocities of all the particles using equation (7).
6) Move each particle to its new position using equation (8).
7) Repeat steps 2–6 until convergence or a stopping criterion is met (e.g., the maximum
number of allowed iterations is reached; a sufficiently good fitness value is achieved; or
the algorithm has not improved its performance for a number of consecutive iterations).

22

2.2.2.2 The Refinements and Extensions to the Original PSO

The PSO algorithm showed sufficiently good performance on the simple

optimization problems firstly applied to its original and early versions, but some

limitations later appeared when PSO was applied to harder optimization problems with

large search spaces and multiple local optima [17]. As a result, a number of

parameter/methodology refinements are considered in the later versions of PSO in order

to (i) prevent what is known as ―swarm explosion‖ by limiting the maximum velocity, (ii)

facilitate the convergence in harder optimization problems by introducing an inertia

weight, and (iii) handle optimization problems with multiple local optima by defining a

neighbourhood topology for a local version of PSO [91].

(i) Limiting the Maximum Velocity

In the velocity update equation (7), when xid(t) << pid(t) and xid(t) << pgd(t),

the new velocity, vid(t+1), will have a very large +ve value, and the algorithm will

enforce the ith particle‘s current position to be significantly adjusted forward to become

closer to its historically best position and the swarm‘s global best position. On the other

hand, when xid(t) >> pid(t) and xid(t) >> pgd(t), the new velocity, vid(t+1), will have a

very large -ve value, and the algorithm will enforce the ith particle‘s current position to be
significantly adjusted back to its historically best position and the swarm‘s global best
position. It has been observed, however, that too much increase or decrease to the values

of particles‘ velocities has often led to what is known as ―swarm explosion‖ in the early

versions of PSO. Swarm explosion refers to the uncontrolled increase of the magnitude of

particle velocities, |vid(t+1)|, which could lead to swarm divergence (especially when the

problem‘s search space is very large) [17]. This issue was addressed by defining a

problem-dependent maximum velocity threshold (vmax > 0) for the velocity magnitude to

avoid the particles taking extremely large shifts from their current position, realistically

simulating the incremental change of human learning [92], as described below:

 |vid(t+1)| ≤ vmax, i = 1, 2, …, N (particles) and d = 1, 2, …., n (dimensions)

If, at any iteration, t, the result of the velocity update equation presented at (7) violates

the rule above, i.e., |vid(t+1)| > vmax, then the values of the violating particles‘ velocities
are clamped, as follows:

 () { () – () – (9)

23

The value of the parameter, vmax, is important because it remarkably affects the

algorithm behaviour. For example, if vmax is sufficiently big, the particles fly far past the

target region and could discover even better positions than what they originally set out

for. This improves the global exploration ability of the algorithm as the particle would be

able to take sufficiently large steps to escape from local optima. On the other hand, a

small value of vmax could cause the particles to be trapped into local optima, and prevent

them from discovering better solution areas [85]. If necessary, the value of the maximum

velocity could be not only problem-dependent, but also dimension-dependent according

to the problem‘s space dimensions [17]. Nevertheless, in order to ensure uniform velocity

throughout all dimensions, Abido [93] has proposed an equation to govern the maximum

velocity value, as shown below in equation (10):

 – (10)

Where: and are the maximum and minimum position values found so far by

the particles in the dth dimension, and K is a user-defined parameter that controls the shift

intervals (or, the particles‘ steps in each dimension of the search space), with k = 2 being

a common choice (i.e., velocities are clamped to at most 50% of the range on each

dimension [17]).

(ii) Introducing an Inertia Weight

The inertia weight is introduced to control the global exploration ability of PSO,

and provide a balance between the global and local search abilities. It has been observed

that PSO produces better results when its global exploration ability is more favoured in

the early optimization stages to allow the exploration of as many promising areas of the

search space as possible. Then, towards the end of the optimization process, the local

exploitation ability of the algorithm should be promoted, instead, to allow for a more

refined search around the best areas previously roughly detected [17]. This is possible by

reducing the position shifts (or, the velocity) of the particles in the later search stages.

This means the effect of the previous velocity term, vid(t), of equation (7) (which is

known as ―inertia‖ or ―momentum‖ as discussed in Section 2.2.2.1) will gradually fade

over PSO iterations for each particle. Therefore, a linearly decreasing inertia weight, ω,
multiplied to that previous velocity term was introduced by Shi and Eberhart [94], as

shown in equation (11). Intuitively, the linearly decreasing inertia weight is initially set to

a high value, ωhi, around 1.0 (typically, from 0.9 to 1.2) in order to allow the particles to

move freely, and quickly explore the global optimum neighbourhood [17]. Towards the

later optimization stages, when the optimal regions are roughly identified, the value of

the inertia weight is decreased to a small amount, ωlow, around 0.2 (typically, from 0.1 to

24

0.4) in order to refine the search, and shift the optimization process from an exploratory

mode to an exploitative mode [17][91].

 vid(t+1)= ω vid(t) + c1 R1(pid(t) – xid(t)) + c2 R2 (pgd(t) – xid(t)) (11)

 xid(t+1) = xid(t) + vid(t+1) (12)

The rest of the parameters of equations (11) and (12) remain the same as for the

equations of the original PSO version presented in equations (7) and (8). Since the inertia

weight is selected such that the effect of vid(t) gradually fades during the execution of the

algorithm, a linearly decreasing scheme for the inertia weight is often utilized [17]. One

possible definition of such linearly decreasing scheme can be mathematically described,

as shown in equation (13). () () (13)

Where: t is the iteration counter; ωhi and ωlow are the desired higher and lower bounds of

the inertia weight, respectively; Tmax is the maximum allowed number of iterations after

which the algorithm shall terminate. The definition of that scheme produces a linearly

decreasing time-dependent inertia weight with initial value, ωhi, at the first iteration,

t = 0, and final value, ωlow, at the last possible iteration, Tmax [17]. It is worth noting that

the concept of a linearly decreasing value of the inertia weight could be considered quite

analogous to the concept of simulated annealing
2 that is often used in global

optimization problems [95].

 (iii) Defining a Neighbourhood Topology

Despite its aforementioned benefits, the introduction of a linearly-decreasing

inertia weight has a disadvantage; that is, once the inertia weight is faded, the swarm‘s
exploration ability is almost lost and cannot be recovered [91]. This means no further

exploration is possible and the particles can only perform local search around their

convergence point, which most likely exists close to the swarm‘s global best position.

The instant information-sharing of the swarm‘s global best position can be attributed to

this disadvantage, because each particle always knows and instantly shares the global

best position at each iteration [17]. If this information, however, is not instantly shared,

but rather slowly propagated throughout several local neighbourhoods before affecting

the entire swarm, the particles‘ exploration ability will generally be retained longer to

explore more areas in the search space, which solves that disadvantage and decreases the

2 Simulated Annealing (SA), inspired by the annealing in solids [96], simulates the process of material
cooling in a heat bath, which is known as the process of physical annealing. SA is a stochastic search
technique with good abilities to escape local optima by taking a random walk through the search space at
successively lower temperatures, following a Boltzmann distribution.

25

chance of premature convergence [97]. The main idea of using the concept of local

neighbourhood is as follows: the information of the swarm‘s best particle position is
initially shared only to its neighbours and successively to the rest of the entire swarm‘s
particles through their neighbours, allowing the wisdom to gradually emerge instead of

trying to impose it. It is worth mentioning, however, that while the aforementioned

disadvantage did not particularly appear for simple optimization problems with unimodal

or convex fitness functions, it remarkably appeared for high-dimensional, multimodal,

and complex optimization problems [17].

Neighbourhoods are either based on randomly assigned indices to the particles,

the actual distances of the particles in the search space, or a particular predefined

topological neighbourhood structure [17][87][98]. The original global version of PSO can

be considered a special case of the local version with its neighbourhood being defined as

the entire swarm. The neighbourhood of the global version of PSO can, therefore, be

conceptualized as a fully connected network in which each particle has access to the

information of all other particles in the swarm (Figure 5(a)), as opposed to just its

immediate local neighbours in a predefined neighbourhood topology. The two most

common local neighbourhood topologies are ring (or, circle) and star (or, wheel)

topologies [91]. As for the ring topology, particles are arranged in a ring-like structure in

which each particle is directly connected with its two immediate neighbours to its right

and left (Figure 5(b)). Whereas, for the star topology, particles are not directly connected to

one another; rather they are all connected to a selected one particle called the focal point

to which all the swarm information is shared and communicated, as shown in Figure 5 (c).

There are also many other regular predefined neighbourhood topologies, such as the

pyramid topology and the von Neumann topology. As its name implies, the particles in

the pyramid topology are arranged in a pyramid-like structure in which each particle is

directly connected to its three immediate neighbours, as shown in Figure 5 (d). Whereas, in

the Von Neumann structure, particles are arranged in a grid-like structure or a two-

dimensional lattice network where each particle is connected to at most four of its

immediate neighbours (above, below, right and left), as shown in Figure 5(e).

The choice of neighbourhood topology has a significant effect on the propagation

of the best solution found by the swarm. For example, in the global version of PSO, the

propagation of the best solution is very fast, since the global best solution is instantly

shared among all the particles [97]. However, in the ring and Von Neumann topologies,

on the other hand, the best solution is slowly propagated throughout several local

neighbourhoods before reaching all particles in the swarm. Kennedy et al. suggested that

the global version of PSO converges fast but it may get trapped in local optimum or

increase the chance of premature convergence, while the local version results in a larger

diversity and increases the chances to find the global optimal solution, although with

slower convergence rate [80]. Kennedy and Mendes tested and evaluated PSO

performance with all aforementioned regular topologies, shown in Figure 5, as well as PSO

26

performance with randomly generated neighbours [87]. In their experiments, with a fixed

swarm size of 20 particles, they observed that the best performance occurred in the case

of randomly generated neighbours with an average size of five neighbouring particles. As

for regular shaped topologies, the authors recommended Von Neumann topology over all

other regular shaped topologies, since it consistently performed better, in their

experiments, compared to all other topologies, including the global and the local (e.g.,

ring) version [87]. It is worth emphasizing, however, that selecting the most efficient

neighbourhood topology largely depends on the type of problem. One topology may

perform more effectively on specific types of problems; however, it could have a worse

performance on other problems [91]. Kennedy believed that regular shaped topologies

with fewer connections might perform better on highly multimodal problems, while

highly interconnected topologies would be better and faster for unimodal problems [86].

