
1

Swarm Intelligence: Foundations, Perspectives

and Applications

Ajith Abraham1, He Guo2, and Hongbo Liu2

1 IITA Professorship Program, School of Computer Science and Engineering,
Chung-Ang University, Seoul, 156-756, Korea. ajith.abraham@ieee.org,
http://www.softcomputing.net

2 Department of Computer Science, Dalian University of Technology, Dalian,
116023, China. {guohe,lhb}@dlut.edu.cn

This chapter introduces some of the theoretical foundations of swarm intel-
ligence. We focus on the design and implementation of the Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) algorithms for var-
ious types of function optimization problems, real world applications and data
mining. Results are analyzed, discussed and their potentials are illustrated.

1.1 Introduction

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for
solving optimization problems that originally took its inspiration from the
biological examples by swarming, flocking and herding phenomena in verte-
brates.

Particle Swarm Optimization (PSO) incorporates swarming behaviors ob-
served in flocks of birds, schools of fish, or swarms of bees, and even hu-
man social behavior, from which the idea is emerged [14, 7, 22]. PSO is a
population-based optimization tool, which could be implemented and applied
easily to solve various function optimization problems, or the problems that
can be transformed to function optimization problems. As an algorithm, the
main strength of PSO is its fast convergence, which compares favorably with
many global optimization algorithms like Genetic Algorithms (GA) [13], Sim-
ulated Annealing (SA) [20, 27] and other global optimization algorithms. For
applying PSO successfully, one of the key issues is finding how to map the
problem solution into the PSO particle, which directly affects its feasibility
and performance.

Ant Colony Optimization (ACO) deals with artificial systems that is in-
spired from the foraging behavior of real ants, which are used to solve discrete

A. Abraham et al.: Swarm Intelligence: Foundations, Perspectives and Applications, Studies in

Computational Intelligence (SCI) 26, 3–25 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

4 Ajith Abraham, He Guo, and Hongbo Liu

optimization problems [9]. The main idea is the indirect communication be-
tween the ants by means of chemical pheromone trials, which enables them
to find short paths between their nest and food.

This Chapter is organized as follows. Section 1.2 presents the canonical
PSO algorithm and its performance is compared with some global optimiza-
tion algorithms. Further some extended versions of PSO is presented in Sec-
tion 1.3 followed by some illustrations/applications in Section 1.4. Section
1.5 presents the ACO algorithm followed by some illustrations/applications
of ACO in Section 1.6 and Section 1.7. Some conclusions are also provided
towards the end, in Section 1.8.

1.2 Canonical Particle Swarm Optimization

1.2.1 Canonical Model

The canonical PSO model consists of a swarm of particles, which are initial-
ized with a population of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new solutions, where the
fitness, f , can be calculated as the certain qualities measure. Each particle has
a position represented by a position-vector xi (i is the index of the particle),
and a velocity represented by a velocity-vector vi. Each particle remembers
its own best position so far in a vector x#

i , and its j-th dimensional value

is x#
ij . The best position-vector among the swarm so far is then stored in a

vector x∗, and its j-th dimensional value is x∗
j . During the iteration time t,

the update of the velocity from the previous velocity to the new velocity is
determined by Eq.(1.1). The new position is then determined by the sum of
the previous position and the new velocity by Eq.(1.2).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x

∗
j (t) − xij(t)). (1.1)

xij(t + 1) = xij(t) + vij(t + 1). (1.2)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly
distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1

is a positive constant, called as coefficient of the self-recognition component,
c2 is a positive constant, called as coefficient of the social component. From
Eq.(1.1), a particle decides where to move next, considering its own experience,
which is the memory of its best past position, and the experience of its most
successful particle in the swarm. In the particle swarm model, the particle
searches the solutions in the problem space with a range [−s, s] (If the range
is not symmetrical, it can be translated to the corresponding symmetrical
range.) In order to guide the particles effectively in the search space, the
maximum moving distance during one iteration must be clamped in between
the maximum velocity [−vmax, vmax] given in Eq.(1.3):

1 Swarm Intelligence: Foundations, Perspectives and Applications 5

vij = sign(vij)min(|vij | , vmax). (1.3)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be
s, i.e. p = 1. The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 1.

Algorithm 1 Particle Swarm Optimization Algorithm

01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x

#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(1.1), (1.2), (1.3);
12. Next j
13. Next i
14. End While.

The end criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated
after a fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is
terminated after some fixed number of iterations without any improve-
ment.

• Minimum objective function error: the error between the obtained ob-
jective function value and the best fitness value is less than a pre-fixed
anticipated threshold.

1.2.2 The Parameters of PSO

The role of inertia weight w, in Eq.(1.1), is considered critical for the conver-
gence behavior of PSO. The inertia weight is employed to control the impact
of the previous history of velocities on the current one. Accordingly, the pa-
rameter w regulates the trade-off between the global (wide-ranging) and local
(nearby) exploration abilities of the swarm. A large inertia weight facilitates
global exploration (searching new areas), while a small one tends to facilitate
local exploration, i.e. fine-tuning the current search area. A suitable value
for the inertia weight w usually provides balance between global and local
exploration abilities and consequently results in a reduction of the number

6 Ajith Abraham, He Guo, and Hongbo Liu

of iterations required to locate the optimum solution. Initially, the inertia
weight is set as a constant. However, some experiment results indicates that
it is better to initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually decrease it to get more
refined solutions [11]. Thus, an initial value around 1.2 and gradually reduc-
ing towards 0 can be considered as a good choice for w. A better method
is to use some adaptive approaches (example: fuzzy controller), in which the
parameters can be adaptively fine tuned according to the problems under
consideration [24, 16].

