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Sway Added Mass of a Rectangular Cylinder in a Restricted Water
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Abstract

In this paper, the sway added mass of a rectangular cylinder in a restricted water is considered
by applying Hamilton's principle as the frequency tends to zero. The present method is an
extension of Isshiki’s method proposed in 1978.

Tn the present method, it is assumed that the fluid velocity distribution in each subdomain of
the fluid can be represented by higher order polynomials while Isshiki assumed linear velocity
distribution. The fluid flow is assumed as a rotational motion in the present analysis. However,
the results obtained from the present method show good agreement with Bai’s numerical results
for the case of large clearances between a canal wall and a cylinder.

From Kelvin’s minimum energy theorem, we can see that the value of sway added mass obta-
ined from the present method approaches the upper bound. The approximate formula obtained in
the present study takes a simple form which consists of the dimensions of the canal and the
cylinder.

The present formulae are derived for the cases of a rectangular cylinder swaying at the center
of a narrow or wide canal relative to a cylinder, at off-center location in a canal, and in the
restricted water with a single wall.

From the results of numerical calculation, it is concluded that the sway added mass in restri-

cted waters is more affected by water depth than clearance between a wall and a cylinder.

u, v : fluid velocities in x-direction and
Symbols y-direction
T,V : kinetic energy and potential energy
a,b,¢c,d e B, W: dimensions of cylinder and canal M : mass of cylinder
& : distance from the center of canal o . water density
to that of cylinder M, : sway added mass of cylinder
b/ : distance from a wall to cylinder F, : sway force
Ri—Rs : 5 subdivisions of fluid domain o : frequency
S, U8, U : juncture interfaces between subd- g : gravitational acceleration
ivisons ’ : added mass coefficient based on
X : sway deflection of cylinder displaced fluid mass
%1, s : deflections of water surface * : represents linearization
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1. Intreduction

The maneuvering characteristics of a ship are very
important when she passes through a canal or makes
a port in accordance with the increasing tendency of
a ship size. To know this characteristies, the added
mass of a ship in a restricted water has to be caleu
lated.

It has been calculated by several methods. Fujino
(1973, 1975, 1976> calculated the upper and lower
bounds of the addsd mass for several types of a
cylinder using a hyper-circle method. Newman(197§)
proposed the approximate formula for calculating the
added mass of a rectangular cylinder {or the limiting
frequency ¢—0 in a canal in the discussion of the
above paper by Fujino. For the case of small cleas-
ance bewteen a canal and a body he derived a for-
mula of sway added mass using simple solutions. of
Laplace equation.

Meanwhile Bai (1977a) derived the better approx-
imate formula calculating the added mass of a rest-
angular cylinder for the limiting frequency ¢—0 by
subdividing the whole fluid domain by 3 subdemains
and applying the better solutions of Laplace equation
to each subdomain under the same assumption as
Newman did. And he {1977¢) computed the added
mass of cylinders for the limiting frequencies in a
restricted water using a finitc-element methed based
on the dual-extremum principles. For the case of
small clearances between a body and a canal,Hwang
and Yoon(1977) derived the approximate formulas
for calculating the added masses of a rectangular
cylinder swaying (¢—0, g—o0) or heaving (g—>®0)
in a canal using a finite-element method and showed
their formulae are the same with those of Bai
(1977a). Isshiki (1978 subdivided the fluid domain
into 5 subdomains assumed that the fluid velocity in
each subdomain was represented by a linear equation,
and derived the formula computing the added mass
of a rectangular cylinder using Hamilton's principle.
His results for the limiting frequencies were consis-
tent with the approximate formulae of Bai{l1977a)

gnd Hwang and Yoon (1977). But his results also
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have significant discrepancies with the accurate res-
ults of Bai (1977c) for the case of the large cleara-
nce between a body and a canal.

In this paper, we apply the method, with which
Isshiki (1978) has analyzed the problem of the
surge motion of a freely- floating ship in a dock, to
the cases of a cylinder swaying(o—0) at the center
of a wide canal, at off-center location, and with a
single wall. The results are shown better agreements
with those of accurate numerical calculation of the

other investigators.

2. Sway Addcd Mass Fermulae derived
from Hamilten’s Principle

2.1. Derivation of Sway Added Mass
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Fig. 1. Coordinate system

The sway a2dded mass formulae of a rectangular
cylinder in a restricted water have derived by empl-
oying Hamilton’s Principle as Isshiki developed in
1978. The fluid region is divided by five subdemains
and fluid velocities are assumed appropriately by
higher order polynomials in each subdomain for steady
state of oscillation.