Figure 5: Common regular shaped neighbourhood topologies: (a) the fully connected network topology (PSO’s original
global version), (b) the ring (circle) topology, (c) the star (wheel) topology, (d) the pyramid topology, and (e) the Von

Neumann topology (the generally recommended neighbourhood topology). Adapted from [91].

In addition to the three previously-discussed core refinements to the original

PSO [9], several different variations and extensions to the original PSO have been

proposed in the literature, such as Constriction Coefficient/Canonical PSO [99][100],

Dissipative PSO [101], Stretching PSO [102], Gaussian PSO [103], PSO with

Mutation [104], Fully-informed PSO [105], Species-based PSO [106], Self-organizing

Hierarchical PSO [107], Cooperative PSO [108] and Comprehensive Learning

PSO [109], among many other variations. The details of PSO variations are beyond the

scope of this paper, but interested readers may refer to these references [80][85][91] for

more information.

27

2.2.2.3 PSO Discussion
This section summarizes the strengths and limitations of PSO, as well as it highlights

the similarities and dissimilarities between PSO, as one of the most competitive emerging
computing techniques versus Genetic Algorithms (GA) as an example of evolutionary
computing techniques. Lastly, it discusses the advantages of using PSO over GA.

 PSO Strengths:

 PSO uses memory to store the particle‘s historically best position and the
swarm‘s global best position, which helps not only each particle to keep track
of its own individual experience, but also helps the most superior particle to
communicate its social experience to the other particles. This generally directs
the convergence to the most promising areas on the search space and
accelerates the optimization process towards the optimal solution [80].

 PSO is not only characterized by its fast convergence behaviour, but also by
its simplicity. The core mathematical equations of PSO (namely, velocity

update, position update, and memory update) are easily calculated. Thus, the
implementation of PSO procedure is simple and generally requires just a
relatively few lines of code [9].

 PSO has an inherit potential to adapt to a changing environment, which can
expand its ability from just locating optima in static environments to further
track them in dynamic environments [111].

 PSO Limitations:

 The typical PSO problems are those whose solutions can be represented as a
set of points in an n-dimensional Cartesian coordinate system, as it would be
easy, in such problems, to determine the previous and next positions for each
point (i.e., particle). On the other hand, PSO fails to work if the problem
representation does not offer a clear way to uniquely define what the next and
previous particle positions are to help search in the solution space [112].

 The original PSO assumes all particles of the entire swarm are completely
homogenous, and therefore employs the same value settings of inertia weight,
cognitive and social parameters (c1 and c2) for the entire swarm. This
assumption, however, ignores the internal differences among birds of the same
swarm in real life, such as ages, catching skills, flying experiences, and
muscles' stretching. It also neglects the relative flying position within the
swarm, although it provides an important influence on particles. For example,
particles flying in the outer side of the swarm often make more choices than
those in the swarm center, and thus should receive more attention [123].

 The original PSO fails to locate multiple optima, since the idea of the original
PSO was to adjust the swarm direction closer to the swarm‘s global best
particle to guide the entire swarm to converge to a single optimum. However,
many variations of the original PSO have been proposed in the literature to
overcome such a limitation. For example, Li proposed a species-based PSO
(SPSO), which divides the swarm into multiple species (groups of particles
sharing similar characteristics) and enables them to concurrently search for
multiple optima [106].

28

Although PSO and GA are based on totally different philosophical metaphors
(namely, the evolution metaphor for GA, and the bird flocking metaphor for PSO), both
PSO and GA share some common features, besides many other different characteristics.
The comparison between PSO and GA has generally been popular in the literature [114]-
[118], as it highlights what the novelty of the PSO metaphor is and what‘s new PSO can
offer compared to the other metaphorical models. The comparison also demonstrates the
fact that the general SI metaphor is not merely giving new names to existing operations,
but there are fundamental differences in the core optimization processes/functions
between it and other metaphorical models.

Before going to the comparison details, let us first briefly overview the basics of
Genetic Algorithms (GA). In the mid-1970s, John Holland was the first to rigorously
present the main concepts of GA [119], drawing inspiration from the evolution metaphor
of the Darwinian Theory, and following basic genetics principles. GA employ three
operators to propagate its population from one generation to another: Selection,
Crossover and Mutation. (i) The selection operator mimics the natural selection‘s
principal (Survival of the Fittest), in which the most fitted population individuals are
selected for future generations over weaker, less-fit individuals. (ii) The crossover
operator mimics the reproduction behaviour observed in biological populations. It
propagates the good characteristics/chromosomes of the current generation to future ones
by allowing fit individuals to produce more offspring than less-fit individuals, which help
improve the average fitness of new generations as the algorithm progresses. (iii) The
mutation operator promotes the exploration ability of the algorithm by introducing useful
diversity in population characteristics, which acts as necessary randomness to reduce the
probability of getting tapped into local optima. The details of GA are beyond the scope of
this paper, but interested readers may refer to these references [120]-[122] for more
information.

 PSO Similarities to GA

 Initialization Mechanism: Both PSO and GA are stochastic population-based
algorithms that start with a number of randomly generated
individuals/particles.

 Fitness Function: Both PSO and GA use a specific fitness function (that is
desired to be optimized) to evaluate the population members (i.e., either
individuals‘ genetic encodings in GA or particles‘ positions in PSO), and
accordingly assign fitness values to them.

 Nature-inspired Properties: Both PSO and GA update their population
according to a number of nature-inspired properties. For instance, the velocity
update equation in PSO and the arithmetic crossover operator in GA are both
nature-inspired properties that can actually be considered quite analogous to
each other [113].

 Parameter Tuning: Both GA and PSO have several numerical parameters that
remarkably affect the convergence process, and therefore need to be carefully
selected. For example, population size, crossover and mutation rates are
required to be carefully selected in GA. Also, swarm size, inertia weight,
cognitive and social parameters (c1 and c2) need to be cleverly decided upon in
PSO [114].

29

 PSO Dissimilarities to GA

 Different Conceptual Bases: The conceptual bases of PSO and GAs are
intrinsically different: GAs are based on the intelligence of natural selection,
whereas PSO algorithms are based on the intelligent social behaviour of
swarms in nature.

 Cooperation vs. Competition: PSO algorithms choose the path of
―cooperation‖, i.e., convergence is driven through learning from cooperative
peers/particles, while GAs choose the path of ―competition‖, i.e., the
convergence is driven through learning from competitive individuals
(following the survival of the fittest principle) [123].

 Selection Mechanism: The objective of the selection mechanism in GA is to
apply natural selection‘s principle (survival of the fittest), in such a way that
the best individuals with the highest performance on the optimization problem
are selected and individuals with poor performance are discarded. On the
other hand, PSO does not explicitly include a selection mechanism for its
convergence strategy; rather it relies on each particle‘s memory of its
historically best position and the swarm‘s global/local best position. It is
worth noting that the particle‘s best position (the individual experience) in
PSO largely resembles the parent‘s role in GA with the distinction that no new
individuals in PSO are created, but instead are updated relative to their own
individual experience, or for analogy purposes, their own parents [115].

 Population Adapting vs. Population Replacement: In PSO, instead of
explicitly using genetic operators like crossover and mutation, each particle
adjusts its velocity (and therefore position) according to its own flying
experience, as well as the flying experience of its peers, so the changes are
driven through learning from peers and not through genetic recombination and
mutations [94]. In other words, PSO iteratively uses a velocity update
equation through a process of ―adapting‖ the current population (so, the
convergence is performed by attracting the particles to positions with good
solutions), while GAs use crossover and mutation operators through a process
of ―replacing‖ the previous population with a new one (resembling the death
and birth of successive generations in nature). In contrast, PSO population is
more stable, as its particles are not destroyed or created, but rather they are
just influenced by the best performance of themselves and their peers [123].

 Conscious Mutation vs. Random Mutation: The position update equation in
PSO, which adds the velocity to the current position to generate the new/next
position, is quite analogous to the arithmetic mutation operation in GA.
However, the "mutation" process in PSO is not randomly performed (as in
GA); rather it is guided by particle‘s own flying experience and the flying
experience of its peers. In other words, the position update equation of PSO
performs some sort of conscious mutation, as opposed to the random mutation
performed in GA (using a predefined mutation operator and rate) [94].

 Memory Capabilities: Since the original PSO has a built-in memory
capability, each particle in PSO benefits from its previous experience. In
contrast, individuals in GA do not benefit from their history because the
standard GA has no memory [91], plus the population in each iteration of GAs

30

replace itself, anyway, in a number of generations that are successively
destroyed and created.

 Information Sharing Mechanism: In GAs, chromosomes mutually share their
genetic information with each other through a genetic recombination process
known as crossover. In PSO, however, only the global/local best particle
communicates its position information to other particles in a one-way
information sharing mechanism [123].

 Problems Types: The standard GA is an inherently discrete algorithm, i.e., it
encodes its design variables into bits of 0‘s and 1‘s, making it generally
suitable for discrete/binary problems [116]. In contrast, the original PSO is an
inherently continuous algorithm, but it was later modified to handle
discrete/binary problems. It has been observed that the binary PSO is
generally faster, more robust and performs better than GAs, particularly on
high dimensional problems [117][118].

 PSO Advantages over GA

 The key advantage of PSO over GA is that it is algorithmically simpler, yet
more robust and generally converges faster than GA [97][116]. In fact, the
simplicity of PSO allowed scientists from different backgrounds, not
necessarily related to computer science or programming skills, to use PSO as
an efficient optimization tool to a wide-range of application domains.