The parameters c1 and c2, in Eq.(1.1), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and
alleviation of local minima. As default values, usually, c1 = c2 = 2 are used,
but some experiment results indicate that c1 = c2 = 1.49 might provide even
better results. Recent work reports that it might be even better to choose a
larger cognitive parameter, c1, than a social parameter, c2, but with c1 + c2 ≤
4 [7].

The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by
each individual’s previous best success and the success of some other particle.
Various methods have been used to identify some other particle to influence
the individual. Eberhart and Kennedy called the two basic methods as “gbest
model” and “lbest model” [14]. In the lbest model, particles have information
only of their own and their nearest array neighbors’ best (lbest), rather than
that of the entire group. Namely, in Eq.(1.4), gbest is replaced by lbest in the
model. So a new neighborhood relation is defined for the swarm:

vid(t+1) = w∗vid(t)+c1∗r1∗(pid(t)−xid(t))+c2∗r2∗(pld(t)−xid(t)). (1.4)

xid(t + 1) = xid(t) + vid(t + 1). (1.5)

In the gbest model, the trajectory for each particle’s search is influenced by
the best point found by any member of the entire population. The best particle
acts as an attractor, pulling all the particles towards it. Eventually all particles
will converge to this position. The lbest model allows each individual to be
influenced by some smaller number of adjacent members of the population
array. The particles selected to be in one subset of the swarm have no direct
relationship to the other particles in the other neighborhood. Typically lbest
neighborhoods comprise exactly two neighbors. When the number of neighbors
increases to all but itself in the lbest model, the case is equivalent to the
gbest model. Some experiment results testified that gbest model converges
quickly on problem solutions but has a weakness for becoming trapped in
local optima, while lbest model converges slowly on problem solutions but is
able to “flow around” local optima, as the individuals explore different regions.
The gbest model is recommended strongly for unimodal objective functions,
while a variable neighborhood model is recommended for multimodal objective
functions.

1 Swarm Intelligence: Foundations, Perspectives and Applications 7

Kennedy and Mendes [15] studied the various population topologies on
the PSO performance. Different concepts for neighborhoods could be envis-
aged. It can be observed as a spatial neighborhood when it is determined
by the Euclidean distance between the positions of two particles, or as a so-
ciometric neighborhood (e.g. the index position in the storing array). The
different concepts for neighborhood leads to different neighborhood topolo-
gies. Different neighborhood topologies primarily affect the communication
abilities and thus the group’s performance. Different topologies are illustrated
in Fig. 1.1. In the case of a global neighborhood, the structure is a fully con-
nected network where every particle has access to the others’ best position
(Refer Fig. 1.1(a)). But in local neighborhoods there are more possible vari-
ants. In the von Neumann topology (Fig. 1.1(b)), neighbors above, below, and
each side on a two dimensional lattice are connected. Fig. 1.1(e) illustrates the
von Neumann topology with one section flattened out. In a pyramid topol-
ogy, three dimensional wire frame triangles are formulated as illustrated in
Fig. 1.1(c). As shown in Fig. 1.1(d), one common structure for a local neigh-
borhood is the circle topology where individuals are far away from others (in
terms of graph structure, not necessarily distance) and are independent of
each other but neighbors are closely connected. Another structure is called
wheel (star) topology and has a more hierarchical structure, because all mem-
bers of the neighborhood are connected to a ‘leader’ individual as shown in
Fig. 1.1(f). So all information has to be communicated though this ‘leader’,
which then compares the performances of all others.

Fig. 1.1. Some neighborhood topologies adapted from [15]

8 Ajith Abraham, He Guo, and Hongbo Liu

1.2.3 Performance Comparison with Some Global Optimization
Algorithms

We compare the performance of PSO with Genetic Algorithm (GA) [6, 13]
and Simulated Annealing (SA)[20, 27]. GA and SA are powerful stochastic
search and optimization methods, which are also inspired from biological and
thermodynamic processes.

Genetic algorithms mimic an evolutionary natural selection process. Gen-
erations of solutions are evaluated according to a fitness value and only those
candidates with high fitness values are used to create further solutions via
crossover and mutation procedures.

Simulated annealing is based on the manner in which liquids freeze or
metals re-crystalize in the process of annealing. In an annealing process, a
melt, initially at high temperature and disordered, is slowly cooled so that
the system at any time is approximately in thermodynamic equilibrium. In
terms of computational simulation, a global minimum would correspond to
such a ”frozen” (steady) ground state at the temperature T=0.

The specific parameter settings for PSO, GA and SA used in the experi-
ments are described in Table 1.1.

Table 1.1. Parameter settings for the algorithms.

Algorithm Parameter name Parameter value

Size of the population 20
Probability of crossover 0.8

GA Probability of mutation 0.02
Scale for mutations 0.1
Tournament probability 0.7

Number operations before temperature adjustment 20
Number of cycles 10

SA Temperature reduction factor 0.85
Vector for control step of length adjustment 2
Initial temperature 50

Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

Benchmark functions:

• Griewank function:
f1 = 1

4000

∑n

i=1(xi)
2 −

∏n

i=1 cos(xi√
i
) + 1

x ∈ [−300, 300]n, min(f1(x
∗)) = f1(0) = 0.

