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Abstract

SWEDEGENE is a Swedish nation-wide sample collection established to facilitate studies of clinical and genetic risk factors

for adverse drug reactions (ADRs). Most cases are recruited among patients reported to the ADR registry at the Swedish

Medical Products Agency by health-care professionals. Clinical data are collected both from medical and laboratory records

and through interviews using standardized questionnaires. Genome-wide scans and whole-genome sequencing are done, and

association studies are conducted using mainly controls from the Swedish TwinGene biobank with data on diagnoses and

prescribed drugs. SWEDEGENE was established in 2008 and currently contains DNA and information from about 2550

adults who have experienced specific ADRs, and from 580 drug exposed controls. Results from genome-wide association

studies have now been published, and data from whole-genome sequencing are being analyzed. SWEDEGENE has the

potential to offer a new means of developing individualized and safe drug therapy through patient pre-treatment screening.

Introduction

Adverse drug reactions (ADRs) are a significant cause of

morbidity and mortality, leading not only to individual

treatment failures but also to substantially increased health-

care costs. ADRs have been estimated to cause or contribute

to at least 5–7% of hospital admissions [1–4], and to about

3% of all fatalities [5]. About 10% of the Swedish health-

care budget has been attributed to ADRs [6].

Virtually all drugs are unsafe in a subset of patients even

when used according to the approved label. There is good

reason to believe that a significant part of an individual’s

risk of being intolerant to a drug is explained by genetic

predisposition [7]. In some cases, dose-dependent ADRs are

known to be caused by mutations in genes involved in the

metabolism of the drug or in the drug target. An example is

the dose-dependent bone-marrow suppression that develops

in patients with defective detoxification of thiopurines

related to genetic variants of the key enzyme thiopurine

methyltransferase [8].

Other types of serious ADRs appear to be less dependent

on dose. These ADRs—so called idiosyncratic or type

B reactions—can affect various organ tissues, including

e.g., the heart, liver, skin, kidney, and muscle or cause

generalized hypersensitivity reactions [9]. In this category

of ADRs, the cause is generally unknown and there are no

obvious candidate genes. Microarray-based genotyping of

multiple genetic variants as well as next-generation

sequencing (NGS), where rarer sequence variants can be

discovered, have made it possible to perform genome-wide

association studies (GWAS) of these reactions, as well as

other types of association analyses. For both of these

methods, large numbers of patients are usually needed due

to the statistical requirement of correction for multiple

testing and for replication of findings.

In the relatively few large-scale genome-wide studies

performed on serious ADRs so far, immune-related genetic

variants involving the human leukocyte antigen (HLA)

molecules in the major histocompatibility complex (MHC)

on chromosome 6 have often been implicated as risk factors

[10]. Such risk factors have been shown to be drug-specific

and to vary between different ethnic populations. A well-

known example is the association between HLA-B*57:01
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and the abacavir-induced hypersensitivity syndrome [11].

Abacavir, a nucleoside reverse transcriptase inhibitor used

in the treatment of human immunodeficiency virus (HIV), is

associated with hypersensitivity reactions in 5–8% of

patients [12]. Introduction of HLA-B*57:01 screening prior

to abacavir therapy has reduced the incidence of this ADR

from up to 8 to <1% [13].

In the current project, we are collecting ADRs on a large

scale in Sweden. We aim to establish a large nation-wide

DNA sample collection with clinical data to enable studies

of both genetic and clinical risk factors of severe ADRs in

order to improve the benefit/risk balance of drug treatment.

The ultimate goal is to develop predictive tests and models

that minimize the risk of severe ADRs, and thus reduce

patient suffering and health-care costs. Such tests can also

be used for diagnostic purposes to differentiate an ADR

from spontaneous disease.

Materials and methods

Patient recruitment and data collection

SWEDEGENE (www.swedegene.se) was established in

2008 and is a Swedish nation-wide DNA sample collection

with phenotype data on cases of ADRs. Most patients are

identified and recruited through the Swedish national data-

base of spontaneously reported ADRs run by the Medical

Products Agency since 1965. Non-fatal cases reported from

1990 and onwards are extracted from the database, and each

reporter is asked whether the patient can be approached

about participation in SWEDEGENE. In addition, patients

can be recruited directly from collaborating clinicians at

health-care facilities. When a clinician at these collaborating

centers identifies a suitable patient, the patient is either

directly recruited in collaboration with SWEDEGENE, or a

research nurse at SWEDEGENE will approach the patient

and ask for participation. Another mode of recruitment is

through advertising campaigns.