 PSO is more able to control convergence than GA. Although manipulating
rates of crossover and mutation can have an effect on controlling GA‘s
convergence, such controlling effect is not as significant compared to the level
of control that can be achieved in PSO through manipulating its inertia
weight [114]. For example. It has been shown that the decrease of inertia
weight dramatically increases the swarm‘s convergence [124].

 Because of the various studies available in the literature to address the
parameter selection issue in PSO, the PSO parameters are now more easily
selected and more robustly tuned/controlled than GA parameters [94][125].

 PSO has an impressive ability to perform well without having a large swarm
size. In fact, it has been observed that PSO with smaller swarm sizes perform
comparably to GAs with larger populations [97]. It has also been observed
that the PSO performance is not too sensitive to the population size, as long as
the population size is not too small. This observation with first suggested by
Shi and Eberhart [94], and then verified by Løvberg and Krink [126][127].

Hybrid approaches combining PSO and GA were attempted by Veeramachaneni et al.
in 2003 [128]. The main idea of their work is to take the population of one algorithm
(when there has been no fitness improvement) and use it as the starting population for the
other one, instead of just employing the traditional random initialization mechanism [97].
Two versions were proposed in this study: GA-PSO and PSO-GA. In GA-PSO, the GA
population is used to initialize the PSO population, while in PSO-GA, the PSO
population is used to initialize the GA population. The study results showed that:
GA & GA-PSO << PSO < PSO-GA, i.e., PSO-GA was the best-performing version, and
it even had a slightly better performance than PSO. Furthermore, both PSO and PSO-GA
performed remarkably better than both GA and GA-PSO [97][128].

31

3. SI Applications

The purpose of this section is to present some real-life problems and applications in

which the use of swarm-based optimization algorithms has been successfully made in the

literature, but not providing readers with an extensive survey on swarm intelligence

applications. More details on SI applications can, however, be found

here [1][2][14][16][17][29][80][85][91]. The impressive performance of SI algorithms in

discrete and continuous optimization problems has increased the attention of many

researchers with different backgrounds to apply SI algorithms into their own research

areas. As a result, there has been an almost exponential increase in the number of

research papers reporting the successful application of SI-based algorithms in a wide

range of domains, including combinatorial optimization problems, function optimization,

finding optimal routes, scheduling, structural optimization, image analysis, data mining,

machine learning, bioinformatics, medical informatics, dynamical systems, industrial

problems, operations research, and even finance and business.

The potential of SI is yet far from being exhausted with many interesting applications

still to be explored, especially in bioinformatics. In the past few years, there has been a

slow, yet steady increase in the number of research papers that have successfully applied

SI algorithms in bioinformatics. This is because several tasks in bioinformatics involve

optimization of different criteria (such as, energy, alignment score, overlap strength, etc.),

and the various applications of SI algorithms proved them to be efficient, robust and

computationally inexpensive optimization techniques, which made their applications in

bioinformatics more obvious and appropriate [16].

It is worth noting, however, that SI-based algorithms do not fully show their

competitive edge over other optimization techniques on static problems whose

characteristics and conditions do not change over time. Nevertheless, they are often more

competitive to deterministic approaches3 in dealing with uncertainty, as well as general-

purpose heuristics (e.g., hill climbing and simulated annealing approaches) in dealing

with stochastic time-varying problem domains, due to their inherit adaptive

capabilities [27].

3.1 ACO Applications

The scientific community has raised remarkable interest in ACO algorithms due

to their amazing capabilities. According to a recent (2010) book chapter surveying ACO

applications [48], there are hundreds of implementations of the ACO metaheuristic

successfully applied to numerous optimization problems in various domains, including

famous NP-hard combinatorial optimization problems. While ACO was initially

3
 Deterministic approaches are those with no parameter tuning or randomness involved,

such as the least square optimization.

32

introduced with an application to the TSP as a proof-of-concept/classical application,

ACO algorithms have later been successfully applied to a wide-range of optimization

problems. This ranges from fundamental combinatorial problems, such as sequential

ordering problems, assignment problems, scheduling problems, the maximum clique

problem, graph coloring, assembly line balancing and vehicle routing problems, to more

recent continuous, multi-objective or dynamic problems in machine learning, data

mining, telecommunication networks and bioinformatics [141].

3.1.1 ACO Relevance to Bioinformatics

Despite a number of differences [138], most of the ordering problems in
bioinformatics, (e.g., sequence alignment, fragment assembly problem, and gene
mapping) are quite similar to the TSP, one of the most classical and famous ordering
problem [16]. As previously discussed how TSP can be efficiently solved by the ant
systems (Section 2.1.2.2), ACO can be (and has actually been) efficiently applied to
many of such ordering problems in bioinformatics [141]. Thus, bioinformatics and
biomedical fields, in particular, have shown a steady growing interest in ACO [16].
Examples of ACO applications in bioinformatics and biomedical problems include: DNA
sequencing by hybridization [36], the 2D and 3D hydrophobic polar protein folding [37],
protein–ligand docking [38], constructing phylogenetic trees [139], multiple sequence
alignment [142], DNA fragment assembling [143], and the prediction of major
histocompatibility complex (MHC) class II binders [144].

3.2 PSO Applications

The first practical application of PSO was in the field of neural networks, in 1995,
when PSO was able to train and adjust the weights of a feed-forward multilayer
perceptron neural network as effectively as the conventional error back-propagation
approach [9]. Since then, a nearly-exponential growing number of PSO applications have
been explored in several domains due to their simplicity, efficiency and fast-convergence
nature. A comprehensive technical report in [145] has made an extensive review of over

1,100 PSO publications. Among those over one thousand PSO publications, the review
report considered around 350 papers as proposals for improvements and extensions to the
original ―1995-version‖ of PSO. Such large proposed number of PSO variations and
extensions has made PSO capable of solving several optimization problems ranging from
unconstrained, single-objective or static problems to constrained, multi-objective or
dynamic problems. The report further considered the remaining ~700 papers as PSO
applications, although many of them also introduced different customizations and
extensions to PSO method to fit their particular application. Of those ~700 papers, PSO
applications have been classified into 26 different categories. The massive number and
scope of successful PSO applications fall under a broad domain of research areas, ranging
from combinatorial optimization problems to computational intelligence applications,
from electrical and electromagnetic applications to signal processing and graphics, from
image analysis and robotics to bioinformatics and medical applications.

33

Among the 26 proposed categories of PSO applications, the ―Image and Video

Analysis‖ application category was the biggest one with about 9% of the total surveyed

PSO applications at the time of the report. Examples of image analysis applications

include: IRIS recognition [146], fruit quality grading [147], face detection and

recognition [148], image segmentation [149], synthetic aperture radar imaging [150],

locating treatment planning landmarks in orthodontic x-ray images [151], image

classification [152], inversion of ocean colour reflectance measurements [153], traffic

stop-sign detection [154], defect detection [155], image retrieval [156], human detection

in infrared imagery [157], image registration [63], pixel classification [158], detection of

objects [159], pedestrian detection and tracking [160], texture synthesis [161], microwave

imaging [162], scene matching [163], photo time-stamp recognition [164], contrast

enhancement [165], 3D recovery with structured beam matrix [166], auto cropping for

digital photographs [167], character recognition [168], shape matching [169], image

noise cancellation [170]. Examples of video analysis applications include: MPEG

optimization [171], motion estimation [172], object tracking [173], body posture

tracking [174], and traffic incident detection [175].

3.2.1 PSO Relevance to Bioinformatics

The key challenge of bioinformatics problems lies in the huge amount of their

data, and thereby their computational complexity. As a result, many bioinformatics

problems do not always need the exact optimal solution; an approximation to the solution

is often used instead. Bioinformatics problems, therefore, require optimal or even near-

optimal solutions that are computationally inexpensive, and can be produced in a fast and

robust means, which PSO algorithms are actually distinguished by. That is why PSO

algorithms have been efficiently applied in many bioinformatics problems. Furthermore,

the laboratory operations on DNA, for instance, inherently involve errors and uncertainty,

which are more tolerable in PSO algorithms compared to deterministic algorithms.

Actually, these errors may be considered beneficial in PSO to some extent, as they may

introduce useful randomness and contribute to population diversity – a desirable property

for PSO convergence [17].

The review report in [145] has surveyed more than 25 different applications in

bioinformatics, biomedical and pharmaceutical problems. Applications include: human

tremor analysis for the diagnosis of Parkinson‘s disease [62], inference of gene regulatory

networks [176], human movement biomechanics optimization [177], phylogenetic tree

reconstruction [178], cancer classification [179], cancer survival prediction [180], DNA

motif detection [181], gene clustering [182], identification of transcription factor binding

sites in DNA [183], biomarker selection [184], protein structure prediction [185],

protein–ligand docking [186], drug design [187], radiotherapy planning [188], analysis of

brain MEG data [189], RNA secondary structure determination [190], EEG

analysis [191], and biometrics [192].

34

4. Summary and Concluding Remarks

Because of its many advantages, SI is now being considered as one of the most
promising AI techniques with steady growing scientific attention. This can be supported
by the increasing produced number of successful SI research output, as well as the
rapidly expanded conferences and journals dedicated for Swarm Intelligence [110].

4.1 SI General Advantages

 Scalability: SI systems are highly scalable; their impressive abilities are generally
maintained when using groups ranging from just sufficiently few individuals up to
millions of individuals. In other words, the control mechanisms used in SI
systems are not too dependent on swarm size, as long as it is not too small [3].

 Adaptability: SI Systems respond well to rapidly changing environments, making
use of their inherit auto-configuration and self-organization capabilities. This
allows them to autonomously adapt their individuals‘ behaviour to the external
environment dynamically on the run-time, with substantial flexibility [3].

 Collective Robustness: SI Systems are robust as they collectively work without
central control, and there is no single individual crucial for the swarm to continue
to function (due to the redundancy of their individuals). In other words, the fault-
tolerance capability of SI systems is remarkably high, since these systems have no
single point of failure. A single point of failure is a part of any system that puts
the entire system into risk of a complete failure, if it ceased to function [129].

