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Abstract. While techniques exist for simulating swarming behaviors,
these methods usually provide only simplistic navigation and planning
capabilities. In this review, we explore the benefits of integrating road-
map-based path planning methods with flocking techniques to achieve
different behaviors. We show how group behaviors such as exploring can
be facilitated by using dynamic roadmaps (e.g., modifying edge weights)
as an implicit means of communication between flock members. Extend-
ing ideas from cognitive modeling, we embed behavior rules in individual
flock members and in the roadmap. These behavior rules enable the flock
members to modify their actions based on their current location and
state. We propose new techniques for several distinct group behaviors:
homing, exploring (covering and goal searching), passing through narrow
areas and shepherding. We present results that show that our methods
provide significant improvement over methods that utilize purely local
knowledge and moreover, that we achieve performance approaching that
which could be obtained by an ideal method that has complete global
knowledge. Animations of these behaviors can be viewed on our web-
pages.

1 Vision

Coordinating the movement of a swarm of robots plays an important role in
robotics. Although techniques to achieve coordinated movements have attracted
the attention of many researchers, most research has focused on techniques for
modeling individual behaviors of flock members inspired by Reynolds’ boids [1].
Boids exhibit so-called emergent behavior in which characters only react to im-
mediate events. Although, they can be coupled with simple methods for guiding
global flock movement [2], existing methods have difficulty if complex naviga-
tion is required, such as in cities, through crowded rooms, or over rough terrain.
In contrast, path planning algorithms developed in the robotics community are
capable of navigation in complex environments [3]. In particular we note the
roadmap-based methods which construct, usually during preprocessing, a net-
work of representative feasible paths in the environment. While roadmap meth-
ods can efficiently support complex navigation, they have generally not been
customized to support coordinated group behavior.
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Fig. 1. Roadmaps in navigation: (a) global navigation information can assist coordi-
nated group behaviors, such as flocking or mine sweeping (shown here), in complex
environments, (b) a prm roadmap (C-space).

In this review, we present the benefits of integrating flocking techniques with
roadmap-based path planning methods to achieve different swarming behaviors.
The details of our approach including the related work can be found in [4–7]. We
find that the global navigation information provided by the roadmaps can also
be exploited to support more sophisticated group behaviors than possible using
traditional (local) flocking methods. In particular, we consider several different
behaviors: homing, goal searching, covering, passing through narrow passages
and shepherding. Our new techniques can be applied to an entire flock, to indi-
vidual flock members, or to an external agent that may influence the flock (e.g.,
a sheep dog).

2 The Swarm Robotic Environment/Methodology

In this section, we briefly describe probabilistic roadmap techniques and then
discuss how these techniques can be used for swarming behaviors.

2.1 Probabilistic Roadmap Methods and Flocking Systems

Given a description of the environment and a movable object (the ‘robot’), the
motion planning problem is to find a feasible path that takes the movable object
from a given start to a given goal configuration [3]. Since there is strong evidence
that any complete planner (one that is guaranteed to find a solution, or deter-
mine that none exists) requires time exponential in the number of degrees of
freedom (DOF) of the movable object [3], attention has focused on randomized
or probabilistic methods.

As mentioned in Section 1, our approach utilizes a roadmap encoding rep-
resentative feasible paths in the environment. While noting that our techniques
could use any roadmap, our current implementation is based on the probabilistic
roadmap (prm) approach to motion planning [8]. Briefly, prms work by sampling
points ‘randomly’ from the robot’s configuration space (C-space), and retaining
those that satisfy certain feasibility requirements (e.g., they must correspond
to collision-free configurations of the movable object). Then, these points are
connected to form a graph, or roadmap, using some simple planning method
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to connect ‘nearby’ points. During query processing, the start and goal are con-
nected to the roadmap and a path connecting their connection points is extracted
from the roadmap using standard graph search techniques (see Figure 1(b)).

