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Abstract Conditions for swarm stability of nonlinear high-
order multi-agent systems are analyzed based on the idea of
space transformation. Swarm stability can be assured by suf-
ficient connectivity of graph topology and dissipative prop-
erty regulated by relative Lyapunov function, with two inde-
pendent variables. The problems addressed are general, since
the models concerned can be time-varying or heterogeneous.
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1 Introduction

During recent years, consensus of dynamical multi-agent
systems has been paid extensive attention in control theory.
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Olfati-Saber et al. [1] first introduced the term “consensus”
into control theory. Ren et al. [2] relaxed the condition in [1]
and proved that to achieve consensus, including a spanning
tree is a necessary and sufficient condition for the digraph of
a linear system with first-order protocol. A set-valued Lya-
punov function approach was developed by Moreau [3]. After
2007, scholars started to consider consensus problems for
high-order models. For instance, Xiao et al. [4] proposed a
criterion based on the structure of certain high-dimensional
matrices. Wang et al. [5] attempted to determine whether an
appropriate linear high-order consensus protocol exists under
a given undirected graph topology. Cai et al. proved neces-
sary and sufficient conditions for consensus of linear sys-
tems [6,7] and a class of nonlinear systems [8], respectively.
Li et al. [9] paid attention to the robust stability problem
of linear multi-agent systems with observer type interactive
protocols. Xi et al. [10–12] devised a technique based on
oblique decomposition of state space. Other relevant works
include [13–17].

Only few papers in the literature involved consensus prob-
lems of high-order nonlinear time-varying heterogeneous
systems. For these models, the normal Laplacian spectrum
analysis is no longer applicable. The model in [4] is nonlin-
ear and of high order, but the technical assumption that the
motion of any agent is towards the convex hull formed by its
neighbors is rather strict. Chopra et al. [16] discussed con-
sensus problems of nonlinear systems; however, the model
they concerned is essentially of first order. Kim et al. [17]
dealt with heterogeneous models, whereas their models are
linear.

The current paper endeavors to perform some prelimi-
nary research on the swarm stability problem of the systems
that might be nonlinear, time-varying or even heterogeneous,
which is a generalization of consensus. The main contribu-
tion of this paper is proposing an approach to deal with the
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swarm stability of multi-agent systems with high-order non-
linear models. The fundamental idea of the approach is based
on relative Lyapunov function, which is a function with dual
independent variables and can be regarded as a measure of
distance between the trajectories of different agents.

The motivation of the current study arises out of an attempt
to extend Lyapunov’s second method for checking the sta-
bility of dynamical systems, from the case of single isolated
system to the case of multiple interconnected systems. The
idea behind Lyapunov’s second method is powerful and con-
venient to handle nonlinear systems. Nonetheless, it is still
very difficult to achieve the objective to perfectly extend Lya-
punov’s second method to multi-agent systems, because the
situation is much more complicated.

By far, no approaches exist which are really effective in
checking the swarm stability [8] of general nonlinear dynam-
ical multi-agent systems. It is impossible to deal with most of
the nonlinear swarm stability problems by the existing meth-
ods in the literature, whereas the relative Lyapunov function
approach introduced in the current paper should be a direction
of technical route towards solving many such problems. With
an appropriate Lyapunov function, the stability of any equi-
librium point of a nonlinear system can be easily checked.
However, classical Lyapunov functions are no more suitable
for the swarm stability problems of multi-agent systems. It
is usually extremely difficult to construct a global Lyapunov
function for large-scale systems composed of many intercon-
nected subsystems [17–20]. Besides, the swarm stability of
multi-agent systems is essentially a type of non-equilibrium
stability [6]; sometimes a system might even have no equi-
librium but still be swarm stable [6]. Classical Lyapunov
function measures the distance from the trajectory of an iso-
lated dynamic system to an equilibrium point, whereas rel-
ative Lyapunov function measures the distance of motions
between dynamic systems. Thus, relative Lyapunov function
should be used for analyzing the swarm stability of multi-
agent systems instead of classical Lyapunov function.

The rest of this paper is organized as follows. In Sect. 2, the
multi-agent system model and the swarm stability problems
are formulated. Section 3 discusses conditions for swarm
stability of nonlinear systems, providing the main theoretical
result. Section 4 analyzes the swarm stability for a class of
nonlinear systems. Finally, Sect. 5 concludes the paper.