 Individual Simplicity: SI systems consist of a number of simple individuals with
fairly limited capabilities on their own, yet the simple behavioural rules at the
individual level are practically sufficient to cooperatively emerge a sophisticated
group behaviour [129].

4.2 SI General Limitations

The potential of swarm intelligence is indeed fast-growing and far-reaching. It
offers an alternative, untraditional way of designing complex systems that neither require
centralized control nor extensive pre-programming. That being said, SI systems still have
some limitations, such as:

 Time-Critical Applications: Because the pathways to solutions in SI systems are
neither predefined nor pre-programmed, but rather emergent, SI systems are not
suitable for time-critical applications that require (i) on-line control of systems,
(ii) time critical decisions, and (iii) satisfactory solutions within very restrictive
time frames, such as the elevator controller and the nuclear reactor temperature
controller. It remains to be useful, however, for non-time critical applications that
involve numerous repetitions of the same activity [3].

 Parameter Tuning: Tuning the parameters of SI-inspired optimization techniques
is one of the general drawbacks of swarm intelligence, like in most stochastic
optimization methods, and unlike deterministic optimization methods. In fact,
however, since many parameters of SI systems are problem-dependent, they are

35

often either empirically pre-selected according to the problem characteristics in a
trial-and-error manner [130], or even better adaptively adjusted on run time (as in
the adaptive ACO [131] and the fuzzy adaptive PSO [132]).

 Stagnation: Because of the lack of central coordination, SI systems could suffer
from a stagnation situation or a premature convergence to a local optimum (e.g.,
in ACO, stagnation occurs when all the ants eventually follow the same
suboptimal path and construct the same tour [29]). This limitation, however, can

be controlled by carefully setting algorithm parameters, e.g., the parameter in

ACO (Section 2.1.2), or the parameter ω of PSO (Section 2.2.2.2 (ii)). Different
variations of ACO and PSO algorithms could further reduce the probability of that
limitation (e.g., by explicitly or implicitly limiting the amount of pheromone
trials, as proposed in Max-Min AS [51] or Ant Colony Systems [53], as well as by

varying inertia weight, ω, exponentially (rather than linearly), as lately proposed
in a recent PSO variation called Exponential PSO [133]).

4.3 Comparison between the two discussed SI Models: ACO vs. PSO

The objective of this paper was to present the main principles and concepts of

Swarm Intelligence, with a particular focus on two of the most popular SI models,

namely, ACO (Section 2.1.2) and PSO (Section 2.2.2). Despite both models are

principally similar in their inspirational origin (the intelligence of swarms), and are based

on nature-inspired properties, they are fundamentally different in the following aspects.

Criteria ACO PSO

Communication
Mechanism

ACO uses an indirect communication
mechanism among ants, called
stigmergy, which means interaction
through the environment.

The communication among
particles in PSO is rather direct
without altering the environment.

Problem Types

ACO was originally used to solve
combinatorial (discrete) optimization
problems, but it was later modified to
adapt continuous problems.

PSO was originally used to solve
continuous problems, but it was
later modified to adapt binary/
discrete optimization problems.

Problem
Representation

ACO’s solution space is typically

represented as a weighted graph, called
construction graph.

PSO’s solution space is typically

represented as a set of
n-dimensional points.

Algorithm
Applicability

ACO is commonly more applicable to
problems where source and destination
are predefined and specific.

PSO is commonly more applicable
to problems where previous and
next particle positions at each point
are clear and uniquely defined.

Algorithm
Objective

ACO’s objective is generally searching

for an optimal path in the construction
graph.

PSO’s objective is generally finding

the location of an optimal point in a
Cartesian coordinate system.

Examples of
Algorithm

Applications

Sequential ordering [32],
scheduling [33], assembly line
balancing [34], probabilistic TSP [35],
DNA sequencing [36], 2D-HP protein
folding [37], and protein–ligand
docking [38].

Track dynamic systems [60],
evolve NN weights [61], analyze
human tremor [62], register 3D-to-
3D biomedical image [63], control
reactive power and voltage [64],
and even play games [65].

Table 2: Comparison between ACO and PSO

36

4.4 Other SI Models

While ACO and PSO are two of the most common examples of optimization
techniques inspired by swarm intelligence, there are several other optimization
techniques based on SI principles have been proposed in the literature, including
Artificial Bee Colony [11], Bacterial Foraging [19], Cat Swarm Optimization [20],
Artificial Immune System [21] and Glowworm Swarm Optimization [22], among many
others. All these SI models intrinsically share the principal inspirational origin of the
intelligence of different swarms in nature, such as swarms of E. coli bacteria as in
Bacterial Foraging, swarms of cells and molecules as in Artificial Immune System, and
the amazing swarms of honey bees as in the Artificial Bee Colony System.

What is amazing about honey bee colonies is that they are very efficient in
exploiting the best food sources (in terms of distance and quality) based on a group of
forager bees. When a forager bee (recruiter) decides to attract more bee mates to a newly
discovered good food source, it returns to the hive and starts performing what is known
as the ―waggle dance‖ to communicate spatial and profitability information about the
discovered food source, and recruit more honey bees (dancer followers) to exploit it. The
language of waggle dance and its orientation patterns were first deciphered by von Frisch
in 1967 [137]. The waggle dance consists of a series of waggle phases. A waggle phase
starts when the recruiter bee vigorously shakes its body from side to side [134]. The time
interval between each waggle phase is called a return phase, in which the recruiter bee
makes an abrupt turn to the left or right before starting another waggle phase. The waggle
dance encodes both (a) spatial and (b) profitability information of the target food source
to dance followers [140].

(a) As for spatial information, the waggle dance encodes two important pieces of
information: (i) the direction and (ii) the distance to the target. (i) Direction information
is encoded in the waggle dance orientation [140]. During the waggle dance, the recruiter
bees amazingly align their body with an angle representing the direction of food location
relative to current sun direction. This means food sources located directly in line with the
current sun direction are represented by a series of waggle phases oriented to the
upward/vertical direction. If food sources, however, are located with an angle to the right
or left of the sun, their direction is encoded in the waggle dance orientation by a
corresponding angle to the right or left of the upward direction. What is more astounding
is that recruiter bees have an internal clock that helps them adjust the angles of their
dances relative to the sun directional changes throughout the day, even after they have
been in their almost dark hive for extended time [137]. (ii) On the other hand, distance
information is encoded in the waggle phase duration, i.e., dances for close targets have
short waggle phases, while dances for remote targets have long waggle phases. Dance
followers need both direction and distance information to reach the target food source,
which could be several kilometers away from the hive, as they fly in a three-dimensional
space, unlike most ants that just normally walk on the ground searching for nearby food
sources.

(b) As for profitability information, it is encoded in the overall waggle dance

duration and the return phase duration (or the time interval between waggle phases). The
larger the number of waggle phases (or the longer the overall duration of waggle dance),
and the shorter time interval between waggle phases, the more profitable the target food

37

source [140]. Even more astoundingly, the nervous system of even beginner recruiter
bees has been internally calibrated to assess the profitability of food sources based on
different factors: (i) the sugar content of their nectar, (ii) their distance from the colony,
and (iii) the ease with which nectar (or pollen) can be collected. After recruiter bees
assess these factors, they decide on two things: firstly, if the food source worth foraging
for (by themselves), and secondly if it worth recruiting more honey bees [135].

The foraging behaviour of a honey bee colony can be summarized as follows:
When a forager bee finds a food source, it first returns to the hive and relinquishes its
nectar to worker bees to store it in the hive. At that point, the forager bee has three
options/decisions to take: (i) it can become a recruiter bee and performs a waggle dance
to recruit more bees (the dance followers) to join it in foraging for the food source, if it is
worthwhile, (ii) it can remain as a forager bee by just going back to the food source and
continue foraging there by itself, if it is not really worth advertising for, or (iii) it can
become an uncommitted follower by abandoning the food source when it is completely
exhausted – in this case, the uncommitted-follower bee starts to watch for any waggle
dances being performed by other recruiter bees and potentially become a dance-follower
bee [136]. The details of natural honey bee colonies and the Artificial Bee Colony
optimization algorithm, as well as other SI-inspired optimization techniques are beyond
the scope of this paper, but interested readers may refer to these references [11][12][19]-
 [22] for more information.

4.5 Concluding Remarks and Open Questions

In this paper, the main concepts and principles of Swarm Intelligence are presented,
with a particular focus on two of the most successful and popular SI-inspired
optimization techniques: Ant Colony Optimization and Particle Swarm Optimization. The
aim here, in this last section, is suggesting the concluding remarks on the topic, as well as
presenting the current open research questions of the field. It was both challenging and
interesting to study and research on this topic. On one hand, it was completely new to
me, as well as relatively recent and interdisciplinary. On the other hand, it was very
interesting to learn how astoundingly-intelligent the social collective behaviour of
swarms in nature, and see how amazing is it to uncover some of nature‘s secrets, as well
as realize how knowledge from different disciplines (such as, animal behaviour, physics,
social psychology and social sciences) can actually work in harmony together, and
practically be used in computer science and beyond.

 Concluding Remarks:

 Nature is a rich inspirational source and there is still much to learn from.
 We can take advantage of the social collective behaviour of swarms to solve our

real-life problems, by observing how these swarms have survived and solved their
own challenges in nature.

 Several simple agents interacting locally among themselves can eventually
emerge a sophisticated global behaviour.

 Different SI-based computational models are fast-growing, as they are generally
computationally inexpensive, robust, and simple.

 SI-based optimization techniques are far-reaching in many domains, and have a
wide-range of successful applications on different areas.

38

 Swarm intelligence is an active field in Artificial Intelligence and Emerging
Computing, and its potential is still far from being exhausted, with many studies
are exponentially growing and going on.

 Open Questions:

 Should the individual agents of artificial swarms remain simple? If not, how
complex should they be?