1 Swarm Intelligence: Foundations, Perspectives and Applications 9

• Schwefel 2.26 function:
f2 = 418.9829n −

∑n

i=1(xisin(
√

|xi|))
x ∈ [−500, 500]n, min(f2(x

∗)) = f2(0) = 0.
• Quadric function:

f3 =
∑n

i=1(
∑i

j=1 xj)
2

x ∈ [−100, 100]n, min(f3(x
∗)) = f3(0) = 0.

Three continuous benchmark functions, i.e. Griewank function, Schwefel
2.26 function and Quadric function, are used to test PSO, GA and SA. Quadric
function has a single minimum, while the other two functions are highly multi-
modal with multiple local minima. For all the test functions, the goal is to find
the global minima. Each algorithm (for each function) was repeated 10 times
with different random seeds. Each trial had a fixed number of 18,000 iterations.
The objective functions were evaluated 360,000 times in each trial. The swarm
size in PSO was 20, population size in GA was 20, the number operations
before temperature adjustment in SA was set to 20. Figures 1.2, 1.3 and 1.4
illustrate the mean best function values for the three functions. It is observed
that for GA and SA, the solutions get trapped in a local minimum even
before 2000 iterations, for high dimensional, multi-modal functions, especially
for Schwefel 2.26 function, while PSO performance is much better. For the
Quadric function, SA performed well and PSO performance was comparatively
poor, as depicted in Fig. 1.4.

0 0.5 1 1.5 2

x 10
4

10
1

10
0

10
1

10
2

10
3

Iteration

F
it

n
e
s
s

PSO

GA

SA

Fig. 1.2. Griewank function performance

10 Ajith Abraham, He Guo, and Hongbo Liu

0 0.5 1 1.5 2

x 10
4

10
−2

10
0

10
2

10
4

10
6

Iteration

F
it

n
e

s
s PSO

GA

SA

Fig. 1.3. Schwefel function performance

0 0.5 1 1.5 2

x 10
4

10
2

10
3

10
4

10
5

10
6

Iteration

F
it

n
e
s
s

PSO

GA

SA

Fig. 1.4. Quadric function performance

1.3 Extended Models of PSO for Discrete Problems

1.3.1 Fuzzy PSO

In the fuzzy PSO model, the representations of the position and velocity of
the particles in PSO are extended from real vectors to fuzzy matrices [21].
This is illustrated using the well known job scheduling problem. For a job
scheduling problem: the jobs J = {J1, J2, · · · , Jn} are to be scheduled on the
machines M = {M1,M2, · · · ,Mm}, and the fuzzy scheduling relation from M
to J can be expressed as follows:

1 Swarm Intelligence: Foundations, Perspectives and Applications 11

X =

⎡

⎢

⎢

⎢

⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥

⎥

⎥

⎦

where xij represents the degree of membership of the i-th element Mi in
domain M and the j-th element Jj in domain J to relation X. The fuzzy
relation X between M and J has the following meaning: for each element in
the matrix X, the element

xij = µR(Mi, Jj), i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}. (1.6)

µR is the membership function, the value of xij means the degree of member-
ship that Mj would process Ji in the feasible schedule solution. The elements
of the matrix X should satisfy the following conditions:

xij ∈ [0, 1], i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}. (1.7)

m
∑

i=1

xij = 1, i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}. (1.8)

Similarly the velocity of the particle is defined as:

V =

⎡

⎢

⎢

⎢

⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤

⎥

⎥

⎥

⎦

The operators of Eqs.(1.1) and (1.2) should be re-defined because the posi-
tion and velocity have been transformed to the form of matrices. The symbol
“⊗” is used to denote the modified multiplication. Let α be a real number,
α⊗V or α⊗X means all the elements in the matrix V or X are multiplied by
α. The symbols “⊕” and “⊖” denote the addition and subtraction between
matrices respectively. Suppose A and B are two matrices which denote posi-
tion or velocity, then A ⊕ B and A ⊖ B are regular addition and subtraction
operation between matrices.

Then we obtain Eqs.(1.9) and (1.10) for updating the positions and veloc-
ities of the particles in the fuzzy discrete PSO:

V (t+1) = w⊗V (t)⊕(c1∗r1)⊗(X#(t)⊖X(t))⊕(c2∗r2)⊗(X∗(t)⊖X(t)). (1.9)

X(t + 1) = X(t) ⊕ V (t + 1)). (1.10)

The position matrix may violate the constraints of Eqs.(1.7) and (1.8)
after some iterations, so it is necessary to normalize the position matrix. First
we make all the negative elements in the matrix become zero. If all elements

12 Ajith Abraham, He Guo, and Hongbo Liu

in a column of the matrix are zero, they need be re-evaluated using a series of
random numbers with the interval [0,1]. And then the matrix undergoes the
following transformation without violating the constraints:

Xnormal =

⎡

⎢

⎢

⎢

⎣

x11/
∑m

i=1 xi1 x12/
∑m

i=1 xi2 · · · x1n/
∑m

i=1 xin

x21/
∑m

i=1 xi1 x22/
∑m

i=1 xi2 · · · x2n/
∑m

i=1 xin

...
...

. . .
...

xm1/
∑m

i=1 xi1 xm2/
∑m

i=1 xi2 · · · xmn/
∑m

i=1 xin

⎤

⎥

⎥

⎥

⎦

Since the position matrix indicates the potential scheduling solution, we
should “decode” the fuzzy matrix and get the feasible solution. A flag array
could be used to record whether we have selected the columns of the matrix
and a array to record the solution. First all the columns are not selected, then
for each columns of the matrix, we choose the element which has the max
value, then mark the column of the max element “selected”, and the column
number are recorded to the solution array. After all the columns have been
processed, we get the feasible solution from the solution array and measure
the fitness of the particles.