We use a particular variant of the prm called the Medial-Axis prm, or maprm
[9]. In maprm, instead of generating the nodes uniformly at random in C-space,
they are generated on or near the medial-axis of C-Space. maprm is particularly
well suited to flocking behavior since roadmap nodes tend to maximize clear-
ance from obstacles. Note that although the initial roadmap is found for the
static environment, the roadmap, or a path extracted from it, can be modified
according to dynamic changes in the environment, e.g., a new roadmap could
be built from scratch [10], the existing roadmap can be modified [11–13], or a
path containing collisions (an approximate path) can be modified to fit the new
requirements [14].

Basic flocking systems [1] model simple group behavior by providing individ-
ual members with simple rules that implement separation (to avoid collision with
nearby neighbors), alignment (to move in the same direction as its neighbors)
and coherence (to stay close to neighbors) maneuvers based on the positions and
velocities of the flockmates inside the sensing range. Constraints are satisfied by
generating forces for each rule and applying an integrated force to change the
state of the flock member, e.g., the flock member’s velocity vector updated by
finding the acceleration resulted from the integrated force using the Newtonian
equation F = ma. Our implementation of this is based on particle systems [15].
In the presence of obstacles, force is also generated to push the flock member
away. This basic system can be seen in Figure 2. More complicated behavior is
usually simulated by adding other forces.

2.2 Roadmap-Based Group Behavior

In this section, we show how roadmap-based techniques can be used to achieve
different behaviors. We consider several behaviors: homing, exploring (covering
and goal searching), traversing narrow passages and shepherding. The first two
behaviors influence where the flock goes – reaching a pre-defined goal (homing),
attempting to cover (visit) all reachable areas of the environment (covering)
or search for a goal whose location is not known. The narrow passage behavior
influences how the flock members position themselves relative to each other when
they move through the passage. In the shepherding, an external agent controls
the movement of the flock.

Homing Behavior. Homing behavior is usually simulated by adding an at-
tractive force toward the goal [16]. However, this method may easily be trapped
in a local minimum even in a simple environment. A method commonly used in
computer games requiring motion of a group of objects is a grid-based A∗ search
[17]. In this approach, the environment is discretized to small grid cells and the
search for the flock’s path is based on expanding toward the most promising
neighbor of already visited positions. Although A∗ search finds shortest paths
and it is usually fairly fast, it does have some drawbacks. Of particular note here
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Fig. 2. Individual member behavior for flocks. (a) Separation: avoid crowding neigh-
bors. (b) Alignment: match velocity of neighbors. (c) Cohesion: stay close to neighbors.
The arrow represents steering direction.

(a) (b) (c)

Fig. 3. Covering an environment. (a) A roadmap is built. (b–c) Robots move to the
roadmap and increase the weights as they move along the edges. At an intersection
the robots select their destination by a probability function based on the edge weights
(edges with small weights are preferred).

(a) (b) (c) (d) (e)

Fig. 4. Ten flock members are searching for an unknown goal. (a) The flock faces a
branch point. (b) Since both edges have the same weight, the flock splits into two
groups. (c) After dead ends are encountered in the lower left and upper right, edge
weights leading to them are decreased. (d) As some members find the goal, edge weights
leading to it are increased. (e) The remaining members reach the goal.

Fig. 5. Passing through a narrow passage using the Follow the Leader behavior
(Algorithm 2.4).

is the necessity of finding a completely new path for each new goal which reduces
efficiency and increases the computation time for complex environments.

In contrast, roadmap-based path planning methods work on a global scale
and once the roadmap is generated, finding new paths is fast and efficient. Once a
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path is found, individual flock members follow the path. The path is partitioned
into a set of subpaths (identified by subgoals) based on the individual flock
member’s sensor range. Each member keeps track of subgoals and as soon as
a subgoal comes within sensory range the next subgoal becomes the steering
direction for the global goal.

With other interacting forces from neighboring flock members and obstacles,
steering toward the subgoal has the lowest priority, so individual members still
move together while moving toward the subgoal. Since the subgoals are usually
away from the obstacles, due to global roadmap, this approach results in a flock-
ing toward the goal and avoids getting trapped in local minima. The homing
behavior is shown in Algorithm 2.1.