 Should the individual agents remain identical or homogenous? If not, how
different should they be?

 Should the individual agents have the ability to learn on their own?
 How local should their knowledge of the environment be?
 How to efficiently tune the parameters of SI systems. Despite different studies in

the literature had tried to solve this problem [99][131][132] (e.g., by adaptively
changing the parameters of SI systems on run time), this is still a current open
research question.

 Should SI approaches remain bottom-up, and the pathways to their solutions
remain emergent (i.e., not predefined)? If not, is it possible to clearly define the
pathways linking between the lower-level individual interactions and the upper-
level emergent group behaviour?

39

References

[1] B. K. Panigrahi, Y. Shi, and M.-H. Lim (eds.): Handbook of Swarm Intelligence.
Series: Adaptation, Learning, and Optimization, Vol 7, Springer-Verlag Berlin
Heidelberg, 2011. ISBN 978-3-642-17389-9.

[2] C. Blum and D. Merkle (eds.). Swarm Intelligence – Introduction and
Applications. Natural Computing. Springer, Berlin, 2008.

[3] M. Belal, J. Gaber, H. El-Sayed, and A. Almojel, Swarm Intelligence, In
Handbook of Bioinspired Algorithms and Applications. Series: CRC Computer &
Information Science. Vol. 7. Chapman & Hall Eds, 2006. ISBN 1-58488-477-5.

[4] M. Dorigo, E. Bonabeau, and G. Theraulaz, Ant algorithms and stigmergy, Future
Gener. Comput. Syst., Vol. 16, No. 8, pp. 851–871, 2000.

[5] G. Beni and J. Wang, Swarm intelligence in cellular robotic systems. In NATO
Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tuscany,
Italy, 1989.

[6] M. Dorigo, V. Maniezzo, and A. Colorni, Positive feedback as a search strategy,
Tech. Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy,
1991.

[7] M. Dorigo, Optimization, learning and natural algorithms (in Italian), Ph.D.
Thesis, Dipartimento diElettronica, Politecnico di Milano, Italy, 1992.

[8] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for Job-shop
Scheduling. Belgian Journal of Operations Research, Statistics and Computer Sci-
ence, 34(1):39-53, 1994.

[9] J. Kennedy and R. C. Eberhart. Particle Swarm Optimization. In Proceedings of
IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–
1948, 1995.

[10] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, Nagoya, Japan, pp. 39–43, 1995.

[11] D. Karaboga, An Idea Based On Honey Bee Swarm for Numerical Optimization,
Technical Report-TR06,Erciyes University, Engineering Faculty, Computer
Engineering Department, 2005.

[12] D. Karaboga and B. Basturk, A Powerful And Efficient Algorithm For
Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm,
Journal of Global Optimization, Springer Netherlands, Vol. 39, No. 3, pp: 459-
471, 2007.

[13] A. P. Engelbrecht (ed.), Computational Intelligence: An Introduction. John
Wiley & Sons, England, 2002.

[14] C. P. Lim, L. C. Jain, and S. Dehuri, Innovations in Swarm Intelligence: Studies
in Computational Intelligence, Vol. 248, Springer, 2009.

[15] S. Das, B. K. Panigrahi, and S. S. Pattnaik, Nature-Inspired Algorithms for
Multi-objective Optimization, Handbook of Research on Machine Learning
Applications and Trends: Algorithms Methods and Techniques, Hershey, New
York, Vol. 1, pp. 95–108, 2009.

40

[16] S. Das, A. Abraham, and A. Konar, Swarm Intelligence Algorithms in
Bioinformatics, Studies in Computational Intelligence. Vol. 94, pp. 113–147,
2008.

[17] K. E. Parsopoulos and M N. Vrahatis, Particle Swarm Optimization and
Intelligence: Advances and Applications, Information Science Reference,
Hershey, Pennsylvania, 2010.

[18] E. Bonabeau, C. Meyer, Swarm Intelligence: A Whole New Way to Think About
Business, Harvard Business Review, Vol.79, No.5, pp. 106-114, 2001.

[19] K. M. Passino, Biomimicry of Bacteria Foraging for Distributed Optimization
and Control, IEEE Control Systems Magazine, Vol. 22, 52–67, 2002.

[20] S.-C. Chu, P.-W. Tsai and J.-S. Pan, Cat swarm optimization, Proc. of the 9th
Pacific Rim International Conference on Artificial Intelligence, LNAI 4099, pp.
854-858, 2006.

[21] M. Bakhouya and J. Gaber, An Immune Inspired-based Optimization Algorithm:
Application to the Traveling Salesman Problem, Advanced Modeling and
Optimization, Vol. 9, No. 1, pp. 105-116, 2007.

[22] K.N. Krishnanand and D. Ghose, Glowworm swarm optimization for searching
higher dimensional spaces. In: C. P. Lim, L. C. Jain, and S. Dehuri (eds.)
Innovations in Swarm Intelligence. Springer, Heidelberg, 2009.

[23] L. Keller and E. Gordon, The Lives of Ants, Oxford University Press, Oxford
2009.

[24] D. E. Jackson, F. L. Ratnieks, Communication in ants, Current Biology, Vol. 16,
No. 15, pp. R570–R574, 2006.

[25] P. Karlson and M. Lüscher, Pheromones: a new term for a class of biologically
active substances. Nature, Vol. 183, pp. 55–56, 1959.

[26] C. Lloyd, The alarm pheromones of social insects: A review, Technical report,
Colorado State University, 2003.

[27] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press, Oxford, 1999.

[28] S. Goss, S. Aron, J.-L. Deneubourg, and J. M. Pasteels, Self-Organized Shortcuts
in the Argentine Ant, Naturwissenchaften, Vol. 76, pp. 579-581, 1989.

[29] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, Cambridge,
2004. ISBN: 978-0-262-04219-2.

[30] N. Zhao, Z. Wu, Y. Zhao, and T. Quan, Ant colony optimization algorithm with
mutation mechanism and its applications. Expert Systems with Applications, Vol.
37, No. 7, pp. 4805-4810, 2010.

[31] R. Beckers, J.-L. Deneubourg, and S. Goss, Modulation of trail laying in the ant
Lasius niger (hymenoptera: Formicidae) and its role in the collective selection of
a food source, Journal of Insect Behavior, Vol. 6, No. 6, pp. 751–759, 1993.

[32] L. M. Gambardella, M. Dorigo, Ant colony system hybridized with a new local
search for the sequential ordering problem. INFORMS J. Comput, Vol. 12, No. 3,
pp. 237–255, 2000.

[33] C. Blum, Beam-ACO—Hybridizing ant colony optimization with beam search:
An application to open shop scheduling, Comput. Oper. Res., Vol. 32, No. 6,
pp. 1565–1591, 2005.

41

[34] C. Blum, Beam-ACO for simple assembly line balancing. INFORMS J. Comput.
Vol. 20, No. 4, pp. 618–627, 2008.

[35] P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo, Estimation-
based ant colony optimization algorithms for the probabilistic travelling salesman
problem. Swarm Intell., 3(3), 223–242, 2009.

[36] C. Blum, M. Yabar, and M. J. Blesa, An ant colony optimization algorithm for
DNA sequencing by hybridization. Comput. Oper. Res. Vol. 35, No. 11,
pp. 3620–3635, 2008.

[37] A. Shmygelska and H. H. Hoos, An ant colony optimisation algorithm for the 2D
and 3D hydrophobic polar protein folding problem. BMC Bioinformat. Vol. 6,
No. 30, 2005.

[38] O. Korb, T. Stützle, and T. E. Exner, An ant colony optimization approach to
flexible protein ligand docking. Swarm Intelli. Vol. 1, No. 2, pp. 115–134, 2007.

[39] S. Sorlin, C. Solnon, and J.-M. Jolion, A Generic Graph Distance Measure
Based on Multivalent Matchings, Studies in Computational Intelligence (SCI),
vol. 52, pp. 151–182. Springer, 2007.

[40] K. Jones and A. Bouffet, Comparison of Ant Colony Optimisation and
Differential Evolution, International Conference on Computer Systems and
Technologies – CompSysTech‘07, 2007.

[41] E. Bonabeau, M. Dorigo, and G. Theraulaz, Inspiration for optimization from
social insect behaviour, Nature, Vol. 406, pp. 39–42, 2000.

[42] M. Dorigo and K. Socha, An Introduction to Ant Colony Optimization. In T. F.
Gonzalez (ed.), Approximation Algorithms and Metaheuristics, CRC Press, 2007.

[43] M. Dorigo and L. M. Gambardella, Ant colonies for the traveling salesman
problem. BioSystems, Vol. 43, No. 2, pp. 73–81, 1997.

[44] M. Dorigo and L. M. Gambardella, Ant Colony System: A cooperative learning
approach to the traveling salesman problem, IEEE Transactions on Evolutionary
Computation, Vol. 1, No. 1, pp. 53–66, 1997.

[45] E. L. Lawler, J. K. Lenstra, A. H. Rinnooy Kan, and D. B. Shmoys, The
Travelling Salesman Problem, John Wiley & Sons, Chichester, UK, 1985.

[46] G. Reinelt. The Traveling Salesman: Computational Solutions for TSP
Applications, Lecture Notes in Computer Science, Springer Verlag, Berlin,
Germany, Vol 840, 1994.

[47] D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study, Princeton University Press,
Princeton, NJ, 2006.

[48] M. Dorigo and T. Stützle, Ant Colony Optimization: Overview and Recent
Advances. In M. Gendreau and Y. Potvin (eds.), Handbook of Metaheuristics, 2nd
edition, International Series in Operations Research & Management Science,
Springer Verlag, New York, Vol. 146, pp. 227-263, 2010.

[49] M. Dorigo, V. Maniezzo and A. Colorni, Ant System: Optimization by a colony
of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics-Part
B, Vol. 26, No. 1, pp. 29-41, 1996

[50] L. M. Gambardella and M. Dorigo, Ant-Q: A Reinforcement Learning Approach
to the Traveling Salesman Problem. Proceedings of ML-95, 12th International

42

Conference on Machine Learning, Tahoe City, CA, In A. Prieditis and S. Russell
(eds.), Morgan Kaufmann, pp. 252-260,1995.