The kinetic and potential energies of the fluid are
calculated in each subdomain. Then, applying Ham-
ilton’s Principle to the total system we obtain the
added mass formulae of the rectangular cylinder on
a free surface in the restricted water.

Finally we obtain the sway added mass formula
for a limiting frequency (6—0} from the above
mentioned {requency dependent formula.

The derived formula of the sway added mass coe-

flicient for ¢—0 is expressed as
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Sway Added Mass of a Rectangular Cylinder in a Restricted Water 5

m= zﬁc (2-1)
where
P c(b—a) m? ,_ ¢
2m+1 3@2m—1) b—a
c? L b—a m? . _cXd—c)
™ 2m-+1 d—c + 3@m—1) b—a
2ac? c? c—a
ta—ct T T Td=e
n? . Ad—e) | c
3= c—a [ Toari €@
n? 3
+T(‘2n—l) c—a @2

m, n: positive integer
and 2ac is the section area of the rectangular cylin-
der. The detail derivation of the above formula is
shown in appendix.
2.2. In the Case of a Cylinder at the Center
of a Canal
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Fig. 2. Swaying rectangular cylinder at the center
of a restricted canal

In this case, £=0, b=e and m=n. From eq. (2.1),
the equation of the sway added mass coefficient is

obtained as follows:

1 1 . db—a) m? ,_ed
Moo=y [ 2m—=1 d—c - 32m—1) b—a
ac
+—] (2.3)
In the process deriving the above equation, for the

fluid velocities in each fluid subdomain irrotationality
is not assumed. Then the rotational fluid motion has
more kinetic energy than the irrotational fluid motion
according to the Kelvin’s minimum energy theorem.

Accordingly we must find the most appropriate
value of m. Although we can choose the most appro-
priate value of m according to the ratio of the dim-

ensions of a cylinder and a canal, we will choose
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only natural numbers as the value of m for conven-
ience. Fig. 3 shows the relation between g0 and
variation of m. In this figure a certain value of m
has the available region to give the minimum value
of g1 for the given dimensions of a cylinder and a

canal. We can find the available region of m from
eq. (2.3).

/ulc \
\z._x‘/’/

available range of m b/a
Fig. 3. Relation of g1 and Variation of m

In this sense the following conditions are conside-

red for the selection of m.

b 4 m2q < _ r,,,,giw‘
2m+1 3@2m—1) T 2m+1)+1
(m+1)%q
LN L.
T30m= 1) (2.42)
? + m’q S b
2m-+1 30@m—1) T 2m—1)+1
(m—1)¢
P L S AT A S
T3(m—3) (2. 4b)
~b=a _ ¢ a ~
where p= i T $>>0 and ¢>>0.

The region in which m satisfies (2.4a) and (2.4b) is
2m—1)+3 {2m—1"—1} - »

62m—D~1J T g
< (@m*—1) (@m+3) .
Especially when m=1, the region of p/q is
5
otst @6

The region of p/g for m is tabulated in Table 1.
2.3. In the Case of a Cylinder at Off-Center
Location in a Canal
From eq. (2.1), we obtain the equation for cale-

ulating p4 for the case of a cylinder at off-center

location in a canal.

:_l[ 1, dG—a
M0 om+l T d—c
m? ed | 2ac

T 3om—1 " b—a | des



n’ cd

SiaTorasy)

e—a + 2n1+1 ) d%—z) ]

@.m
By comparing eq. (2.7) with eq. (2.3), we can see
that the sway added mass for this case is the mean
value of the added mass of left and right side. That is

1

y1=7(/r«_oL + pt1oR) (2.8

where  por: the added mass of left side
pwor: the added mass of right side
Therefore g1 can be obtained from g5, However, for
w2 this relation is not hold as we can see from eq.
2. 0.
2.4 In the Case of a Cylinder with a Single
Wall

This is the extension of the case of the off-center
cylinder. For this case, an artificial vertical rigid
wall is introduced at a sufficient distance from the

b—a _

body(for example, - . =100). Then, the follow-

ing equation is obtained from eq. (2.7)

__ 1 4/ 50d m2cd
m=a-c ( 2m—+1 Arc)—{h 600a?(2m—1)
1 [__»° | cd 1, _dg_
+ 2a [ 32n—1) 7 2n+1 d—cJ
2.9

where y=¢—a and m must satisfy the following
condition.