1.3.2 Binary PSO

The canonical PSO is basically developed for continuous optimization prob-
lems. However, lots of practical engineering problems are formulated as com-
binatorial optimization problems. The binary PSO model was presented by
Kennedy and Eberhart, and is based on a very simple modification of the real-
valued PSO. Faced with a problem-domain where we cannot fit into some
sub-space of the real-valued n-dimensional space, which is required by the
PSO, odds are that we can use a binary PSO instead. All we must provide,
is a mapping from this given problem-domain to the set of bit strings. As
with the canonical PSO, a fitness function f must be defined. In the binary
PSO, we can define a particle’s position and velocity in terms of changes of
probabilities that will be in one state or the other, i.e. yes or no, true or false,
or making some other decision. When the particle moves in a state space re-
stricted to zero and one on each dimension, the change of probability with
time steps is defined as follows:

P (xij(t + 1) = 1) = f(xij(t), vij(t), x
#
ij(t), x

∗
j (t)). (1.11)

where the probability function is usually

sign(vij(t + 1) = 1) =
1

1 + e−vij(t)
. (1.12)

At each time step, each particle updates its velocity and moves to a new
position according to Eqs.(1.13) and (1.14):

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x

∗
j (t) − xij(t)). (1.13)

1 Swarm Intelligence: Foundations, Perspectives and Applications 13

xi(t + 1) =
1 if ρ ≤ s(vi(t)),
0 otherwise.

(1.14)

where c1, c2 are learning factors; w is inertia factor; r1, r2, ρ are random func-
tions in the closed interval [0, 1].

1.4 Applications of Particle Swarm Optimization

1.4.1 Job Scheduling on Computational Grids

Grid computing is a computing framework to meet the growing computational
demands. Essential grid services contain more intelligent functions for resource
management, security, grid service marketing, collaboration and so on. The
load sharing of computational jobs is the major task of computational grids [2].

To formulate our objective, define Ci,j (i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n})
as the completion time that the grid node Gi finishes the job Jj ,

∑

Ci rep-
resents the time that the grid node Gi finishes all the scheduled jobs. Define
Cmax = max{

∑

Ci} as the makespan, and
∑m

i=1(
∑

Ci) as the flowtime. An
optimal schedule will be the one that optimizes the flowtime and makespan.
The conceptually obvious rule to minimize

∑m

i=1(
∑

Ci) is to schedule Short-
est Job on the Fastest Node (SJFN). The simplest rule to minimize Cmax

is to schedule the Longest Job on the Fastest Node (LJFN). Minimizing
∑m

i=1(
∑

Ci) asks the average job finishes quickly, at the expense of the largest
job taking a long time, whereas minimizing Cmax, asks that no job takes too
long, at the expense of most jobs taking a long time. Minimization of Cmax

will result in the maximization of
∑m

i=1(
∑

Ci).
To illustrate the performance of the algorithms, we considered a finite num-

ber of grid nodes and assumed that the processing speeds of the grid nodes
(cput) and the job lengths (processing requirements in cycles) are known.
Specific parameter settings of the three considered algorithms (PSO, GA and
SA) are described in Table 1.1. The parameters used for the ACO algorithm
are as follows:

Number of ants = 5
Weight of pheromone trail α = 1
Weight of heuristic information β = 5
Pheromone evaporation parameter ρ = 0.8
Constant for pheromone updating Q = 10

Each experiment (for each algorithm) was repeated 10 times with different
random seeds. Each trial had a fixed number of 50∗m ∗n iterations (m is the
number of the grid nodes, n is the number of the jobs). The makespan values
of the best solutions throughout the optimization run were recorded. And the
averages and the standard deviations were calculated from the 10 different

14 Ajith Abraham, He Guo, and Hongbo Liu

trials. The standard deviation indicates the differences in the results during
the 10 different trials. In a grid environment, the main emphasis will be to
generate the schedules at a minimal amount of time. So the completion time
for 10 trials were used as one of the criteria to improve their performance.

We tested a small scale job scheduling problem involving 3 machines and
13 jobs (3,13) and 5 machines and 100 jobs (5,100). Fig. 1.5 illustrates the
performance of the four algorithms for (3,13). The results for 10 GA runs
were {47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49}, with an average value
of 47.1167. The results of 10 SA runs were {46.5, 46.5, 46, 46,46, 46.6667, 47,
47.3333, 47, 47}with an average value of 46.6. The results of 10 PSO runs were
{46, 46, 46, 46, 46.5, 46.5, 46.5, 46, 46.5, 46.6667}, with an average value of
46.2667. The results of 10 ACO runs were {46, 46, 46, 46, 46.5, 46.5, 46.5, 46,
46, 46.5}, with an average value of 46.2667. The optimal result is supposed
to be 46. While GA provided the best results twice, SA, PSO, ACO provided
the best results three, five and six times respectively. Empirical results are
summarized in Table 1.2 for (3,13) and (5,100).

0 500 1000 1500 2000
46

47

48

49

50

51

52

53

54

55

56

Iteration

M
a
k
e
s
p

a
n

GA

SA

PSO

ACO

Fig. 1.5. Performance for job scheduling (3,13)

1.4.2 PSO for Data Mining

Data mining and particle swarm optimization may seem that they do not have
many properties in common. However, they can be used together to form
a method which often leads to the result, even when other methods would
be too expensive or difficult to implement. Ujjinn and Bentley [28] provided
internet-based recommender system, which employs a particle swarm opti-
mization algorithm to learn personal preferences of users and provide tailored

1 Swarm Intelligence: Foundations, Perspectives and Applications 15

Table 1.2. Comparing the performance of the considered algorithms.