[51] T. Stȕtzle and H. H. Hoos, Improving the Ant System: A detailed report on the
MAX-MIN Ant System. Technical report AIDA-96-12, FG Intellektik, FB
Informatik, TU Darmstadt, Germany, 1996.

[52] B. Bullnheimer, R. F. Hartl and C. Strauss, A new rank-based version of the Ant
System: A computational study, Central European Journal for Operations
Research and Economics, Vol. 7, No. 1, pp. 25–38, 1999.

[53] M. Dorigo and L. M. Gambardella, Ant Colony System: A cooperative learning
approach to the traveling salesman problem, IEEE Transactions on Evolutionary
Computation, Vol. 1, No. 1, pp. 53–66, 1997.

[54] C. Blum, A. Roli and M. Dorigo, HC–ACO: The hyper-cube framework for Ant
Colony Optimization, In Proceedings of MIC‘2001—Metaheuristics International
Conference, Vol. 2, pp. 399–403, 2001.

[55] K. Socha and M. Dorigo, Ant colony optimization for continuous domains,
European Journal of Operations Research, Vol. 185, No. 3, pp. 1155–1173, 2008.

[56] S. Tsutsui, Ant colony optimisation for continuous domains with aggregation
pheromones metaphor, In Proceedings of the 5th International Conference on
Recent Advances in Soft Computing (RASC-04), pp. 207–212, 2004.

[57] K. Socha, ACO for continuous and mixed-variable optimization. In M. Dorigo,
L. Gambardella, F. Mondada, T. Stȕtzle, M. Birratari, and C. Blum (eds.),
Proceedings of the 4th International Conference on Swarm Intelligence
(ANTS ‗04), Lecture Notes in Computer Science 3172, pp. 25–36, 2004.

[58] B. J. Vitins and K.W. Axhausen, Optimization of large transport networks using
the ant colony heuristic, Computer-Aided Civil and Infrastructure Engineering,
Vol. 24, No. 1, pp. 1-14, 2009.

[59] G. Di Garo and M. Dorigo, An Adaptive Multi-Agent Routing Algorithm
Inspired by Ants Behavior, Proc. of 5th Annual Australasian Conf. Para. & Real-
Time Sys., 1998.

[60] R. C. Eberhart and Y. Shi, Tracking and optimizing dynamic systems with
particle swarms, Proc. Congress on Evolutionary Computation 2001, Seoul,
Korea, 2001.

[61] C. Zhang, H. Shao, and Y. Li, Particle Swarm Optimisation for Evolving
Artificial Neural Network, In the 2000 IEEE International Conference on
Systems, Man, and Cybernetics, vol.4, pp.2487-2490, 2000.

[62] R. C. Eberhart and X. Hu, Human tremor analysis using particle swarm
optimization, Proc. Congress on Evolutionary Computation 1999, Washington,
DC, pp. 1927-1930, 1999.

[63] M. P. Wachowiak, R. Smolíková, Y. Zheng, J. M. Zurada, and A. S.
Elmaghraby, An approach to multimodal biomedical image registration utilizing
particle swarm optimization, IEEE Transactions on Evolutionary Computation,
2004.

[64] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, A
particle swarm optimization for reactive power and voltage control considering
voltage security assessment, IEEE Transactions on Power Systems, Vol. 15, No.
4, pp. 1232-1239, 2000.

43

[65] L. Messerschmidt, A. P. Engelbrecht, Learning to play games using a PSO-based
competitive learning approach, IEEE Transactions on Evolutionary Computation,
2004.

[66] T. Blackwell and P. J. Bentley, Improvised music with swarms, In David B.
Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul
Marrow, and Mark Shackleton (eds.), Proceedings of the 2002 Congress on
Evolutionary Computation CEC 2002, pages 1462–1467, IEEE Press, 2002.

[67] M. H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press,
Cambridge, 1995.

[68] B. MacKinnon, R. Snowden, and S. Dudley (eds.), Sharing the skies: an aviation
guide to the management of wildlife hazards, Transport Canada, Ontario, Canada,
2001.

[69] J. T. Emlen, Flocking behaviour in birds, The Auk Journal. Vol. 69, No. 2,
pp. 160-170, 1952.

[70] E. Shaw, Fish in schools, Natural History, Vol. 84, No. 8, pp. 40–45, 1975.
[71] J. K. Parrish, S. V. Viscido, and D. Grunbaum, Self-organized fish schools: an

examination of emergent properties, Biol. Bull., Vol. 202, pp. 296–305, 2002.
[72] J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking,

Physical Review E, Vol. 58, No. 4, pp. 4828–4858, 1998.
[73] A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks. and

herds, Adv. Biophysics, Vol. 22, pp. 1–94, 1986.
[74] C. W. Reynolds, Flocks, herds, and schools: a distributed behavioural model,

Computer Graphics (ACM SIGGRAPH ‘87 Conference Proceedings), Vol. 21,
No. 4, pp. 25–34, July 1987.

[75] M. Jones, K. Pierce Jr., and D. Ward, Avian vision: a review of form and
function with special consideration to birds of prey, Journal of Exotic Pet
Medicine, Vol.16, No.2, pp.69–87, 2007.

[76] R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and
theory, IEEE Trans. Automatic Control, Vol. 51, No. 3, pp. 401–420, 2006.

[77] V. Gazi and K. M. Passino, Swarm Stability and Optimization, Springer 1st
edition, 2011. ISBN: 978-3-642-18040-8.

[78] J. Krause and G. D. Ruxton, Living in Groups, Oxford University Press, Oxford,
UK, 2002.

[79] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, Collective
Memory and Spatial Sorting in Animal Groups, J. Theor. Biol., Vol. 218,
pp. 1–11, 2002.

[80] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann,
San Francisco, CA, 2001.

[81] N. Xiong, J. He, Y. Yang, Y. He, T. Kim, and C. Lin, A Survey on Decentralized
Flocking Schemes for a Set of Autonomous Mobile Robots (Invited Paper).
Journal of Communications, Vol. 5, No. 1, pp. 31-38, 2010.

[82] A. Bandura, Social Foundations of Thought and Action: A Social Cognitive
Theory, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[83] C. Grosan, A. Abraham, and C. Monica, Swarm Intelligence in Data Mining,
Studies in Computational Intelligence, Vol. 34, pp. 1–16. Springer, Heidelberg
2006.

44

[84] F. Heppner and U. Grenander, A stochastic nonlinear model for coordinated bird
flocks. In S . Krasner, Ed., The Ubiquity of Chaos. AAAS Publications,
Washington, DC, 1990.

[85] Y. Shi, Feature article on particle swarm optimization, IEEE Neural Network
Society, Feature Article, pp. 8–13, Feb. 2004.

[86] J. Kennedy, Small worlds and mega-minds: Effects of neighborhood topology on
particle swarm performance, In Proceeding of the 1999 Conference on
Evolutionary Computation, pp. 1931-1938, 1999.

[87] J. Kennedy and R. Mendes, Population structure and particle swarm
performance, Proceeding of the 2002 Congress on Evolutionary Computation,
Honolulu, Hawaii, May 2002.

[88] J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm
algorithm, in Proceeding of the 1997 Conference on Systems, Man, and
Cybernetics, pp. 4104-4109, 1997.

[89] C. K. Mohan and B. Al-kazemi, Discrete particle swarm optimization,
Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN,
2001.

[90] D. K. Agrafiotis and W. Cedeño, Feature selection for structure-activity
correlation using binary particle swarms, Journal of Medicinal Chemistry,
Vol. 45, pp. 1098-1107, 2002.

[91] Y. Valle, G. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, R. G. Harley,
Particle swarm optimization: basic concepts, variants and applications in power
systems. IEEE Trans. on Evolutionary Computation, Vol. 12, No. 2, pp. 171–195,
2008.

[92] J. Kennedy, The particle swarm: Social adaptation of knowledge, in Proc. IEEE
Int. Conf. Evolutionary Computation, pp. 303–308, 1997.

[93] A. Abido, Optimal power flow using particle swarm optimization, International
Journal of Electrical Power Energy System, Vol. 24, No. 7, pp. 563–571, 2002.

[94] Y. Shi and R. Eberhart, Parameter selection in particle swarm optimization,
Evolutionary Programming VII, Lecture Notes in Computer Science, Springer,
Vol. 1447, pp. 591–600, 1998.

[95] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated
annealing, Science, Vol. 220, No. 4598, pp. 671–680, 1983.

[96] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
Equation of State Calculations by Fast Computing Machines, The Journal of
Chemical Physics, Vol. 21, No. 6, p. 1087, 1953.

[97] M. Omran, Particle swarm optimization methods for pattern recognition and
image processing, PhD Thesis, University of Pretoria, 2005.

[98] P. Suganthan, Particle Swarm Optimizer with Neighborhood Operator, In
Proceedings of the Congress on Evolutionary Computation, pp. 1958-1962, 1999.

[99] M. Clerc, The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization, Proc. I999 ICEC, Washington, DC, pp. 1951 –
1957, 1999.

[100] M. Clerc and J. Kennedy, The Particle Swarm: Explosion, Stability, and
Convergence in a Multi-dimensional Complex Space, IEEE Transactions on
Evolutionary Computation, Vol. 6, pp. 58–73, 2002.

45

[101] X. Xie, W. Zhang, and Z. Yang, A dissipative particle swarm optimization, In
Proc. IEEE Congr. Evol. Comput., Vol. 2, pp. 1456–1461, May 2002.

[102] K. Parsopoulos and M. Vrahatis, Recent approaches to global optimization
problems through particle swarm optimization, Natural Computing, Vol. 1,
pp. 235–306, May 2002.

[103] B. Secrest and G. Lamont, Visualizing particle swarm optimization— Gaussian
particle swarm optimization, In Proc. IEEE Swarm Intell. Symp., pp. 198–204,
Apr. 2003.