Notation: Br denotes a closed hyper-sphere in any metric
space with the origin its spherical center and r its radius.

2 Problem Formulation

In this paper, we consider dynamical multi-agent systems
with N > 1 agents, no matter whether it is homogenous or
heterogeneous. The state of each agent is xi ∈ Rd , with d ≥ 1

representing a common order. If agent j can influence the
motion of agent i , then agent j is called a neighbor of agent
i . The overall neighboring relationship forms the graph topol-
ogy of a system. Suppose all interactions between agents are
independent, the dynamics of agent i can be formulated as
follows

ẋi = fi (xi , ui , t) +
∑

j∈Ni

gi j (xi , x j , t) (i, j ∈{1, 2, . . . , N })

(1)

In (1), fi (•) represents the self-governed component of the
dynamics of agent i ; and gi j (•) represents the influence from
agent j to i . Such a multi-agent model is a general extension
of most models in the literature [1–6], complying with many
typical natural/engineering systems.

It has been a common understanding that stability of a
swarm system implies cohesion, which is formulated by the
following definitions.

Definition 1 [6] (Swarm stability) For a dynamical multi-
agent system (1) with x1, . . . , xN ∈ Rd , the states of N
agents, if for ∀ε > 0, ∃δ(ε) > 0, s.t.

∥∥xi (t) − x j (t)
∥∥ < ε

(t > 0) as
∥∥xi (0) − x j (0)

∥∥ < δ(ε) (∀i, j ∈ {1, 2, . . . , N }),
then the system is uniformly swarm stable. If limε→∞ δ(ε) =
∞, the system is globally uniformly swarm stable.

Definition 2 [6] (Asymptotic swarm stability) If a dynamical
multi-agent system is globally uniformly swarm stable and
for ∀ε, c > 0, ∃T = T (ε, c) > 0 s.t.
∥∥xi (t) − x j (t)

∥∥ < ε

as t > T (ε, c) and
∥∥xi (0) − x j (0)

∥∥ < c (∀i, j ∈
{1, 2, . . . , N }), then the system is globally uniformly asymp-
totically swarm stable.

Remark 1 For a dynamical multi-agent system that may
be nonlinear and time-varying, global uniform asymptotic
swarm stability is equivalent to full state consensus.

Definition 3 (Joint connectivity) A time-varying undirected
N th order graph G(t) being continuous in t is jointly con-
nected if ∃T > 0 s.t. for ∀t > 0,

∫ t+T
t W (t)dt represents

a connected graph, where W (t) ∈ RN×N is the weighted
adjacency matrix of G(t).

3 Swarm Stability of General Nonlinear Dynamical
Multi-Agent Systems

This section deals with the criteria for swarm stability of
nonlinear time-varying multi-agent systems. Our approach
is based on the idea of space transformation. The original
system is mapped into an image system in an abstract space,
with both systems being equal in the sense of swarm stability.
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The approach will be effective if the swarm stability of the
image system can be much more easily checked.

Although some of the theoretical results will be summa-
rized as propositions and corollaries for convenience of read-
ing, the discussions may not be limited to the literal state-
ments of these propositions and corollaries because usually
more results can be easily derived by trivial adjustments.

Proposition 1 Suppose there is a continuously differentiable
multi-agent system (1) in Rd with N agents, if there exists
an injective linear operator T : Rd → H, with H the image
space, such that for any trajectory

x0(t) ∈ co(x1(t), x2(t), . . . , xN (t)) ∈ Rd

we have

T
′
xi (t) = T (xi − x0) = ξi (t) ∈ H

and

T
′
x0(t) ≡ 0

Let k(t) denote the index of agent possessing the maximal
value of ‖ξk‖,

(1) if ∃T > 0 such that for ∀t > 0

‖ξk(t + T )‖ − ‖ξk(t)‖ ≤ 0

then the system is globally uniformly swarm stable;
(2) if ∃T > 0 such that for ∀t > 0

‖ξk(t + T )‖ − ‖ξk(t)‖ < 0

then the system is globally uniformly asymptotically
swarm stable, and it achieves consensus as t → ∞.