InstanceAlgorithm Item
(3,13) (5,100)

Average makespan 47.1167 85.7431
GA Standard Deviation ±0.7700 ±0.6217

Time 302.9210 2415.9

Average makespan 46.6000 90.7338
SA Standard Deviation ±0.4856 ±6.3833

Time 332.5000 6567.8

Average makespan 46.2667 84.0544
PSO Standard Deviation ±0.2854 ±0.5030

Time 106.2030 1485.6

Average makespan 46.2667 88.1575
ACO Standard Deviation ±0.2854 ±0.6423

Time 340.3750 6758.3

suggestions. Omran et al. [19] used particle swarm to implement image clus-
tering. When compared with K-means, Fuzzy C-means, K-Harmonic means
and genetic algorithm approaches, in general, the PSO algorithm produced
better results with reference to inter- and intra-cluster distances, while having
quantization errors comparable to the other algorithms. Sousa et al. [25] pro-
posed the use of the particle swarm optimizer for data mining. Tested against
genetic algorithm and Tree Induction Algorithm (J48), the obtained results
indicates that particle swarm optimizer is a suitable and competitive candi-
date for classification tasks and can be successfully applied to more demanding
problem domains. The basic idea of combining particle swarm optimization
with data mining is quite simple. To extract this knowledge, a database may
be considered as a large search space, and a mining algorithm as a search strat-
egy. PSO makes use of particles moving in an n-dimensional space to search
for solutions for an n-variable function (that is fitness function) optimization
problem. The datasets are the sample space to search and each attribute is
a dimension for the PSO-miner. During the search procedure, each particle
is evaluated using the fitness function which is a central instrument in the
algorithm. Their values decide the swarm’s performance. The fitness function
measures the predictive accuracy of the rule for data mining, and it is given
by Eq.(1.15):

predictive accuracy =
|A ∧ C| − 1/2

|A|
(1.15)

where |A ∧ C| is the number of examples that satisfy both the rule an-
tecedent and the consequent, and |A| is the number of cases that satisfy only
the rule antecedent. The term 1/2 is subtracted in the numerator of Eq.(1.15)
to penalize rules covering few training examples. PSO usually search the min-

16 Ajith Abraham, He Guo, and Hongbo Liu

imum for the problem space considered. So we use predictive accuracy to the
power minus one as fitness function in PSO-miner.

Rule pruning is a common technique in data mining. The main goal of rule
pruning is to remove irrelevant terms that might have been unduly included
in the rules. Rule pruning potentially increases the predictive power of the
rule, helping to avoid its over-fitting to the training data. Another motivation
for rule pruning is that it improves the simplicity of the rule, since a shorter
rule is usually easier to be understood by the user than a longer one. As soon
as the current particle completes the construction of its rule, the rule pruning
procedure is called. The quality of a rule, denoted by Q, is computed by the
formula: Q = sensitivity · specificity [17]. Just after the covering algorithm
returns a rule set, another post-processing routine is used: rule set cleaning,
where rules that will never be applied are removed from the rule set. The
purpose of the validation algorithm is to statistically evaluate the accuracy of
the rule set obtained by the covering algorithm. This is done using a method
known as tenfold cross validation [29]. Rule set accuracy is evaluated and
presented as the percentage of instances in the test set correctly classified. In
order to classify a new test case, unseen during training, the discovered rules
are applied in the order they were discovered.

The performance of PSO-miner was evaluated using four public-domain
data sets from the UCI repository [4]. The used parameters’ settings are as
following: swarm size=30; c1 = c2 = 2; maximum position=5; maximum
velocity=0.1∼0.5; maximum uncovered cases = 10 and maximum number of
iterations=4000. The results are reported in Table 1.3. The algorithm is not
only simple than many other methods, but also is a good alternative method
for data mining.

Table 1.3. Results of PSO-miner

Predictive Number of terms
Data set

accuracy
Number of rules

/ Number of rules

Wisconsin breast cancer 92.65 ± 0.61 5.70 ± 0.20 1.63
Dermatology 92.65 ± 2.37 7.40 ± 0.19 2.99
Hepatitis 83.65 ± 3.13 3.30 ± 0.15 1.58
Cleveland heart disease 53.50 ± 0.61 9.20 ± 0.25 1.71

1.5 Ant Colony Optimization

In nature, ants usually wander randomly, and upon finding food return to
their nest while laying down pheromone trails. If other ants find such a path
(pheromone trail), they are likely not to keep travelling at random, but to
instead follow the trail, returning and reinforcing it if they eventually find

1 Swarm Intelligence: Foundations, Perspectives and Applications 17

food. However, as time passes, the pheromone starts to evaporate. The more
time it takes for an ant to travel down the path and back again, the more time
the pheromone has to evaporate (and the path to become less prominent). A
shorter path, in comparison will be visited by more ants (can be described as
a loop of positive feedback) and thus the pheromone density remains high for
a longer time.

ACO is implemented as a team of intelligent agents which simulate the
ants behavior, walking around the graph representing the problem to solve
using mechanisms of cooperation and adaptation. ACO algorithm requires to
define the following [5, 10]:

• The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilis-
tic transition rules, based on the amount of pheromone in the trail and
other problem specific knowledge. It is also important to enforce a strategy
to construct only valid solutions corresponding to the problem definition.