[104] N. Higashi and H. Iba, Particle Swarm Optimization with Gaussian Mutation,
In Proceedings of the IEEE Swarm Intelligence Symposium‘03 (SIS 2003),
Indianapolis, Indiana, USA. pp. 72-79, 2003.

[105] R. Mendes, J. Kennedy, and J. Neves, The Fully Informed Particle Swarm:
Simpler, may be Better, IEEE Transactions on Evolutionary Computation, Vol. 8,
pp. 204–210, 2004.

[106] X. Li, Adaptively choosing neighborhood bests using species in a particle
swarm optimizer for multimodal function optimization, In Proc. Genetic Evol.
Comput. Conf., pp. 105–116, Jun. 2004.

[107] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration coefficients,
IEEE Trans. Evol. Comput., Vol. 8, No. 3, pp. 240–255, 2004.

[108] F. Van den Bergh, A. P. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Transactions on Evolutionary Computation, Vol. 3, pp.225–
239, 2004.

[109] J. Liang, A. Qin, P. Suganthan, and S. Baskar, Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE Trans.
Evol. Comput., Vol. 10, No. 3, pp. 281–295, Jun. 2006.

[110] F. T. Chan and M. K. Tiwari (eds.), Swarm Intelligence: Focus on Ant and
Particle Swarm Optimization, I-Tech Education and Publishing, Vienna, Austria,
2007.

[111] T. M. Blackwell, Particle swarm optimization in dynamic environments. In S.
Yand, Y. Ong, and Y. Jin (eds.), Evolutionary computation in dynamic
environments, Springer, Berlin, pp. 29–49, 2007.

[112] P. Melin and W. Pedrycz (eds.), Soft Computing for Recognition based on
Biometrics, Studies in Computational Intelligence, Springer, Vol. 312, 2010.

[113] C. Coello Coello and M. Lechuga, MOPSO: A Proposal for Multiple Objective
Particle Swarm Optimization, In Congress on Evolutionary Computation, Vol. 2,
pp. 1051-1056, 2002.

[114] Y. Rahmat-Samii, Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) in Engineering Electromagnetics, The 17th International Conference on
Applied Electromagnetics and Communications (ICECom‘03), pp. 1-5, 2003.

[115] P. J. Angeline, Evolutionary Optimization Versus Particle Swarm
Optimization: Philosophy and Performance Differences, Evolutionary
Programming VII, Lecture Notes in Computer Science, Springer, Vol. 1447,
pp. 601–610, 1998..

[116] R. Hassan, B. Cohanim, O. Weck, and G. Venter, A Comparison of Particle
Swarm Optimization and the Genetic Algorithm, In the 46th

46

AIAA/ASME/ASCE/AHA/ASC Structures, Structural Dynamics and Materials,
American Institute of Aeronautics and Astronautics, Reston, Vol. 2, pp. 1138-
1150, 2005.

[117] R. Eberhart and Y. Shi, Comparison between Genetic Algorithms and Particle
Swarm Optimization, In Proceedings of the 7th Annual Conference on
Evolutionary Programming, Springer-Verlag, pp. 611-619, 1998.

[118] J. Kennedy and W. Spears, Matching Algorithms to Problems: An
Experimental Test of the Particle Swarm and Some Genetic Algorithms on the
Multimodal Problem Generator, In IEEE International Conference on
Evolutionary Computation, Achorage, Alaska, USA, 1998.

[119] J. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[120] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, pp. 1-25, 1989.

[121] D. E. Goldberg, Genetic Algorithms, New York, Addison-Wesley, Ch 1-4,
1989.

[122] J. H. Holland, Genetic algorithms, Scientific American, pp. 66-72, 1992.
[123] A. Lazinica, Particle Swarm Optimization, Ed. In-Tech. Vienna, Austria, 2009.
[124] K. Premalatha and A. M. Natarajan, Hybrid PSO and GA for Global

Maximization, Int. J. Open Probl. Comput. Sci. Math, 2009.
[125] I. C. Trelea, The particle swarm optimization algorithm: convergence analysis

and parameter selection Inf. Process. Lett., Vol. 85, pp. 317–25. 2003.
[126] M. Løvberg. Improving Particle Swarm Optimization by Hybridization of

Stochastic Search Heuristics and Self Organized Critically, Master's Thesis.
Department of Computer Science, University of Aarhus, Denmark, 2002.

[127] M. Løvberg and T. Krink, Extending Particle Swarm Optimizers with Self-
Organized Criticality, In Proceedings of the Fourth Congress on Evolutionary
Computation, Vol. 2, pp. 1588-1593, 2002.

[128] K. Veeramachaneni, T. Peram, C. Mohan and L. Osadciw, Optimization Using
Particle Swarm with Near Neighbor Interactions, Lecture Notes Computer
Science, Springer Verlag, Vol. 2723, 2003.

[129] M. Dorigo, In The Editorial of the First Issue of: Swarm Intelligence Journal,
Springer Science + Business Media, LLC, Vol.1, No. 1, pp. 1–2, 2007.

[130] F. Buck, Cooperative Problem Solving With a Distributed Agent System -
Swarm Intelligence, Master‘s Thesis, Dept. of Electrical and Computer
Engineering, Utah State University, 2005.

[131] L. Chen, X.-H. Xu, and Y.-X. Chen, An adaptive ant colony clustering
algorithm, In Proceedings of the 3rd Conference on Machine Learning and
Cybernetics, pp. 1387–1392, 2004.

[132] Y. Shi and R. C. Eberhart, Fuzzy adaptive particle swarm optimization, In
Proceedings of 2001 Congress on Evolutionary Computation, pp. 101–106. 2001.

[133] N. I. Ghali, N. El-Dessouki, A. N. Mervat, and L. Bakrawi, Exponential
Particle Swarm Optimization Approach for Improving Data Clustering,
International Journal of Electrical, Computer, and Systems Engineering,
pp. 208-212, 2009.

47

[134] J. Tautz, K. Rohrseitz, and D. C. Sandeman, One-strided waggle dance in bees.
Nature, Vol. 382, p. 32, 1996.

[135] T. D. Seeley, The wisdom of the hive, Harvard University Press, Cambridge,
MA, 1995.

[136] E. Bonabeau, G. Theraulaz, J.-L. Deneubourg, S. Aron, and S. Camazine, Self-
organization in social insects, Trends in Ecol. Evol., Vol. 12, pp. 188-193, 1997.

[137] K. Frisch von, The dance language and orientation of bees, Harvard University
Press, Cambridge, MA, 1967.

[138] J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D. H. Wood, DNA
computing implementing genetic algorithms, Evolution as Computation, Springer
Verlag, New York, pp. 39–49, 1999.

[139] M. Perretto and H. S. Lopes, Reconstruction of phylogenetic trees using the ant
colony optimization paradigm, Genetic and Molecular Research, Vol. 4, No. 3,
pp. 581–589, 2005.

[140] M. Beekman, G. A. Sword, and S. J. Simpson, Biological foundations of swarm
intelligence. In C. Blum and D. Merkle (eds.) Swarm Intelligence. Introduction
and Applications, Springer, Berlin, Germany, pp. 3-41. 2008.

[141] C. Blum and X. Li, Swarm Intelligence in Optimization. In C. Blum and D.
Merkle (eds.) Swarm Intelligence. Introduction and Applications, pp. 43-85.
Springer, Berlin, Germany, 2008.

[142] J. D. Moss and C. G. Johnson, An ant colony algorithm for multiple sequence
alignment in bioinformatics, In D. W. Pearson, N. C. Steele, and R. F. Albrecht,
(eds.), Artificial Neural Networks and Genetic Algorithms, pp. 182–186.
Springer, Berlin, Germany, 2003.

[143] P. Meksangsouy and N. Chaiyaratana, DNA fragment assembly using an ant
colony system algorithm, in Proc. of Congress on Evolutionary Computation,
IEEE Press, USA, 2003.

[144] O. Karpenko, J. Shi, and Y. Dai, Prediction of MHC class II binders using the
ant colony search strategy, Artificial Intelligence in Medicine, Vol. 35, No. 1-2,
pp. 147–156, 2005.

[145] R. Poli, An analysis of publications on particle swarm optimization
applications. Technical Report CSM-469, Dept. Computer Science, University of
Essex, UK, 2007.

[146] C.-H. Chen and C.-T. Chu, Low complexity iris recognition based on wavelet
probabilistic neural networks, In Proceedings of IEEE International Joint
Conference on In Neural Networks (IJCNN ‘05), Vol. 3, pp. 1930 – 1935, 2005.

[147] J. Haiyan and Y. Jinli, The application study of apple color grading by particle
swarm optimization neural networks, The 6th World Congress on Intelligent
Control and Automation (WCICA‘06), pp. 2651 – 2654, 2006.

[148] M. Sugisaka and X. Fan, An effective search method for NN-based face
detection using PSO. In SICE Annual Conference, Vol. 3, pp. 2742 – 2745, 2004.

[149] S. Das, A. Abraham, and A. Konar, Spatial information based image
segmentation using a modified particle swarm optimization algorithm. In the 6th
International Conference on Intelligent Systems Design and Applications
(ISDA ‘06), pp. 438 – 444, 2006.

48

[150] W. Brinkman and T. Thayaparan, Focusing ISAR images using the AJTF
optimized with the GA and the PSO algorithm – comparison and results, In IEEE
Conference on Radar, pp. 24-27, April 2006.

[151] V. Ciesielski, G. Wijesinghe, A. Innes, and S. John, Analysis of the superiority
of parameter optimization over genetic programming for a difficult object
detection problem, In IEEE Congress on Evolutionary Computation (CEC‘06),
pp. 1264 – 1271, 2006.

[152] K. Chandramouli and E. Izquierdo, Image classification using chaotic particle
swarm optimization, In IEEE International Conference on Image Processing,
pp. 3001 – 3004, 2006.