Population controls are obtained from the Swedish

TwinGene biobank that has genome-wide data from over

10000 twins as well as whole-genome sequencing data from

1000 individuals born 1958 and before [14, 15]. Only one

twin out of each pair is selected as a control. Through linkage

with the Swedish Prescribed Drug Register and the National

Patient Register kept by the Swedish National Board of

Health and Welfare, diagnoses and drug prescriptions are

matched between cases and controls. We also collect treated

controls with full phenotype information directly from

Swedish health-care facilities when necessary. The mode of

recruitment for controls is identical to that for cases.

A study kit is provided to each consenting patient

or treated control including a questionnaire holding

information about demographics, medical history, environ-

mental factors and information about drug treatment, as well

as an informed consent form. A research assistant contacts

the patient by telephone and the questionnaire is completed

through a telephone interview. If needed, copies of the

participant’s medical and laboratory records are obtained. In

addition, blood samples are drawn at the patient’s nearest

health-care facility, and sent to the central laboratory at

Uppsala University Hospital, where they are stored for later

use. If a patient is reluctant to draw blood, saliva sampling

is undertaken instead.

Phenotype data concerning the drug suspected to have

caused the ADR, the indication for which the drug was

prescribed, concomitant drugs and diseases, a summary

code for the ADR, demographic variables (sex and age),

relevant laboratory data, a brief narrative, and all informa-

tion acquired through the questionnaire is compiled in a

study database by a research nurse. The same questionnaire

is used for all cases except for certain ADR specific ques-

tions. For treated controls, the questionnaire contains

demographic variables, all drug treatments and diseases. To

ensure the security of participant data, the clinical data is

stored in a local encrypted database. Access to the database

is limited to specific computers, and access is locked behind

passwords and two-factor authentication. To further limit

the potential for data breach the user is only allowed to view

essential data for the user-group, with access to other parts

locked behind a permission system.

Any type of genetic data is pseudonymized and stored

separate from clinical data. For smaller data volumes in the

range 1–20 TB, data is archived on secured encrypted

drives. Data that is currently being analyzed is stored on the

UPPMAX Bianca Cluster at Uppsala University (www.

upmax.se). Secure archiving of larger data volumes has not

yet been needed. As the genetic analyses that are conducted

are not approved as clinical tests in routine health-care,

genomic results are not returned to participants.

Inclusion and exclusion criteria

All patients included are at least 18 years of age and able to

give informed consent. To be included in the study, the

initial event should have occurred after the start of treatment

and in some instances after withdrawal of the drug. Caus-

ality is assessed with the WHO standard algorithm [16].

Certain ADRs have specific inclusion and exclusion criteria

and are adjudicated by clinical experts. Examples of such

critera from published studies are given in Table 1.

Genomic analysis

Power calculations for GWAS using a dominant genetic

model show that 50 cases and 5000 controls give us 80%
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Table 1 Examples of inclusion and exclusion criteria for cases of adverse drug reactions in published studies.

Inclusion criteria Exclusion criteria

Agranulocytosis [18, 19] (1) An absolute neutrophil count of 0.5 × 109/L (≤500/μL) or less
during non-chemotherapy drug treatment or within 7 days of
stopping treatment;

(2) Complete recovery after cessation of the drug, with an absolute
neutrophil count of more than 1.0 × 109/L (>1000/μL) or a
compatible bone marrow aspirate or biopsy finding.

(1) Anticancer chemotherapy within 1 month of onset of
agranulocytosis;

(2) Radiation therapy within the previous month;
(3) Bone marrow transplantation at any time;
(4) Ongoing infection with Epstein-Barr virus, hepatitis A virus,
HIV, cytomegalovirus, or parvovirus B19;
(5) Ongoing sepsis;
(6) Ongoing miliary tuberculosis;
(7) Current presence of chronic neutropenia (congenital cyclic or

idiopathic);
(8) Ongoing immunosuppressive therapy with cytotoxic drugs;
(9) Current presence of malignant infiltration of bone marrow;
(10) Hematological diseases (eg, myelodysplasia, aplastic

anemia, pancytopenia, and other blood dyscrasias, such as
hemoglobin ≤100 g/L or platelets ≤100 × 109/L);

(11) Current presence of systemic lupus erythematosus.

Angioedema due to ACE-
inhibitors and ARBs [41]

(1) Symptoms in the head and neck region judged to be
angioedema by a physician;

(2) The initial event should occur during treatment with an ACE
inhibitor or ARB;

(3) It may recur after cessation of treatment.

1) Symptoms coinciding with urticaria;
2) Another likely cause such as severe facial trauma or infection;
3) Association with C1 inhibitor or complement deficiency (if

this data is available);
4) Mutation in the C1 inhibitor (SERPING1) or factor XII (F12)

gene (if this data is available).