Proof The condition (1) implies that B‖ξk‖ is an invariant set
for the image trajectories of agents with

ξ1, ξ2, . . . , ξN ∈ B‖ξk‖
One knows that for any i, j ∈ {1, 2, . . . , N }
T (xi − x j ) = T ((xi − x0) − (x j − x0))

= T (xi − x0) − T (x j − x0) = ξi − ξ j

Because T is injective, it is invertible and

T −1(ξi − ξ j ) = xi − x j

Therefore,
∥∥∥T −1(ξi − ξ j )

∥∥∥ = ∥∥xi − x j
∥∥ ≤

∥∥∥T −1
∥∥∥

∥∥ξi − ξ j
∥∥

≤ 2
∥∥∥T −1

∥∥∥ ‖ξk(0)‖ (2)

and
∥∥ξi − ξ j

∥∥ = ∥∥T (xi − x j )
∥∥ ≤ ‖T ‖ ∥∥xi − x j

∥∥

Besides,

‖ξk(0)‖ ≤ max
i, j

∥∥ξi (0)−ξ j (0)
∥∥

≤ ‖T ‖ max
i, j

∥∥xi (0) − x j (0)
∥∥ (3)

(2) and (3) naturally lead to
∥∥xi − x j

∥∥ ≤ 2
∥∥∥T −1

∥∥∥ ‖T ‖ max
i, j

∥∥xi (0) − x j (0)
∥∥

Evidently,
∥∥xi − x j

∥∥ < ε so long as

max
i, j

∥∥xi (0) − x j (0)
∥∥ ≤ ε

2
∥∥T −1

∥∥ ‖T ‖
and the multi-agent system is globally uniformly swarm
stable.

On the other hand, if the condition (2) holds, because the
value of ‖ξk‖ is bounded from below,

lim
t→∞ ‖ξk(t)‖ = 0

Note that (2) can also yield
∥∥xi (t) − x j (t)

∥∥ ≤ 2
∥∥∥T −1

∥∥∥ ‖ξk(t)‖
Consequently,

lim
t→∞

∥∥xi (t) − x j (t)
∥∥ = 0 (∀i, j ∈ {1, 2, . . . , N })

and the multi-agent system is globally uniformly asymptoti-
cally swarm stable and achieves consensus. �

Proposition 2 Suppose that the image space in Proposition
1 is a Hilbert space,

(1) if for ∀t > 0

〈dξk/dt, ξk〉 ≤ 0

then the system is globally uniformly swarm stable;
(2) if for ∀t > 0

〈dξk/dt, ξk〉 < 0

then the system is globally uniformly asymptotically
swarm stable, and it achieves consensus as t → ∞.

Proof Because T is linear, it is bounded. It is easy to know
that the image system ξ1, ξ2, . . . , ξN is also continuously
differentiable in H .

Consider the specific image agent ξk . Since the dynamics
of ξk in H are continuous in time t ,

lim
�t→0

〈ξk(t), ξk(t + �t)〉 = ‖ξk(t)‖ ‖ξk(t + �t)‖ (4)

Note that

ξ̇k = lim
�t→0

(ξk(t + �t) − ξk(t))/�t (5)

123



Arab J Sci Eng

Fig. 1 Relative Lyapunov function

Thus, if it is true that
〈
ξ̇k, ξk

〉 = lim
�t→0

(〈ξk(t + �t), ξk(t)〉 − 〈ξk(t), ξk(t)〉)
�t

≤ 0

with (2) and (3) taken into consideration, then it follows that

lim
�t→0

(‖ξk(t + �t)‖ ‖ξk(t)‖ − ‖ξk(t)‖ ‖ξk(t)‖)/�t ≤ 0

and this implies that if �t > 0

lim
�t→0+ ‖ξk(t + �t)‖ ≤ ‖ξk(t)‖
This means that B‖ξk‖ is an invariant set for the image trajec-
tories of agents with

ξ1, ξ2, . . . , ξN ∈ B‖ξk‖
According to the proof of Proposition 1, the mutli-agent sys-
tem is globally uniformly swarm stable.

On the other hand, if at any time 〈dξk/dt, ξk〉 < 0, by the
similar analysis above, we can conclude that

lim
�t→0+ ‖ξk(t + �t)‖ < ‖ξk(t)‖
According to the proof of Proposition 1, the multi-agent sys-
tem is globally uniformly asymptotically swarm stable and
achieves consensus. �

Definition 4 (Relative Lyapunov function) For any two
agents i and j , a relative Lyapunov function represents the
distance between the images in certain image space. Par-
ticularly, if the image space is Hilbert, a relative Lyapunov
function can be formulated as follows:

Vi j = √
< ξi − ξ j , ξi − ξ j > ∈ R+

The idea is illustrated in Fig. 1.