Covering the Environment. In this behavior we want some member of our
flock to have covered every location in the environment. We assume we start with
a roadmap covering all relevant portions of the environment and the roadmap
has adaptive edge weights. In this approach, each individual member uses the
roadmap to wander around. Specifically, the flock members follow roadmap edges
and there are no predefined paths. The goal is to have some flock member visit
every edge and vertex of the roadmap (see Figure 3). The edge weights rep-
resent how relevant the edge is to the current task, in this case exploring the
environment. Initially, edges all have weight one. As the flock members traverse
a roadmap edge they increase its weight. This is similar to ant pheromones which
increase as more ants follow the same path. Since our goal is to cover the en-
vironment, the individual flock members are biased toward relatively uncovered
areas of the roadmap. This is achieved by having them select roadmap edges
with smaller weights with some higher probability at the intersections (roadmap
nodes). This algorithm is shown in Algorithm 2.2.

Goal Searching. Our goal searching behavior is similar to ant colony optimiza-
tion (ACO). Although the individual flock members know the environment, they
don’t know the location of the goal. If an individual reaches a location where
the goal is within sensor range, all other members try to reach the goal. Like
the previous case, we implemented this behavior using adaptive roadmap edge
weights. The weight of an edge shows how promising a path segment is. Again,
the member chooses an edge to leave a roadmap node with some probability
based on the edge’s weight. As an individual traverses a path in the roadmap, it
remembers the route it has taken. Then, when it reaches a goal, it increases the
weight of the edges on the route it took. If the individual reaches a roadmap node
without any outgoing connections (i.e., with only one edge) or a node already
contained in the current path (i.e., a cycle), the weight of the edges it followed
will be decreased. This approach is summarized in Algorithm 2.3 and illustrated
in Figure 4.

Narrow Passage Behavior. Sometimes the flock’s behavior depends on the
surrounding environment. For example, different group formations may be used
in relatively open areas than are used when passing through narrow regions. One
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Algorithm 2.1 Homing

1: if (goal is in view range) then
2: set goal as target.
3: else if (target is in view range) then
4: set next subgoal as the target.
5: end if
6: steer toward the target.

Algorithm 2.3 Goal Searching

1: for (each flock member) do
2: if ( goal found) then
3: increase edge weights on path to

goal
4: else if (dead end found) then
5: pop stack until a new branch is

found
6: decrease weight of edge corr. to

popped node
7: else
8: select a neighboring node of the

current node
9: push this node onto the stack

10: end if
11: end for

Algorithm 2.5 Shepherding (for dog)

1: Find a path on roadmap
2: while (goal not reached) do
3: Select the next node on the path as

subgoal
4: while (subgoal not reached) do
5: Move to rear of flock on the far side

of subgoal
6: if (flock separates) then
7: Move the subgroup that is far-

thest from subgoal toward other
subgroups

8: end if
9: end while

10: end while

Algorithm 2.2 Covering the Env.

1: for (each flock member) do
2: while (not all nodes visited)

do
3: if (not in the roadmap)

then
4: move to closest

roadmap node
5: end if
6: if (current node has no

outgoing edge) then
7: pop stack until a new

branch is found
8: else
9: probabilistically pick a

lower-weight edge
10: increase edge weight
11: push this node onto the

stack
12: end if
13: end while
14: end for

Algorithm 2.4 Narrow Passage

1: while (not all flock members
in gathering area) do

2: set individual members’ goal
to gathering area

3: end while
4: set leader to NIL
5: while (there are flock mem-

bers outside passage) do
6: select the closest unselected

member as Current
7: if (Leader is NIL) then
8: set Leader to Current and

set Leader’s goal to next
step in the path

9: else
10: set Current’s goal to Pre-

vious
11: end if
12: set Previous to Current
13: increase neighbor avoidance

threshold
14: end while
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(a) (b) (c) (d)

Fig. 6. Shepherding: sheep are represented by large circles and the dog by a small dark
circle. (a) Roadmap, (b) path selected by dog, (c) dog’s steering location, (d) flock is
separated.

nice property of roadmaps is that, the roadmap nodes can be the representa-
tives of different regions of the environment. Hence, different rules or navigation
strategies can be assigned to different nodes and if a flock member reaches a
node, it follows the rules associated with that node.