Atypical femoral fractures due
to bisphosphonates [22]

(1) The event should occur during or after bisphosphonate
treatment;

(2) The fracture must be located along the femoral diaphysis
from just distal to the lesser trochanter to just proximal to the
supracondylar flare;

(3) At least four of the following features (a–e) must be present:
(a) The fracture is associated with minimal or no trauma, as in a

fall from a standing height or less;
(b) The fracture line originates at the lateral cortex and is

substantially transverse in its orientation, although it may
become oblique as it progresses medially across the femur;

(c) Complete fractures extend through both cortices and may be
associated with a medial spike; incomplete fractures involve
only the lateral cortex;

(d) The fracture is noncomminuted or minimally comminuted;
(e) Localized periosteal or endosteal thickening of the lateral

cortex is present at the fracture site (“beaking” or “flaring”).

1) Fractures of the femoral neck, intertrochanteric fractures with
spiral subtrochanteric extension, periprosthetic fractures, and
pathological fractures associated with primary or metastatic
bone tumors and miscellaneous bone diseases (eg, Paget’s
disease, fibrous dysplasia).

Narcolepsy due to swine
influenza A (H1N1)
vaccination (Pandemrix) [21]

(1) Onset of symptoms after Pandemrix vaccination.
Narolepsy type 1:

(1) The patient has daily periods of irrepressible need to sleep or
daytime lapses into sleep occurring for at least three months;

(2) The presence of one or both of the following (a-b):
(a) Cataplexy and a mean sleep latency of ≤8 min and two or

more sleep onset REM periods (SOREMPs) on a multiple
sleep latency test (MSLT) performed according to standard
techniques. A SOREMP (within 15 minutes of sleep onset)
on the preceding nocturnal polysomnogram may replace one
of the SOREMPs on the MSLT;

(b) Cerebrospinal fluid (CSF) hypocretin-1 concentration,
measured by immunoreactivity, is either ≤110 pg/mL or <1/3
of mean values obtained in normal subjects with the same
standardized assay.
Narcolepsy type 2:

(1) The patient has daily periods of irrepressible need to sleep or
daytime lapses into sleep occurring for at least three months;

(2) A mean sleep latency of ≤8 min and two or more SOREMPs
are found on a MSLT performed according to standard
techniques. A SOREMP (within 15 minutes of sleep onset)
on the preceding nocturnal polysomnogram may replace one
of the SOREMPs on the MSLT;

(3) Cataplexy is absent;
(4) Either CSF hypocretin-1 concentration has not been

measured or CSF hypocretin-1 concentration measured by
immunoreactivity is either >110 pg/mL or >1/3 of mean
values obtained in normal subjects with the same
standardized assay;

(5) The hypersomnolence and/or MSLT findings are not better
explained by other causes such as insufficient sleep,
obstructive sleep apnea, delayed sleep phase disorder, or the
effect of medication or substances or their withdrawal.

1) Onset of symptoms prior to Pandemrix vaccination.

ACE angiotensin-converting enzyme, ARB angiotensin II receptor type 1 blocker
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power to detect an odds ratio of 3–4 with a minor allele

frequency of 40%, and 80% power to detect an odds ratio of

4–5 for variants with a minor allele frequency of 20%. This

is based on the conventional genome-wide significance

threshold of p < 5 × 10−8 [17].

Results

To date, SWEDEGENE has DNA and curated clinical data

from about 2550 individuals that have experienced specific

ADRs. A list of collected ADRs as per July 2019 with at

least 15 cases is presented in Table 2. We have also col-

lected 580 drug-treated controls, and the largest group is

methotrexate-treated rheumatoid arthritis patients showing

no signs of liver toxicity, and individuals exposed to the

swine influenza A (H1N1) vaccination Pandemrix without

having developed signs of narcolepsy. However, for most

ADRs comparisons are made with the 5000 populations

controls with genome-wide data and 1000 with whole-

genome sequencing data from TwinGene.

GWAS of agranulocytosis induced by antithyroid drugs or

sulfasalazine, cough induced by angiotensin-converting

enzyme (ACE) inhibitors, narcolepsy induced by Pandemrix

and atypical femoral fractures induced by bisphosphonates

have been published [18–22]. SWEDEGENE has also pro-

vided cases and controls in several other collaborative studies,

such as GWAS and whole exome sequencing of statin

Table 2 Collected adverse drug

reaction diagnoses with at least

15 cases presented in decreasing

order of frequency as per

July, 2019.