2m—1D+3} 2m—1°%*-1} a?
60000 {2(m—1)—1} = c(d—c)

< @m—1) (m+3)

=760000 2m—1) (2.10)
3. Results and Discussionr
As mentioned earlier, sway added mass is impor-

Table 2. Sway Added Mass of a Rectangular Cylinder at
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tant to ship motion restricted

in a canal or in a
water. Especially sway added mass for the limiting
frequency ¢—0 is very important to ship maneuver-
ability. Equations (2.3), (2.7) and (2.9) give sway
added mass of a rectangular cylinder (a—0Q) respect-
ively for the case of a cylinder translating at the
center of a canal, at the off-center location in a
canal, and near a wall.

In the process of deriving these equation, irrotati-

onality of fluid motion is not assumed. By Kelvin’

Table 1. The Range of p/¢ dependent upon m

r /

= | 2 b/q
1 0~0. 83333?1{ 21 ~161.159
2 ~2.72222; 22 ~176. 159
3 | ~5.10000] 23 ~191. 826
4 | ~8.11905! 24 ~208. 160
5 ~11.7963, 25 | ~225. 160
6 ~16.1364 24 ~242. 827
70! ~21.1410 27 ~261. 160
8 ~26.8111F 28 ~280. 161
9 ~33.1471) 29 ~299. 827
10 ~40.1491, 30 ~320. 161
1l ~47.8175] 31 ~341.161
12 ~56.1522] 32 ~362. 828
13 ~65.1533) 33 ~385.162
14 ! ~74.8210) 34 ~408. 162
15 ! ~85.1552, 35 ~431.828
16 ! ~96.1559] 36 ~456.162
17| ~107. 823; 7 ~481.162
18 ~120.157! 38 ~506. 829
19 | ~133.158 39 ~533. 162
20 ! ~146.825/ 40

~560.162

the Center of a Rectangular Canal {6—0) a/¢=1.0

b/a d/ec (uppe}?ali)ound) Fujino Bafssglli?(?a) Present Formula Retl)atﬁ\:ﬁ (gér)ror
1.05 1.5 10. 0948 10. 090 i 12. 0350 12. 0350 19.22
1.1 1.5 6. 3709 6. 370 7.1000 7.1000 11.44
1.2 1.5 4. 4400 4. 440 4. 7000 4.7000 6. 82
1.3 1.5 3.8013 3. 805 3. 9667 3. 9667 4.35
1.5 1.5 3.3393 3. 342 3. 5000 3. 5000 4.81
2.5 1.5 3.0937 3.105 3.8333 3. 2429 4.82
3.5 1.5 3.0979 3.112 4.7222 3.2315 4.31
5.0 1.5 3.1114 3.137 6.1217 3.2272 l 3.72
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Sway Added Mass of a Rectangular Cylinder in a Restricted Water 7

‘Table 3. Sway Added Mass of a Rectangular Cyli-
nder at the Off-Center of a Rectangular
Canal (¢6—0) a/¢c=1.0, W/a=5.0

X T
1.05] 0.40,  22.1658  22.7482 2.63
[ 0.600  22.2246  22.7640 2.43
0.65} 22. 4039 22. 9310 2.35
0.70  23.1119) 234559 1.49
0.72  24.1806]  24.4827 1.25
0.74  29.8485  30.1761 1.10
1.5| 0.40 3.1571 3.3018 4.58
0. 60 3. 4639 3. 6024 4.00
0.65 3.7847 3.9665 4.80
0.70 4.7579 5. 1649 8.55
0.72 6.0213 6.8118  13.13
0.74f  12.0048 151242  25.05

Table 4. Sway Added Mass of a Rectangular Cyli-

nder near a Wall (6—0). a/c=1.0, d/c=
1.05
2 | Bai IRelative Error
7/B J(upper boundJ‘Present Formula \%)
10 227466 i 92.7118 1 0.15
0.3 | 22,1825 22.7222 | 2.43
0.1 | 224160 229305 | 2.30
0.05 23.1182 23.4555 | 1. 46
0.03| 241816 | 244822 |  Ll24

I

s minimum energy theorem, the rotational fluid has
more kinetic energy than the irrotational fluid as
mentioned in the previous section. That is, the added
mass in rotational motion is always larger than that
in irrotational motion.