Corollary 1 Suppose there is a continuously differentiable
multi-agent system of dth-order, including N agents. The
dynamics of the agents are formulated by:

ẋi =
∑

j∈Ni

gi j (xi , x j ) (i, j ∈ {1, 2, . . . , N })

If there exists an injective linear operator T : Rd → H, with
the image space H being Hilbert, such that T xi (t) = ξi (t) ∈
H, and if

(1) At any time and for any two neighboring agents i and j ,

〈
T gi j (xi , x j ), ξ j − ξi

〉
< 0 (i, j ∈ {1, 2, . . . , N })

(2) The graph of the multi-agent system is jointly connected;

Then the multi-agent system is globally uniformly asymptot-
ically swarm stable, and it achieves consensus as t → ∞.

This corollary is a direct derivative of the ideas behind
Propositions 1 and 2.

Example 1 [21] Suppose the dynamic equation of agents in
a nonlinear multi-agent system is:

ẋi =
∑

j∈Ni

φi j (x j − xi ) (i ∈ {1, 2, . . . , N })

where xi ∈ R. The interaction function φ(x) satisfies the
following properties:

i) φ(x) is continuous and locally Lipschitz;
ii) φ(x) = 0 ⇔ x = 0;

iii) φ(−x) = −φ(x);
iv) (x − y)(φ(x) − φ(y)) > 0,∀x �= y.

In this example, the state space is one-dimensional Euclidean.
Let the image space be the same space. The condition for
Corollary 1 is satisfied and the system achieves consensus as
t → ∞.

Corollary 2 Suppose there is a continuously differentiable
multi-agent system in Rd composed of N agents. The dynam-
ics of agents are formulated by:

ẋi =
∑

j∈Ni

gi j (xi , x j ) i, j ∈ {1, 2, . . . , N }

If there exists relative Lyapunov function φ : Rd ×Rd → R+
between any two agents: Vi j = φ(xi , x j ) = φ(x j , xi ) ∈ R+,
with φ(x, y) = 0 as x = y, such that the equation below
always holds:
〈
gi j (xi , x j ),∇xi Vi j

〉
< 0 (i, j ∈ {1, 2, . . . , N })

and the graph topology is jointly connected, then the sys-
tem is globally uniformly asymptotically swarm stable, and
it achieves consensus as t → ∞.

If there exists such a kind of relative Lyapunov function,
then we can take φ(xi , x j ) as the metric of image space H,
and the inner product in H can be induced by this metric. In
such an induced space H, the direction of image for vector
field gi j (xi , x j ) is always towards the direction of the shortest
distance between the images of agents i and j , therefore,
consensus must be achieved according to Corollary 1.
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Remark 2 For Corollary 2, it is not necessary that gi j (xi , x j )

be a conservative field. It only needs to have the identical
direction to certain gradient field. Such a dynamical sys-
tem may be called quasi-gradient system. If two scalar fields
in a space share the same quasi-gradient field, that is, the
directions of gradient vectors for both fields are identical
everywhere, then the two scalar fields are co-quasi-gradient.
For instance, all differentiable K ∞ functions are co-quasi-
gradient fields in R1, since the gradient of any K ∞ function
always points rightward of the R1 axis.

Remark 3 Both the image space and the original space
should have the same dimension since the mapping is injec-
tive. Actually, from another viewpoint, the image space is just
a space endued with a new metric, which is redefined by rel-
ative Lyapunov function. As a simple and common instance,
sometimes the inner product between two different vectors
x1 and x2 could be redefined by xT

1 Px2 instead of xT
1 x2,

with P a positive definite matrix. Naturally, the distance
between two different points x1 and x2 could be redefined
by

√
(x1 − x2)T P(x1 − x2), which shares the same quasi-

gradient field with (x1 − x2)
T P(x1 − x2).