We employ different rules to pass through a narrow passage. A naive way
to achieve narrow passage traversal by the flock is to use the homing behavior
and to select two nodes as goals, first a node in front of the entrance to the
passage and then a node outside the exit from the passage. One drawback of
this approach is that flock members may bunch up and conflict with each other
as they try to move through the passage.

A follow-the-leader strategy may avoid the congestion problems of the naive
strategy (see Figure 5). In this strategy, we first assemble the flock in front of the
narrow passage, and then select the closest agent to the narrow passage entrance
as the leader. Then, the remaining flock members are arranged into a queue that
follows the leader. Their position in the queue depends on their distance to the
entrance of the narrow corridor. They can be kept from crowding each other by
selecting appropriate values for the repulsive force from other flock members.

Note that different behaviors can be achieved by using a different criterion to
select the next flock member in line 6 of Algorithm 2.4. For example, instead of
selecting the next closest flock member to the narrow passage, one might select
the farthest, which would create a ‘milling around’ effect at the entrance to the
passage.

Shepherding Behavior. In the previous sections we have observed two distinct
class of flocking behaviors. In the first case, the flock members were moving
toward a goal together, i.e., as a flock. The motion was planned for the flock. In
the second case, the flock members were exploring and planning their motions
individually. In a sense, the flock had control of the motion in the first case and
individual flock members had control in the second case. In our third scenario,
neither the flock nor the individuals have control of the motion. Instead, an
outside agent guides or shepherds them. In the simulation shown in Figure 6(a),
the external agent is a dog whose objective is to move the flock of sheep toward
the goal. The only motion control for the flock is to move away from the dog.
A similar implementation has been done in [18] where a robot was programmed
to move geese toward a goal position. We would like to implement a similar
algorithm where a subgoal will be a roadmap node found in the path. Until the
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subgoal is reached, the robot will move toward that goal and then will choose
the next roadmap node on the path as the next subgoal (see Figure 6(b)).

To move the flock toward the goal, the dog steers the flock from behind
(Figure 6(c)). If any subgroup separates from the flock, it is the dog’s job to
move the subgroup back to the flock (Figure 6(d)). Our approach is presented
in Algorithm 2.5. We present an improved shepherding algorithm in [7].

3 Results

In this section we evaluate our roadmap-based techniques for the homing, ex-
ploring, and shepherding behaviors that were described in Section 2. Movies
illustrating the experiments as well as the behaviors in three-dimensional space
with rigid or deformable objects can be found on our webpage
(http://www.cse.wustl.edu/∼bayazit).

Our experiments are designed to compare our roadmap-based techniques with
more traditional approaches for simulating flocking behavior and to study the
improvements possible by incorporating global information about the environ-
ment as encoded in a roadmap.

To study the efficiency of our covering and goal searching techniques, we
also compare our roadmap-based techniques with ‘ideal’ variants which have
complete knowledge of the environment and the current status of the search.
For example, in the goal searching behavior, the location of the goal is known
at all times in the ideal variant. A more through evaluation of our approach can
be found in [4–7] where we presented additional results for narrow passage and
shepherding.

All of our experiments were run on a Linux system with Athlon 1.33 processor
and 256MB memory.

3.1 Homing Behavior

For the homing behavior, our roadmap-based technique is compared with a basic
flocking behavior using a potential field [16] and a grid-based A∗ search behavior.

The environment is a square with sides measuring 420 meters (see Figure 7).
It contains a total of 301 randomly placed obstacles (six types of obstacles are
used). At any given time there is one goal, and when all flock members reach it,
a new goal is randomly generated; this process continues until eight goals have
been generated and reached. The experiment involves 40 flock members, which
are initially placed according to a Gaussian distribution around the center of the
square environment. The simulation is updated every 100 ms.

For the flocking behavior using a potential field, flock members are attracted
towards the current goal. For the grid-based A∗ behavior, a bitmap of the envi-
ronment of 914× 914 cells is constructed; the length of a side of each square cell
is equal to the diameter of a flock member. Cells are classified as free cells and
collision cells. Path to the current goal is found in this bitmap using A∗ search.
For the roadmap-based behavior, the roadmap is built using the maprmmethod
(Section 2.1) to generate 400 roadmap nodes and we attempt to connect each
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Fig. 7. Environment for homing experiments.

node to its 4 nearest neighbors. Path to the current goal is found using this
roadmap.