When m=1, eq. (2.3) is identical with the results
of Isshiki and Murakami (1978), Bai (1977a), and
Hwang and Yoon (1977). And it may be used only
when the clearance between a wall and a cylinder is
small, i.e. when it satisfies eq. (2.6). But we can
see from Table 2 and Fig. 4 that eq. (2.3) can be
used in case of a large clearance by using of m in
Table 1.

For the case of the off-center cylinder (W/a=5,
d/¢=1.05 and 1.5) we have computed the sway

added mass with variation of &/B and compared our
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Table 5. The Effect of the Side Wall and the Water
Depth on the Sway Added Mass of a Rac-
tangular Cylinder in a Canal (¢—0) a/c=

1.0

/e J /a , 2
1.3 | L05 | 9.0722
| 1.1 i 4.8111
1 1.2 | 2.7889
| 1.3 : 2.2111
| 1.4 ; 1. 9944
i 1.5 ; 1.9222
| 1.7 ; 1.7654
1.05 | 1.3 22. 8156
1.1 12. 3222
1.2 6.9333
L3 5. 2111
1.4 4. 4056
1.5 | 3. 9667
1.7 ‘ 3. 5603

|
|
|
|
|
|
|
|
t

Table 6. The Effect of Single Wall and the Water
Depth on the Sway Added Mass of a Rec-
tangular Cylinder near a Wall (¢—0). a/c¢

=1.0

djc | 7/B "
1.3 0.025 6. 8879
0.05 4.7574
0.1 3.7463
0.15 3.4574
» 0.2 3.3491
0.25 3.3129
035 3.2339
1.05 { 0.15 22.7638
1.1 12. 1657
1.2 6.7413
1.3 4.9574
1.4 4.0018
1.5 { 3. 5957
1.7 j 3.0810

results with those of Bai (1977¢) as shown in Table
3 and Fig. 5,6. And our results for W/a=3, d/c=
1.05, 1.1 are compared with the results of Fujino
(1976) as shown in Fig.7,8. From these comparisons
we can see that the equation for g of those derived in

this report gives good results. However, for the case
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Fig. 4. Sway Added Mass Cocflicient of a Rectan-
gular Cylinder at the Center of a Rectangu-
lar Canal
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Fig. 5. Sway Added Mass Coeflicient of a Rectangular

Cylinder at the Off-center of a Rectangular
Canal (d/c=1.05)
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Fig. 6. Sway Added Mass Coefficient of a Rectan-
gular Cylinder at the Of-center of 2 Rect-
angular Canal (d/c=1.5)

Fig. 7. Sway Added Mass Coeflicient of a Rectang-
ular Cylinder at the Off-center of a Rectan-
gular Canal (d/c=1.05)
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Sway Added Mass Coefficient of a Rectang-
ular Cylinder at the Off-center of a Rectan-
gular Canal (d/c=1.1)
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Fig. 9. Sway Added Mass Coeflicient of a Rectang-

ular Cylinder near a Wall
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Fig. 10. The Side Wall Effect on the Sway Added
Mass of a Rectangular Cylinder in a Rect-
angular Canal
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Fig. 12. The Single Wall Effect on the Sway Added
Mass of a Rectangular Cylinder

which d/c=1.5 and &/B is large, the results are
insufficient. This seems to be caused by using the
assumption that # is independent of y in Rs If we
assume that u is dependent on y in R;, Wwe may
obtain the better results than the above.

The added masses of a cylinder, w1, when a single
wall is present, are given in Table 4 and TFig.9.
These results compared with those of Bai(1977¢); it
shows that they are in good agreement.

On the other hand gy is poor in accuracy in the
region except 0<{p/g<5/6. This seems to be caused
by neglecting the term X in the process of lineariz-
ation.

We have investigated the effect of a bottom and
a wall on the added mass. Table 5, Fig. 10 and
Fig. 11 show the added mass is affected more by a

KREMBEE H19% 95 19 19824 34

20~

10~

Fig. 11. The Depth Effect on the Sway Added Mass
of a Rectangular Cylinder in a Rectangular

Canal
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Fig. 13. The Depth Effect on the Sway Added Mass
of a Rectangular Cylinder near a Wall

bottom than a wall. And when the other dimensions
are fixed, the added mass scarcely varies in the region
d/cez1.5 or /a=1.5. On the other hand the added

" mass increases rapidly in the reqion 0 <(6/a=<1.1 or

0<d/e=1. 2.