ADR diagnosis Main suspected drug classes n

Angioedema ACE-inhibitors, angiotensin receptor blockers,

immunosuppressants, NSAIDs, antibiotics

514

Liver toxicity Antibiotics, immunosuppressants, NSAIDs, lipid lowering

drugs, antiarrhythmics, antiepileptics, antidepressants,

herbals, antithyroid drugs, alcohol abuse drugs,

anticoagulants

461

Cytopenias (agranulocytosis,

thrombocytopenia and anemia)

Antithyroid drugs, sulfasalazine, NSAIDs, antibiotics,

immunosuppressants

270

Cough ACE-inhibitors 152

Urticaria Antibiotics, immunosuppressants, contrast media, NSAIDs,

antiepileptics

152

Alanine aminotransferase (ALT)

elevation in rheumatoid arthritis

patients

Methotrexate 130

Anaphylaxis Immunosuppressants, NSAIDs, antibiotics, iron 112

Central nervous system toxicity Antibiotics, antimalarial drugs, antiviral drugs, interferon 94

Narcolepsy H1N1 vaccine (Pandemrix) 83

Pancreatitis Immunosuppressants, ACE-inhibitors, lipid lowering drugs,

chemotherapy, antidiabetics

82

Renal toxicity NSAIDs, antibiotics, immunosuppressants, antidiabetics,

antiviral drugs, anticoagulants

70

Stevens-Johnson syndrome/toxic

epidermal necrolysis

Antiepileptics, antibiotics, immunosuppressants, allopurinol 63

Osteonecrosis Bisphosphonates 61

Atypical fracture Bisphosphonates 58

Bleeding Non-vitamin K oral anticoagulants (NOAC) 52

Myopathy/Rhabdomyolysis Lipid lowering drugs 51

Other allergic reactions Antibiotics, immunosuppressants, NSAIDs, antiepileptics,

proton pump inhibitors

51

Phototoxicity NSAIDs, antibiotics 50

Metabolic disorder/weight gain Antidepressants, neuroleptics 46

Hyponatraemia Antidepressants, antiepileptics 35

Hair loss Immunosuppressants, anticoagulants, antiepileptics, lipid

lowering drugs, ACE-inhibitors

28

Tendon rupture Fluoroquinolones 25

Torsade de Pointes/QT-prolongation Beta blockers, antidepressants, antiarrhythmics, antibiotics 22

In addition to the below numbers, a total of 580 drug-treated controls have been recruited

582 P. Hallberg et al.



induced myopathy [23, 24], drug induced liver toxicity

[25–30], and hypersensitivity reactions to carbamazepine [31].

Additional GWAS and whole genome exome sequencing

studies on ADR diagnoses collected by SWEDEGENE are

currently underway. In addition, 1000 selected SWEDEGENE

individuals have been whole genome sequenced and are

being compared with 1000 whole genome sequenced indi-

viduals from TwinGene. This will give us the possibility to

find novel genetic associations with ADRs and to map

population frequencies of known pharmacogenomic targets in

the Swedish population. As for planned analyses, enrichment

tests [32], pathway based analysis, and genome-wide complex

trait analysis [33] will be performed beyond GWAS.

As many pharmacogenomic targets are rare variants,

novel associations in a limited sample population can be

hard to detect. To increase the probability there are two

options; increase the sample size or decrease the number of

tested associations. As rare ADRs are, by definition, rare,

our option is to decrease the number of tests. This will be

done by selecting variants a priori based on predicted

mutation effects using software and databases as Ensembl

Variant Effect Predictor (VEP) [34], Eigen- [35] or Com-

bined Annotation-Dependent Depletion (CADD) scores

[36]. To further decrease the number of tests we will use

enrichment tests such as burden and non-burden tests, to

test for genetic burden on an exon or pathway basis [32].

Future perspective

SWEDEGENE is an important resource for pharmacogenetic

studies of ADRs. Due to our unique nation-wide collection,

SWEDEGENE has the potential to discover novel genetic and

clinical risk factors for rare and serious ADRs, with the ulti-

mate goal to identify patients at risk and to improve the

benefit/risk balance of drug treatment. Since pharmacogenetic

variants in general have larger effect sizes than variants that

increase the risk of complex diseases [37], the clinical benefit

is estimated to be great. It is also easier to select an alternative

drug than to modify risk factors for complex diseases. It has

already been shown that hospitalizations and emergency

department visits can be reduced by genotyping elderly

polypharmacy patients [38], and that pre-prescription geno-

typing is cost-effective for certain ADRs [39]. Barriers for

implementing genotype-based drug therapy will be overcome

once patients have their genome readily available in the

medical record [40]. This is estimated to happen within the

near future through emerging Precision Medicine initiatives.

SWEDEGENE is well placed to discover novel gene-ADR

associations to be analyzed in these initiatives and invites

collaborators for joint efforts.
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