Example 2 Consider the problem about synchronization of
the Kuramoto model of coupled nonlinear oscillators, which
is well-known in nonlinear theory [22]. The dynamic equa-
tion of any agent is

θ̇i = ωi + Ki

∑

j∈Ni

sin(θ j − θi ) (Ki > 0)

When all ωi are identical: ωi = ω ∈ R (∀i), let the state of
agent xi ∈ R be xi = θi − ωt . As a result

ẋi = Ki

∑

j∈Ni

sin(x j − xi )

In the domain

{x1, x2, . . . , xN ∈ R
∣∣∣∣xi −x j

∣∣ < π }(i, j ∈ {1, 2, . . . , N })
(6)

let a relative Lyapunov function candidate be

φ(xi , x j ) = 1 − cos(x j − xi ) (7)

Then the gradient of the relative Lyapunov function is

∇xi φ(xi , x j ) = − sin(x j − xi )

The negative interactive force −Ki sin(x j − xi ) between
agents i and j is a quasi-gradient field of the relative Lya-
punov function. According to the ideas behind Corollary 2,
one can conclude that the system achieves consensus.

Note that there is no global asymptotic swarm stabil-
ity for this system, and the swarm stability here is only
regional. If consensus is regarded as some equilibrium, then

0 1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

t

x

Fig. 2 Consensus trajectories of Kuramoto model with initial states
[3.13, 1.34, 4.04]T
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Fig. 3 Non-consensus trajectories of same Kuramoto model with ini-
tial states [2.61, 1.92, 5.49]T

the Kuramoto system has multiple equilibria. The initial
states must locate inside the domain (6) to ensure consen-
sus, as shown in Fig. 2 by a simple example with three
agents. Otherwise, the relative Lyapunov function candi-
date (7) will be inappropriate, with the static state being
non-consensus, as shown in Fig. 3. This instance illustrates
the complexity of swarm stability analysis for nonlinear
systems.

4 Swarm Stability of Nonlinear Compartmental
Systems

In this section, we shall concern the swarm stability of a spe-
cific type of multi-agent system called compartmental sys-
tem. The dynamics of each agent of dth order is:
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ẋi =
N∑

j=1

wi j (t) fi j (xi , x j , t) (i ∈ {1, 2, . . . , N }) (8)

where wi j (t) = w j i (t) ≥ 0, and fi j (xi , x j , t) represents the
nonlinear interaction between agents i and j . Suppose the
two rational assumptions below are satisfied.

Assumption 1 The interaction between any neighboring
pair is skew-symmetric:

fi j (xi , x j , t) = − f j i (x j , xi , t) (i, j ∈ {1, 2, . . . , N })
Assumption 2 The interactions are independent of transla-
tion:

fi j (xi , x j , t) = fi j (xi − x j , 0, t) (i, j ∈ {1, 2, . . . , N })
Remark 4 Compartmental system [23] has been widely stud-
ied in biological, chemical and economic fields. Each com-
partment contains certain substance, with the substance flow-
ing from neighbor to neighbor.

The attraction mechanism can be regulated by relative
Lyapunov functions.

Definition 5 (Attraction) Suppose there is relative Lyapunov
function V (α, β) ≥ 0 with α, β ∈ Rd s.t. V (α, β) =
V (β, α), V (α, β) = 0 ⇔ α = β, and ∂V (α,β)

∂α
is a linear

function as to α. If for certain i, j ∈ {1, 2, . . . , N },
∂V (α, β)

∂α

∣∣∣∣(ξ1,ξ2) fi j (ξ1, ξ2, t) < 0 (ξ1 �= ξ2)

then the neighboring pair (i, j) are attractive. If

∂V (α, β)

∂α

∣∣∣∣(ξ1,ξ2) fi j (ξ1, ξ2, t) ≤ 0 (ξ1 �= ξ2)

then the neighboring pair (i, j) are weakly attractive.

Remark 5 Relative Lyapunov function is more general than
the ordinary concept of distance. Even if two neighboring
agents are attractive, their Euclidean distance in the state
space could still increase. In this sense, the approach pro-
posed in the current paper is advantageous over certain other
works such as Moreau’s [3] because his technical assump-
tions implicate that the distance between any two neighbors
must always decrease.

The asymptotical swarm stability of system (8) has been
studied in [7]. Some of its main results are cited here.

Lemma 1 [7] For dynamical multi-agent system (8), with
Assumption 1, the sum of the agent states is constant.

Proposition 3 [7] With Assumptions 1 and 2, a multi-agent
system (8) with all neighboring pairs attractive is globally
uniformly asymptotically swarm stable iff G is jointly con-
nected.