For the case of a single wall, the effect of a bot-
tom and a wall is similar to the case of both side
walls as shown in Table 6, Fig. 12, and Fig. 13.

The methed in this report may be applied to the
heave motion. Especially the added mass for the
limiting frequency(¢=0) which can’t be obtained by
the other method may be obtained.

4. Conclusion

When a rectangular cylinder translates in a rest-
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rticted water, we have extended Isshiki-Murakami’s
method for calculating sway added mass to the case
-of large clearance between a wall and a cylinder in
a limiting case ¢—0 and obtained the following
conclusions:

Even the fluid flow is assumed as rotational motion
this method gives good results in several cases. The
present formulae can be used for the cases that a
rectangular cylinder sways at a center of a narrow
or wide canal relative to dimension of a cylinder, at
off-center location in a canal and in a restricted water
with a single wall. However, the results evaluated
by the present simple formulae give larger values
than the numerical results of Fujino and Bai. This
is caused by the assumption of the rotational motion
of fluid flow in the present analysis.

From the results of numerical calculation, it is
concluded that sway added mass in a restricted
water is more affected by water depth than clearance

between a wall and a cylinder.
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Appendix

The Dirivation of the Added Mass Formulae in
the Restricted Water by Hamilton’s Principle
A-1. Coordinate System and Fluid Domain
The present derivation of the sway added mass in
restricted waters are essentially performed on the
bases of Isshiki’s method{1978).

Coordinate system is shown in Fig. 1. The sway
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displacement of a rectangular cylinder(It is expres-
sed as a cylinder in the following) is X(¢), the
sway velocity is X (). The whole fluid domain is
subdivided into 5 subdomains R;—Rs. §1(¢) and {s5(2)
are the deflections of free surface in subdomains R;
and Rs respectively.
Ryt a+ XEx5h, —c=y=l
Ry g+ X£x£h, —d=y=—c
Ry —a+X<zr<a+ X, —dEy=-—c
Ry: —efz<—a+X, —dSys=—c
Rs: —efz=—a+X, —c=y=8s
And S,U,8" and U’ are the juncture interfaces bet-
ween adjacent subdomains (Fig. 1).
A-2. Fluid Velocity in Each Subdomain
It is assumed that fluid is invicid and incompress-
ible. The fluid wvelocity in each subdomain can
be represented by 1 or 2 terms. If the motion of a
cylinder is very small,fluid motion is mostly confined
in the region near the cylinder. Thus the order of
the equation representing the fluid velocity has to
be higher in case of large clearance between a wall
and a cylinder than in case of small clearance for
which the first order equation was used by Isshiki
and Murakami (1978).
(1> Fluid Velocity in Ry
Since the fluid velocity in z-direction is zero at x
=}, u in Ry can be described by
u=yu (z,t)=ug(t) (x—bm™.
And since #=X at z=a+X, the velocity of z-dire-
«ction in R; is given by
X
(a+X—b"

From equation (1) and 2-D continuity equation, the

U=

(z—bm €Y)

velocity of y-direction in Ry is given by

_ mX -
v= g B vt ©)

where vp is an mtegral constant.

(2) Fluid Velocity in R

From equation(2), the fluid velocity in y-direction
at y=—c is given by

v mXc
s=me™ (atX—b)™

If the clearance between a wall and a cylinder is

(I b)m ]+‘Uo

small, the fluid velocity in y-direction in R; can be

represented by a following equation.
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_ ch Nm=1 y+d
=ty sy @B T ®

The fluid velocity in z-direction in R is obtained

by using the above equation,the continuity equation,

and the boundary condition #=0 at z=4.

_ 1 [ cX
d—¢ | (at+X—8b)m™

U=

)

@

(3) Fluid Velocity in Ry
Because fluid is incompressible and v=0 in R,
u is constant without regard to the position in sub-

domain R;. Since the fluid velocity in z-direction at

the juncture interface U is continuous, the fluid
velocity is as follows,
u:—T_-—wXH-vo\a«rX b)) (5)
v=0. 6)

(4) Fluid Velocity in Rs
We can describe the fluid velocity in Rs as follows
u=u(t) (z--e"
in similar to the expression in Ri.
From the body boundary condition u=X at x=—
a+X, u is assumed as
u= V(ei—”;zi.%X)w’r (x+e)” D)
v is obtained from the continuity equation, and
an integral constant is determined from the condi-
tion that the flux through S’ is equal to that through
uU.
r=— (e*Z—}EV)” (x+e)ly

. a+X—b
tearx ®)

(5) Fluid Velocity in Ry
The fluid velocities in Ry are obtained by the
same method as in R,
__ 1 cX
“= d—c { (e—a+X)"

atX— b*‘vo(x+e):’ )

(x+e)”
e arX

d+y { neX
(e—a+X)"

atX-—b
?WJ

= (z+e) !