• A problem-dependent heuristic function η that measures the quality of
components that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the
pheromone value τ .

• A probabilistic transition rule based on the value of the heuristic function η
and the pheromone value τ that is used to iteratively construct a solution.

ACO was first introduced using the Travelling Salesman Problem (TSP).
Starting from its start node, an ant iteratively moves from one node to an-
other. When being at a node, an ant chooses to go to a unvisited node at time
t with a probability given by

pk
i,j(t) =

[τi,j(t)]
α[ηi,j(t)]

β

∑

l∈Nk
i
[τi,j(t)]α[ηi,j(t)]β

j ∈ Nk
i (1.16)

where Nk
i is the feasible neighborhood of the antk, that is, the set of cities

which antk has not yet visited; τi,j(t) is the pheromone value on the edge
(i, j) at the time t, α is the weight of pheromone; ηi,j(t) is a priori available
heuristic information on the edge (i, j) at the time t, β is the weight of heuris-
tic information. Two parameters α and β determine the relative influence of
pheromone trail and heuristic information. τi,j(t) is determined by

τi,j(t) = ρτi,j(t − 1) +
n

∑

k=1

∆τk
i,j(t) ∀(i, j) (1.17)

∆τk
i,j(t) =

Q
Lk(t) if the edge (i, j) chosen by the antk
0 otherwise

(1.18)

where ρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the
number of ants, Q is a constant for pheromone updating.

18 Ajith Abraham, He Guo, and Hongbo Liu

More recent work has seen the application of ACO to other problems
[12, 26]. A generalized version of the pseudo-code for the ACO algorithm with
reference to the TSP is illustrated in Algorithm 2.

Algorithm 2 Ant Colony Optimization Algorithm

01. Initialize the number of ants n, and other parameters.
02. While (the end criterion is not met) do
03. t = t + 1;
04. For k= 1 to n
05. antk is positioned on a starting node;
06. For m= 2 to problem size
07. Choose the state to move into
08. according to the probabilistic transition rules;
09. Append the chosen move into tabuk(t) for the antk;
10. Next m
11. Compute the length Lk(t) of the tour Tk(t) chosen by the antk;
12. Compute ∆τi,j(t) for every edge (i, j) in Tk(t) according to Eq.(1.18);
13. Next k
14. Update the trail pheromone intensity for every edge (i, j) according to
Eq.(1.17);
15. Compare and update the best solution;
16. End While.

1.6 Ant Colony Algorithms for Optimization Problems

1.6.1 Travelling Salesman Problem (TSP)

Given a collection of cities and the cost of travel between each pair of them,
the travelling salesman problem is to find the cheapest way of visiting all of
the cities and returning to the starting point. It is assumed that the travel
costs are symmetric in the sense that travelling from city X to city Y costs
just as much as travelling from Y to X. The parameter settings used for ACO
algorithm are as follows:

Number of ants = 5
Maximum number of iterations = 1000
α = 2
β = 2
ρ = 0.9
Q = 10

A TSP with 20 cities (Table 1.4) is used to illustrate the ACO algorithm.

1 Swarm Intelligence: Foundations, Perspectives and Applications 19

The best route obtained is depicted as 1 → 14 → 11 → 4 → 8 → 10 → 15 →
19 → 7 → 18 → 16 → 5 → 13 → 20 → 6 → 17 → 9 → 2 → 12 → 3 → 1, and
is illustrated in Fig. 1.6 with a cost of 24.5222. The search result for a TSP
for 198 cities is illustrated in Figure 1.7 with a total cost of 19961.3045.

Table 1.4. A TSP (20 cities)

Cities 1 2 3 4 5 6 7 8 9 10

x 5.2940 4.2860 4.7190 4.1850 0.9150 4.7710 1.5240 3.4470 3.7180 2.6490
y 1.5580 3.6220 2.7740 2.2300 3.8210 6.0410 2.8710 2.1110 3.6650 2.5560

Cities 11 12 13 14 15 16 17 18 19 20

x 4.3990 4.6600 1.2320 5.0360 2.7100 1.0720 5.8550 0.1940 1.7620 2.6820
y 1.1940 2.9490 6.4400 0.2440 3.1400 3.4540 6.2030 1.8620 2.6930 6.0970

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Fig. 1.6. An ACO solution for the TSP (20 cities)

1.6.2 Quadratic Assignment Problem (QAP)

Quadratic assignment problems model many applications in diverse areas such
as operations research, parallel and distributed computing, and combinatorial
data analysis. There are a set of n facilities and a set of n locations. For each
pair of locations a distance is specified and for each pair of facilities a weight
or flow is specified (e.g., the amount of supplies transported between the two
facilities). The problem is to assign all facilities to different locations with the
goal of minimizing the sum of the distances multiplied by the corresponding

20 Ajith Abraham, He Guo, and Hongbo Liu

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fig. 1.7. An ACO solution for the TSP (198 cities)

flows. A QAP is used to demonstrate the validity of ACO and its distance/flow
matrix for 9 ∗ 9 assignment is illustrated below:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5 6 7 8 9

1 * 1 2 3 1 2 3 4 5
2 5 * 1 2 2 1 2 3 4
3 2 3 * 1 3 2 1 2 3
4 4 0 0 * 4 3 2 1 2
5 1 2 0 5 * 1 2 3 2
6 0 2 0 2 10 * 1 2 1
7 0 2 0 2 0 5 * 1 2
8 6 0 5 10 0 1 10 * 1
9 0 4 0 2 5 0 3 8 *

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The parameter settings used for ACO algorithm are as follows:

Number of ants = 5
Maximum number of iterations = 100,000
α = 1
β= 5
ρ = 0.8
Q = 10

Using ACO, the cheapest cost obtained = 144 and iteration time = 22445.
Assignment results are depicted below:

Dept 1 → Site 5; Dept 2 → Site 2; Dept 3 → Site 1; Dept 4 → Site 9;
Dept 5 → Site 4; Dept 6 → Site 8; Dept 7 → Site 7; Dept 8 → Site 6; Dept
9 → Site 3.