[153] W. H. Slade, H. W. Ressom, M.T. Musavi, and R.L. Miller, Inversion of ocean
color observations using particle swarm optimization, IEEE Transactions on
Geoscience and Remote Sensing, Vol. 42, pp. 1915 – 1923, 2004.

[154] H. Zhang and D. Luo, A PSO-based method for traffic stop-sign detection, The
6th World Congress on Intelligent Control and Automation (WCICA‘06),
pp. 8625 – 8629, 2006.

[155] D.-M. Tsai, Y.-H. Tseng, S.-M. Chao, and C.-H. Yen, Independent component
analysis based filter design for defect detection in low-contrast textured images,
The 18th International Conference on Pattern Recognition (ICPR‘06),
pp. 231 – 234, 2006.

[156] K. Kameyama, N. Oka, and K. Toraichi, Optimal parameter selection in image
similarity evaluation algorithms using particle swarm optimization, In IEEE
Congress on Evolutionary Computation (CEC‘06), pp. 1079 – 1086, 2006.

[157] Y. Owechko, S. Medasani, and N. Srinivasa, Classifier swarms for human
detection in infrared imagery, In the IEEE Computer Vision and Pattern
Recognition (CVPR‘04), pp. 121 – 121, 2004.

[158] S. Das, A. Abraham, and S. K. Sarkar, A hybrid rough set–particle swarm
algorithm for image pixel classification, The 6th International Conference on
Hybrid Intelligent Systems (HIS ‘06), p. 26, 2006.

[159] Y. Owechko and S. Medasani, Cognitive swarms for rapid detection of objects
and associations in visual imagery, In Proceedings of IEEE Swarm Intelligence
Symposium (SIS‘05), pp. 420 – 423, 2005.

[160] P. Saisan, S. Medasani, and Y. Owechko, Multi-view classifier swarms for
pedestrian detection and tracking, In the IEEE Computer Vision and Pattern
Recognition (CVPR‘05), p. 18, 2005.

[161] Y. Zhang, Y. Meng, W.-H. Li, and Y.-J. Pang, A fast algorithm for image
analogy using particle swarm optimization, In Proceedings of the International
Conference on Machine Learning and Cybernetics, Vol.7, pp. 4043 – 4048 , 2004.

[162] T. Huang and A. S. Mohan, Significance of neighborhood topologies for the
reconstruction of microwave images using particle swarm optimization, In Proc.
of Asia-Pacific Microwave Conference (APMC‘05), pp. 237–240, 2005.

[163] O. Sjahputera and J. M. Keller, Particle swarm over scene matching, In Proc. of
IEEE Swarm Intelligence Symposium (SIS‘05), pp. 108 – 115, 2005.

[164] B. Fumin, L. Aiguo, and Q. Zheng, Photo time-stamp recognition based on
particle swarm optimization, In Proceedings of IEEE/WIC/ACM International
Conference on Web Intelligence (WI‘04), pp. 529 – 532, 2004.

49

[165] N. M. Kwok, Q. P. Ha, D. K. Liu, and G. Fang, Intensity-preserving contrast
enhancement for gray-level images using multi-objective particle swarm
optimization. In the IEEE International Conference on Automation Science and
Engineering (CASE‘06), pp. 21 – 26, 2006.

[166] Q. Sun, Y. Shi, R. C. Eberhart, and W. A. Bauson, Utilizing particle swarm
optimization to label a structured beam matrix. In Proceedings of the IEEE
Swarm Intelligence Symposium (SIS ‘03), pp. 118 – 123, 2003.

[167] M. Zhang, L. Zhang, Y. Sun, L. Feng, and W. Ma, Auto cropping for digital
photographs. In the IEEE International Conference on Multimedia and Expo
(ICME 2005), 2005.

[168] Y. Li, J. Li, and L. Meng, Character recognition based on hierarchical RBF
neural networks, In the 6th International Conference on Intelligent Systems Design
and Applications (ISDA‘06), pp. 127 – 132, 2006.

[169] J.-X. Du, D.-S.Huang, J. Zhang, and X.-F. Wang, Shape matching using fuzzy
discrete particle swarm optimization. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS‘05), pp. 405 – 408, 2005.

[170] Y.-C. Chen, H.-C. Wang, and T.-J. Su, Particle swarm optimization for image
noise cancellation. In the First International Conference on Innovative
Computing, Information and Control (ICICIC‘06), pp. 587 – 590, 2006.

[171] H. K. Arachchi and W. A. Fernando, PSO based bit rate optimization for
MPEG-1/2 video coding. In the IEEE International Conference on Image
Processing (ICIP‘05), pp. II– 329–332, 2005.

[172] G.-Y. Du, T.-S. Huang, L.-X. Song, and B.-J. Zhao, A novel fast motion
estimation method based on particle swarm optimization, The International
Conference on Machine Learning and Cybernetics, Vol. 8, pp. 5038 – 5042, 2005.

[173] L. Anton-Canalis, M. Hernandez-Tejera, and E. Sanchez-Nielsen, Particle
swarms as video sequence inhabitants for object tracking in computer vision, In
the 6th International Conference on Intelligent Systems Design and Applications
(ISDA‘06), pp. 604 – 609, 2006.

[174] S. Ivekovic and E. Trucco, Human body pose estimation with PSO. In the IEEE
Congress on Evolutionary Computation (CEC‘06), pp. 1256 – 1263, 2006.

[175] D. Srinivasan, W. H. Loo, and R. L. Cheu, Traffic incident detection using
particle swarm optimization, In Proceedings of the IEEE Swarm Intelligence
Symposium (SIS‘03), pp. 144 – 151, 2003.

[176] H. W. Ressom, Y. Zhang, J. Xuan, Y. Wang, and R. Clarke, Inference of gene
regulatory networks from time course gene expression data using neural networks
and swarm intelligence, In the IEEE Symposium on Computational Intelligence
and Bioinformatics and Computational Biology (CIBCB‘06), pp. 1 – 8, 2006.

[177] N. Khemka, C. Jacob, and G. Cole, Making soccer kicks better: a study in
particle swarm optimization and evolution strategies, In the IEEE Congress on
Evolutionary Computation, Vol.1, pp. 735 – 742, 2005.

[178] H.-Y. Lv, W.-G. Zhou, and C.-G. Zhou, A discrete particle swarm optimization
algorithm for phylogenetic tree reconstruction, In Proceedings of the International
Conference on Machine Learning and Cybernetics, Vol. 4, pp. 2650 – 2654, 2004.

[179] R. Xu, G. C. Anagnostopoulos, and D. C. Wunsch, Multiclass cancer
classification using semi-supervised ellipsoid art-map and particle swarm

50

optimization with gene expression data. In the IEEE/ACM Transactions on
Computational Biology and Bioinformatics, pp. 65 – 77, 2007.

[180] R. Xu, X. Cai, and D. C. Wunsch, Gene expression data for DLBCL cancer
survival prediction with a combination of machine learning technologies, In the
27th Annual International Conference of the Engineering in Medicine and
Biology Society (IEEE-EMBS‘05), pp. 894 – 897, 2005.

[181] C. T. Hardin and E. C. Rouchka, DNA motif detection using particle swarm
optimization and expectation-maximization, In IEEE Proceedings of Swarm
Intelligence Symposium (SIS 2005), pp. 181 – 184, 2005.

[182] X. Xiao, E. R. Dow, R. C. Eberhart, Z. B. Miled, and R. J. Oppelt, Gene
clustering using self-organizing maps and particle swarm optimization, In
Proceedings of the 2nd IEEE international workshop on high performance
computational biology, Nice, France, 2003.

[183] X.-Y. Chang, C.-G. Zhou, Y.-W. Li, and P. Hu, Identification of transcription
factor binding sites using GA and PSO, In the 6th International Conference on
Intelligent Systems Design and Applications (ISDA‘06), pp. 473 – 480, 2006.

[184] H. W. Ressom, R. S. Varghese, E. Orvisky, S. K. Drake, G. L. Hortin, M.
Abdel-Hamid, C. A. Loffredo, and R. Goldman, Analysis of MALDI-TOF serum
profiles for biomarker selection and sample classification, In Proceedings of IEEE
Symposium on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB ‘05), pp. 1 – 7, 2005.

[185] S.-H. Doong, Protein homology modeling with heuristic search for sequence
alignment, In the 40th Annual Hawaii International Conference on System
Sciences (HICSS‘07), pp. 128 – 128, 2007.

[186] B.-F. Liu, H.-M. Chen, H.-L. Huang, S.-F. Hwang, and S.-Y. Ho, Flexible
protein-ligand docking using particle swarm optimization. In IEEE Congress on
Evolutionary Computation, Vol.1, pp. 251 – 258, 2005.

[187] W. Cedefto and D. Agraflotis, Particle swarms for drug design. In IEEE
Congress on Evolutionary Computation, Vol. 2, pp. 1218 – 1225, 2005.

[188] Y. Li, D. Yao, and W. Chen, Adaptive particle swarm optimizer for beam angle
selection in radiotherapy planning. In IEEE International Conference
Mechatronics and Automation, Vol. 1, pp. 421 – 425, 2005.

[189] L. Xie and L. Jiang, Global Optimal ICA and its Application in Brain MEG
Data Analysis, In the International Conference on Neural Networks and Brain
(ICNN&B‘05), pp. 353 – 357, 2005.

[190] M. Neethling and A. P. Engelbrecht, Determining RNA secondary structure
using set-based particle swarm optimization. In IEEE Congress on Evolutionary
Computation (CEC‘06), pp. 1670 – 1677, 2006.

[191] L. Qiu, Y. Li, and D. Yao, A feasibility study of EEG dipole source localization
using particle swarm optimization, In IEEE Congress on Evolutionary
Computation, Vol.1, pp. 720 – 726, 2005.

[192] K. Veeramachaneni, L. A. Osadciw, and P.K. Varshney, An adaptive
multimodal biometric management algorithm, IEEE Transactions on Systems,
Man and Cybernetics, Part C, Vol. 35, pp. 344 – 356, 2005.