+ 10

A-3. Free Surface Condition
In this section we consider the kinematical condi-

tion on the free surface. The conditicn in 2-dimensi-
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onal problem is

—aai' +u—%%——v.-:0 on y=§;

Assuming that « and j(; are small, the above

condition is linearized in the form,

i _

a o
By substituting (2) and (8) into this equation, we
obtain

0 __ mlz—bmt

= WX an

s nlzter!? vy a+X b

ot (e—a+X)» GeX —a+X v a2

A-4. Kinetic and Potential Energy
4.1. Kinetic energy
Kinetic energy of total system, T is described by

. 5
= S MX4 3T as)

where M is mass per unit length of a cylinder and
T; is kinetic energy of fluid per unit length in reg-

ion R; Kinetic energy in each region is as follows:

T1~fiv

2
~£l-2

om0 Gt | x2
+”3<2m—1> b“aﬁX}

c_‘ (ut+v¥)dxdy

-l—r(bﬂz—X) (Gt

+ (@) Xoot Gre) (b—a—X0tt]  (14a)
where p is the density of fiuid.
= (0 (T e dad
o= [ J sy dedy

[{ chj—l = P cX

E\D\'g

m* . d—c)
RRETC, ) R S X}

(b—a—X0% . 1 g_ g 2
+{ Ge=X L -0 -a X)}vo]
(14b)

Ti=t 0725 [eX2—2¢ (b-a—X) Xuy
+(b-a—X)2v§J (14c)

P 62 ° e—a+X
T“?H ont+1 d—c
w2 d—0) | 5
t30eT) | emar X }
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_{ 2c . (e—atX) (b—a—X)
n+2 d—c
L cld—e) (b—a—X) | v
e—atX } Xwo
{(b a—X)? (e~aTX\
3(d—
(d—c) (b—a—X)2 5
B 3let+a—X) } v‘)]

To=-L H Gste (o giX)
+

_{4

2
3

-+

(14d}

n+1

n? LG e
302n—1) e—a+X }'

_bme=X (1)

Xuv
| =G5/ il
e—a+X °

o (Gte) (b—a—X)* .L.:J
e—a+X Y

4.2. Potential energy

(14e)

Potential cnergy of total system, V is given by
the sum of potential energy in R; and in Rs. That
is

V=Vi+Vs {15)
Vi= £g

=0 Qdz~LE (b—a—X08  (16)
a+ 4

—atX £, o Tl
Vo= [T gz 0 (e—ar0g a6h)
L -a

A-5. Application of Hamilten’s Principle to
the Problem of Restricted Waters
Kinetic energy and potential energy wzre obtained
in A-4. We apply the Hamilton’s principle [Hildeb-
rend(1932)7] to those energy equstion.
LiX%.0Gv. =TV

I= (00X, G e + P X
Jot:

—siaticnary . an
LT T B e G T R SN e
¥ i ;
¥ . ;
; i
S
; 2

]
H
é &gwwumwnnm_d
S

Fig. A. External Force Acting on the Bedy

under
XU =X;, 300 =0u &G0 = for i=1,2
S mla—b g
ot (atX—pym HET™
8% __ nalzter? LN - at+X-—-b o
ot (e—at X)o7 >0 Te—a+X

where L is Lagrangian.

Assuming that X is small, and &, &, v are also
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small. From these assumptions kinetic energy 7;(i=

1—5) are linearized as follows;

T";Tl*:‘zi“ 2m—+

m'l C3
. YZ
T omD = a}

(b ac

_CEXUQ+C (b—a)v?,} (1851)
- b—a
ramen g iy ot
m? L fd=c lye
TSems D b-a
e N ICEDIb
{ m+2 d—c 3 d—c Yo
- (,b‘._fa\?, i.’ N T hee \] ,,ﬂ 1 b
{_3(d—c 3 d—cxb—a); % (18b)
T=Ty" #—,f‘ —*25—5 (X2 (b—a) Xy
-+ (b*:z)‘lvg] (18¢)
PomTE= O L[ ¢ L ema
Ti=Ti=—y H Sl d—c
n? . C’l(d’fc\ ¥X2
3@n—12 c—a
_{ 2, {e—a)(b—a)
n+2 da—c¢
2. dalbze) j v,
3 e—a
+{ (b—ale—a) | (d—c (b= a>2} }
RERICE! ' 3le—a) w
(18d)
= k:¥pr € o —
=T 2 H 2n+1 @)
w8 o bma ey
+ 302n—1) e—a I o_g ST
cb—at . N
N e—a v"} (18e)

* Total kinetic energy T is chtained from equaticns

{13) snd (18.