1 Swarm Intelligence: Foundations, Perspectives and Applications 21

1.7 Ant Colony Algorithms for Data Mining

The study of ant colonies behavior and their self-organizing capabilities is of
interest to knowledge retrieval/management and decision support systems sci-
ences, because it provides models of distributed adaptive organization, which
are useful to solve difficult classification, clustering and distributed control
problems.

Ant colony based clustering algorithms have been first introduced by
Deneubourg et al. [8] by mimicking different types of naturally-occurring
emergent phenomena. Ants gather items to form heaps (clustering of dead
corpses or cemeteries) observed in the species of Pheidole Pallidula and La-

sius Niger. If sufficiently large parts of corpses are randomly distributed in
space, the workers form cemetery clusters within a few hours, following a
behavior similar to segregation. If the experimental arena is not sufficiently
large, or if it contains spatial heterogeneities, the clusters will be formed along
the edges of the arena or, more generally, following the heterogeneities. The
basic mechanism underlying this type of aggregation phenomenon is an at-
traction between dead items mediated by the ant workers: small clusters of
items grow by attracting workers to deposit more items. It is this positive
and auto-catalytic feedback that leads to the formation of larger and larger
clusters.

A sorting approach could be also formulated by mimicking ants that dis-
criminate between different kinds of items and spatially arrange them accord-
ing to their properties. This is observed in the Leptothorax unifasciatus species
where larvae are arranged according to their size.

The general idea for data clustering is that isolated items should be picked
up and dropped at some other location where more items of that type are
present. Ramos et al. [23] proposed ACLUSTER algorithm to follow real ant-
like behaviors as much as possible. In that sense, bio-inspired spatial transi-
tion probabilities are incorporated into the system, avoiding randomly moving
agents, which encourage the distributed algorithm to explore regions mani-
festly without interest. The strategy allows guiding ants to find clusters of
objects in an adaptive way.

In order to model the behavior of ants associated with different tasks
(dropping and picking up objects), the use of combinations of different re-
sponse thresholds was proposed. There are two major factors that should in-
fluence any local action taken by the ant-like agent: the number of objects in
its neighborhood, and their similarity. Lumer and Faieta [18] used an average
similarity, mixing distances between objects with their number, incorporating
it simultaneously into a response threshold function like the algorithm pro-
posed by Deneubourg et al. [8]. ACLUSTER [23] uses combinations of two
independent response threshold functions, each associated with a different en-
vironmental factor depending on the number of objects in the area, and their
similarity. Reader may consult [23] for the technical details of ACLUSTER.

22 Ajith Abraham, He Guo, and Hongbo Liu

Fig. 1.8. Clustering of Web server visitors using ant colony algorithm (adapted
from [3])

1.7.1 Web Usage Mining

Web usage mining has become very critical for effective Web site management,
creating adaptive Web sites, business and support services, personalization,
network traffic flow analysis etc. [3]. Accurate Web usage information could
help to attract new customers, retain current customers, improve cross mar-
keting/sales, effectiveness of promotional campaigns, track leaving customers
and find the most effective logical structure for their Web space. User profiles
could be built by combining users’ navigation paths with other data features,
such as page viewing time, hyperlink structure, and page content.

Abraham and Ramos [3] used an ant colony clustering algorithm to dis-
cover Web usage patterns (data clusters). The task is to cluster similar visitors
accessing the web server based on geographical location, type of information
requested, time of access and so on. Web log data of a University server from
January 01, 2002 to July 0, 2002 was used in the experiments. The log data
was categorized into daily and hourly and for each data set the ACLUSTER

was run twice for 10,00,000 iterations. A 2D classification space is used which
is non-parametric and toroidal.

1 Swarm Intelligence: Foundations, Perspectives and Applications 23

Experiment results for the daily and hourly Web traffic data are illustrated
in Fig. 1.8. Fig. 1.8, at the top, represent the spatial distribution of daily Web
traffic data on a 25×25 non-parametric toroidal grid. At t=1, data items are
randomly allocated and 14 ants were deployed and as time evolved, several
homogenous clusters emerged. Figure 1.8, at the bottom, represent the spatial
distribution of hourly Web traffic data on a 45×45 non-parametric toroidal
grid. At t=1, data items are randomly allocated and 48 ants were deployed and
as time evolved, several homogenous clusters emerged. Reader may consult [3]
for detailed results of the different clustering methods.

Clustering results clearly show that ant colony clustering performs well
when compared to other clustering methods namely self-organizing maps and
evolutionary-fuzzy clustering approach [1].

1.8 Summary

This chapter introduced the theoretical foundations of swarm intelligence with
a focus on the implementation and illustration of particle swarm optimiza-
tion and ant colony optimization algorithms. We provided the design and im-
plementation methods for some applications involving function optimization
problems, real world applications and data mining. Results were analyzed,
discussed and their potentials were illustrated.