Table 1 shows that, without global information, only a few flock members
reach the last goal and most are trapped in local minima. On the other hand,
when global navigation information is utilized, either with the grid-based A∗

method or our roadmap-based method, all flock members reach the goal.
In Table 2 we show the time spent searching for paths, the number of local

minima encountered along all paths, and the total time spent escaping from local
minima. This offers some insight into the methods studied, as can be seen more
clearly in Figure 8. Although the flock takes a shorter path with the grid-based
A∗ search than with the roadmap-based method (Figure 8(a)), the flock reaches
the final goal faster with the roadmap-based method (Figure 8(b)). As A∗ search

Table 1. Homing behavior. This table shows how many of the 40 flock members reach
the last goal (8th) within 30 seconds using the basic flocking behavior, the grid-based
A∗ behavior, and the roadmap-based behavior.

Homing behavior: Basic v.s. Roadmap

Method #flockmates reaching the goal

Basic 10

grid-based A∗ 40

roadmap-based 40

Table 2. Homing behavior. This table shows the time for initialization, the average
time to find a path, and the total time spent by all flockmates escaping local minima
if they stuck in a place due to quickly changing forces.

Homing behavior: Roadmap v.s. grid-based A∗

Behavior init find path local minima
Method time time # escape (s)

roadmap-based 0.88 0.652 255 22.99

grid-based A∗ 6.02 5.757 2005 1035.43
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Fig. 8. Homing behavior: (a) The number of flock members reaching goals with respect
to the length of the paths they took. (b) The number of flock members reaching goals
over time. Although the grid-based A∗ behavior finds shorter paths, the flock spends
less time to reach the goals with the roadmap-based behavior.

is known to be fast and to find shortest paths, this example illustrates that our
roadmap-based method indeed is a competitor for grid-based A∗ methods – while
the paths found are a bit longer, they are found faster.

3.2 Covering the Environment

Space covering is tested on the environment shown in Figure 9, which requires
flock members to pass through narrow passages to access undiscovered areas. In
this experiment, we compare basic flocking behavior, roadmap-based behavior,
and an ideal variant of the roadmap-based behavior that has dynamic knowledge
of the undiscovered regions.

The environment (80 × 100) is populated with 16 obstacles (6 types of ob-
stacles) and in total 24% of the environment is occupied by obstacles. 50 flock
members are simulated and states are updated every 100ms. A bitmap is built
to record discovered/undiscovered information. A bitmap cell is discovered when
it is inside the sensory range of any flock member. We set the radius of the sen-
sory circle as 5m. For the roadmap, 120 nodes are sampled and connections are
attempted to each node’s 4 nearest neighbors.

The roadmap-based covering behavior is described in Section 2.2.
The basic behavior uses only local information, and is essentially a random

walk through the environment. It shows that the lack of global knowledge results
in some areas never being discovered, especially those nearly surrounded by
obstacles.

The behavior with perfect knowledge of the undiscovered locations uses the
roadmap to find paths from a flockmate’s current position to the closest unex-
plored spot. Although such knowledge would not be available in this covering
application, this variant gives us an idea of how fast an environment can be
covered in the best case.
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As seen in Figure 9, the perfect behavior rapidly covered almost 91% of
the environment in the first 30 seconds. The roadmap-based behavior, using
indirect communication (adaptive edge weights) takes about three times as long
(90 seconds), to reach a similar coverage point of 91.6%. Nevertheless, like the
perfect behavior, the roadmap-based behavior found most reachable areas. In
contrast, the basic flocking behavior had difficulty covering more than 80% of the
environment. However, it is interesting to note that the basic flocking behavior
found more undiscovered areas than the roadmap-based approach in the first 40
seconds; this is due to the basic behavior which tends to bounce around and
discover ‘easy’ areas very quickly.