. 5
T=T*= 4 MX+ 5T

= %.MX'“‘-!— % (PX2—20QX v+ Red) 19
- whera

=2 . om*

T 2m+1 302m—1) b—a

4 & b—a . m? L cld—a)

2m+1 d—c¢ 302m—1) b—a
2 2 _ 2 2 g

+ 2ac? c e—a n c*(d—c)

d—c  on+l d—c 3@n—1)  e—a
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n? e

—c —_ ——r— . W
+ TR Ter eyl

2n+1

2 1, c@—d? 1
Q= +m+2 d—c T3 c(d 2
2ac | ey c . 7‘__(_efﬁ—a) (b—a)
R e R Ry d—c
1l b-a) , ba , &
T3 e—a + e—a 2
o=@ L1 g -
clb—a)+ Ad—e) + 3 d—c)(b—a)
+.200—a)? | (b—a)’(e—a)
d—c¢ 3({d—c)
—c) (b—a? . c(b—a)?
' 3(e—a) ' e—a
We also linearize potential energy of eq. (16) and
eq. (15).
V= Vl*:ng»(b—a) e (20a)
=V.* 7'2,,, ‘e—a) :"é (20b)

V=VE= Vit V=S5 (G- o+ (e~ o %)

en

And, by linearizing ¢q. (11) and {120, wc obtain

aC

“Th= (22a)
G ~ a—b SN

s ~ _a=b 2
it e—a * (2203
RREES ~ e 9] (23)

e—a

The linearized functional I* is obtained by substitu-
ting the above results into egq. (17)

o .

(X, 0, Gyvd = S.t \»%M)x 2

+£ fP\'ﬂ—zQAvm-R o) — Fg(b—co <

—%& (e—a) U2+ Fy X dt

=stationary @b
C XD =X, L) =0y, Gl =0 for i=1,2
under| Zs=— b—a <)
—a
t? :Cl
We substitute the ccnstraints(c_sz——b:va* g and
e—a

%=C{:) into the functional I* and so we may rewrite

I*Zj : ’%’waP)X — QX4+ L RY

X\t
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=stationary (25)
under X(t)=X;, Li(t)=8, for i=1,2
The variational form of I* can be given by the foll-

owing equation.
or*= [ "{(M+pP) X pQF— F)6X+ (— QX
+pRE+pg (b—a) (1+—1’: “«)cl}acl]dtzo
e—a

(26)
From eq. (26), two coupled equations are obtained

as follows:
(M+pP) X — pQb1=F: (27a)
) # . b—a =
~_F,Q‘X—1—‘0RC1*4'10g<b a) (1+‘e~tl >$x—‘0

27b)
A-6. Calculation of Sway Added Mass
Let’s consider the steady state of oscillation with
frequency ¢, then
F.=F.e7t, X=Xeiot, t,=F ¢i*,
By substituting the above equations into {27a) and

(27b), respectively we obtain
QK

Gi=— —X
RK—(b~a)(1+-2-2) @8
e—a

J.H. Hwang-K.P. Rhee+C.K. Kang,

. pPK ¢ =F,
{M+pP+ (b_a)(H%)_RK }X F
(293
where
0.2
-y

From eq. (29) we can obtain sway added mass M,

and sway added mass coefficient .

My=;P+ —RE (30a>
G-a(1+L29 )Rk
e—a

_M _ M
P 2pac
:._P_—}— g.‘&, —

2 2ac(b-a) (14222 )-KR)

-

(30b)
As mentioned earlier, we ccnsider the case of limit-

ing frequencies (¢—0, g—oc). Thus,

- P 31a)
M e 3la)

Y SN 0 31b)
= 2ac 2acR (

where g is the sway added mass cocfficicnt for the

case 0—0 and g for the case g—oo.
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