Acknowledgements

First author was supported by the International Joint Research Grant of the
IITA (Institute of Information Technology Assessment) foreign professor in-
vitation program of the MIC (Ministry of Information and Communication),
South Korea.

References

1. Abraham A (2003) Business intelligence from web usage mining, Journal of
Information and Knowledge Management (JIKM), World Scientific Publishing
Co., Singapore, 2(4)375-390.

2. Abraham A, Buyya R and Nath B (2000) Nature’s heuristics for scheduling jobs
on computational grids. Proceedings of the 8th IEEE International Conference
on Advanced Computing and Communications, 45-52.

3. Abraham A and Ramos V (2003) Web usage mining using artificial ant colony
clustering and genetic programming. Proceesings of IEEE Congress on Evolu-
tionary Computation, Australia, 1384-1391.

4. Blake C, Keogh E and Merz C J (2003) UCI repository of machine learning
databases. http://ww.ic.uci.edu/ mlearn/MLRepository.htm.

24 Ajith Abraham, He Guo, and Hongbo Liu

5. Bonabeau E, Dorigo M and Theraulaz G (1999) Swarm Intelligence: From Nat-
ural to Artificial Systems. New York, NY: Oxford University Press.

6. Cantu-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic publishers.

7. Clerc M and Kennedy J (2002) The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on Evo-
lutionary Computation, 6(1):58-73.

8. Deneubourg J-L, Goss S, Franks N, at el. (1991) The dynamics of collective sort-
ing: Robot-like ants and ant-like robots. Proceedings of the First International
Conference on Simulation of Adaptive Behaviour: From Animals to Animats,
Cambridge, MA: MIT Press, 1, 356-365.

9. Dorigo M, Maniezzo V and Colorni A (1996). Ant system: optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26(1):29-41.

10. Dorigo M and Stützle T (2004), Ant Colony Optimization, MIT Press, 2004.
11. Eberhart R C and Shi Y (2002) Comparing inertia weights and constriction fac-

tors in particle swarm optimization. Proceedings of IEEE International Congress
on Evolutionary Computation, 84-88.

12. Gambardella L M and Dorigo M (1995) Ant-Q: A reinforcement learning ap-
proach to the traveling salesman problem. Proceedings of the 11th International
Conference on Machine Learning, 252-260.

13. Goldberg D E (1989) Genetic Algorithms in search, optimization, and machine
learning. Addison-Wesley Publishing Corporation, Inc.

14. Kennedy J and Eberhart R (2001) Swarm intelligence. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, CA.

15. Kennedy J and Mendes R (2002) Population structure and particle swarm per-
formance. Proceeding of IEEE conference on Evolutionary Computation, 1671-
1676.

16. Liu H and Abraham A (2005) Fuzzy Turbulent Particle Swarm Optimization.
Proceeding of the 5th International Conference on Hybrid Intelligent Systems,
Brazil, IEEE CS Press, USA.

17. Lopes H S, Coutinho M S and Lima W C (1998) An evolutionary approach to
simulate cognitive feedback learning in medical domain. Genetic Algorithms and
Fuzzy Logic Systems: Soft Computing Perspectives, World Scientific, 193-207.

18. Lumer E D and Faieta B (1994) Diversity and Adaptation in Populations of
Clustering Ants. Cli D, Husbands P, Meyer J and Wilson S (Eds.), Proceedings
of the Third International Conference on Simulation of Adaptive Behaviour:
From Animals to Animats 3, Cambridge, MA: MIT Press, 501-508.

19. Omran M, Engelbrecht P A and Salman A (2005) Particle swarm optimization
for image clustering. International Journal of Pattern Recognition and Artificial
Intelligence, 19(3):297-321.

20. Orosz J E and Jacobson S H (2002) Analysis of static simulated annealing
algorithms. Journal of Optimzation theory and Applications, 115(1):165-182.

21. Pang W, Wang K P, Zhou C G, at el. (2004) Fuzzy discrete particle swarm
optimization for solving traveling salesman problem. Proceedings of the 4th
International Conference on Computer and Information Technology, IEEE CS
Press.

22. Parsopoulos K E and Vrahatis M N (2004) On the computation of all global
minimizers through particle swarm optimization. IEEE Transactions on Evolu-
tionary Computation, 8(3):211-224.

1 Swarm Intelligence: Foundations, Perspectives and Applications 25

23. Ramos V, Muge F, Pina P (2002) Self-organized data and image retrieval as a
consequence of inter-dynamic synergistic relationships in artificial ant colonies.
Soft Computing Systems - Design, Management and Applications, Proceedings
of the 2nd International Conference on Hybrid Intelligent Systems, IOS Press,
500-509.

24. Shi Y H and Eberhart R C (2001) Fuzzy adaptive particle swarm optimization.
Proceedings of IEEE International Conference on Evolutionary Computation,
101-106.

25. Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms
for classification tasks. Parallel Computing, 30:767-783.

26. Stützle T and Hoo H H (2000) MAX-MIN ant system. Future Generation Com-
puter Systems, 16:889-914.

27. Triki E, Collette Y and Siarry P (2005) A theoretical study on the behavior
of simulated annealing leading to a new cooling schedule. European Journal of
Operational Research, 166:77-92.

28. Ujjin S and Bentley J P (2003) Particle swarm optimization recommender sys-
tem. Proceeding of IEEE International conference on Evolutionary Computa-
tion, 124-131.

29. Witten Ian H and Frank E (1999) Data mining - Practical Machine Learning
Tools and Techniques with Java Implementations. CA: Morgan Kauffmann.