3.3 Searching for a Goal

In this experiment, the roadmap-based behavior is compared with a simple flock-
ing behavior that has only local information about the environment and no
knowledge of the goal position, and with an ideal variant of the roadmap-based
behavior that has a priori knowledge of the position of the goal. The environment
is the same as that used in the covering experiment.

We are interested in how many flock members reach the goal and how fast
they get there. As previously mentioned, the behavior with complete knowledge
is used to establish a best case (lowerbound) for the simulation efficiency, and the
basic behavior using only local information is used to illustrate the importance
of global knowledge. The results of some experiments are shown in Figure 10.
The flocks using the basic behavior do not discover any goals within 35 seconds,
and in particular, none of the flock members discover the narrow passage out
of the confined region in which they start. Overall, the roadmap-based behavior
is competitive with the ideal roadmap-based behavior – only taking 5 seconds
longer than the method in which the position of the goal is known a priori. In
addition, it is surprising to note that two of the flock members in the roadmap-
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based method reach the goal earlier than any of their flockmates in the ideal
roadmap-based behavior. While we expect the roadmap-based method to con-
tinue to perform well in more complex environments, we expect its efficiency
relative to the ideal method to decline somewhat.

4 Discussion and Outlook

In this paper, we have shown that complex group behaviors can be generated
if some global information of the environment is available. The global knowl-
edge used is a roadmap of the environment. The information it contains, such as
topological information and adaptive edge weights, enables the flock to achieve
behaviors that cannot be modeled with local information alone. Moreover, since
in many cases global knowledge involves high communication costs between indi-
viduals, indirect communication though dynamic updates of the roadmap’s edge
weights provides a less expensive means of obtaining global information.

Our simulation results for the types of behaviors studied show that the per-
formance of the roadmap-based behavior is very close to an ideal behavior that
has complete knowledge. Our future work will focus on shepherding with multi-
ple external agents and searching for moving goals, as in pursuit/evasion games.
We are also working on exploration strategies if the environment is not known
a priori.

5 Related Work

Reynolds’ influential flocking simulation [1] showed that flocking is a dramatic
example of emergent behavior in which global behavior arises from the inter-
action of simple local rules. Each individual member of the flock (boid), has a
simple rule set stating that it should move with its neighbors. This concept has
been used successfully by researchers both in computer graphics and robotics.
Tu and Terzopoulos [19] used flocking behaviors with intention generators to
simulate a school of fish. They also demonstrated shepherding behavior in which
a T-Rex herds raptors out of its territory.

A number of related methods for achieving group behaviors have been pro-
posed. Nishimura and Ikegami [20] used flocking dynamics to investigate col-
lective strategies in a “prey-predator” game model. Ward et al. [21] studied an
evolving sensory controller for producing schooling behavior based on “boids”.
Brogan and Hodgins [22] investigated group behavior with significant dynamics,
such as human-like bicycle riders. Sun et al. [23] achieve swarm behaviors based
on a biological immune system. Balch and Hybinette [24] propose a behavior-
based solution to the robot formation-keeping problem. Fukuda et al. [25] de-
scribe group behavior for a Micro Autonomous Robotics System. Mataric [26]
classifies a basic set of group behaviors which can be used to create more com-
plex behaviors including flocking and herding. Saiwaki et al. [27] use a chaos
model to simulate a moving crowd. An interesting approach by Vaughan et al.
[18] used a robotic external agent to steer a flock of real geese.
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Although there is little research on path planning for flocks, many meth-
ods have been proposed for planning for multiple robots. These methods can
be characterized as centralized or decoupled. Centralized methods consider all
robots as one entity, while decoupled methods first find a path for each robot
independently and then resolve conflicts. In work from Li et al. [28], each group
of crowds is guided by a leader and the paths of the leaders are generated using
a decoupled approach.

The observation of the behavior of ant colonies has inspired the ant colony
optimization (ACO) meta-heuristic for discrete optimization. Dorigo et al. [29]
exploit this ant-like behavior to optimize solutions for several NP-Complete prob-
lems. In our work, the flock’s ability to explore comes from using an ACO-like
approach to adaptively adjust roadmap edge weights.
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