The condition for swarm stability is much looser than that
for asymptotic swarm stability.

Proposition 4 With Assumptions 1 and 2, a multi-agent sys-
tem (8) is globally uniformly swarm stable if all neighboring
pairs are weakly attractive.

Proof According to Lemma 1, the average of agent states
x0 = (

∑N
i=1 xi )/N is constant. Let ei = xi − x0 and 
 =∑N

i=1 V (ei , 0). Its derivative is


̇ =
N∑

i=1

V̇ (ei , 0) =
N∑

i=1

(
∂V (α, β)

∂α

∣∣∣∣(ei ,0)ėi

)

=
N∑

i=1

(
∂V (α, β)

∂α

∣∣∣∣∣∣
(ei ,0)

N∑

j=1

fi j (ei , e j , t)

)

Rearranging the summing terms according to the edges in G
with considering the assumptions yields


̇ =
∑

(i, j)∈G

wi j (t) fi j (ei , e j , t)

(
∂V (α, β)

∂α

∣∣∣∣(ei ,0)

−∂V (α, β)

∂α

∣∣∣∣(e j ,0)

)

=
∑

(i, j)∈G

wi j (t) fi j (ei − e j , 0, t)
∂V (α, β)

∂α

∣∣∣∣(ei −e j ,0)

Because all neighboring pairs are weakly attractive, 
̇ ≤ 0.
Thus, 
 never increases. For ∀i ∈ {1, 2, . . . , N } and ∀t0,
V (ei (t), 0) ≤ 
(t0) (t > t0). This implicates that the system
is globally uniformly swarm stable.

Comparing Proposition 4 with Proposition 3, one can see
a notable difference lies in that swarm stability requires no
connectivity for the graph topology.

Example 3 Consider a nonlinear time-varying compartmen-
tal system of second order with four agents:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi1 = ∑4
j=1 wi j (t)(xi1−x j1

+ 3(xi2−x j2)(xi1−x j1)
2)

ẋi2 = ∑4
j=1 wi j (t)(x j1 − xi1)

3

(i =1, . . . , 4)

with xi = [
xi1 xi2

]T ∈ R2 the state of agent i . This system
satisfies (A1)∼(A2). If a relative Lyapunov function candi-
date is selected as

V (xi , x j ) = xT
i Pxi + xT

j Px j − xT
i Px j − xT

j Pxi

with P = diag([ 1 3 ]), then evidently, any neighboring
agents are weakly attractive. According to Proposition 4, it is
swarm stable if with an undirected jointly connected graph.

As an instance with randomly switching edge weights of
the graph, the swarm stable trajectories of four agents in the
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Fig. 4 Swarm stable trajectories of four agents in a compartmental
system (t ∈ [0, 20])
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Fig. 5 Three independent relative trajectories (t ∈ [0, 20])

phase plane are shown in Fig. 4. To clarify the variations
of relative distances between agents, the trajectories of three
independent relative states are shown in Fig. 5, which are
x1 −x2, x2 −x3, and x3 −x4. It is clear that they are bounded.
However, there is no consensus. Note that the thick dots in
the following figures represent the starting positions of tra-
jectories. One can sense that the motion of such a nonlinear
time-varying system is rather sophisticated. �


5 Conclusions

Criteria for swarm stability of nonlinear dynamical multi-
agent systems of high order are studied. The idea in this paper
is based on the notion that the convergent property of a multi-
agent system can be guaranteed by some dissipative property

of an image system in certain abstract space, which is unique
and different from those in the literature concerning consen-
sus problems of linear systems. New concepts such as relative
Lyapunov function and quasi-gradient field are concomitant
with the discussions. The original motivation is from attempt-
ing to apply Lyapunov’s second method to dynamical multi-
agent systems. The approach proposed can potentially deal
with the swarm stability of nonlinear systems that may be
time-varying or heterogeneous. However, the results derived
so far are still theoretic and restricted, probably because of
the internal limitation of Lyapunov’s second method and the
complexity of compound nonlinear systems. It is usually dif-
ficult to determine an appropriate relative Lyapunov function
for any particular scenario. This paper is just a preliminary
endeavor along this direction. There are still many problems
awaiting us to offer the solutions. In the future, we shall
further attempt to seek some more practical techniques, e.g.
considering systems with specific configurations and trans-
forming the nonlinear models into canonical forms.
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