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Abstract

The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-

specific genomes that can be used to detect loci that have been subject to positive selection in the recent 

past. Based on selective sweep theory, beneficial loci can be detected by examining the SNP patterns in 

intra-specific genome alignments.  In the last  decade,  numerous algorithms have been developed to 

identify  selective  sweeps.  However,  the  majority  of  these  algorithms  has  not  been  designed  for 

analyzing whole-genome data. 

We present SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in 

whole genomes.  It  analyzes site  frequency spectra  and represents  an extension of the widely-used 

SweepFinder program.

The sequential version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is  

able  to  analyze  thousands  of  sequences.  We also  provide  a  parallel  multi-core  implementation  of 

SweeD. Furthermore, we implemented a checkpointing mechanism that allows to also deploy SweeD 

on cluster systems with queue execution time restrictions, as well as to resume long-running analyses 

after processor failures. Finally, the user can specify a demographic model via the command-line to 

calculate the theoretically expected site frequency spectrum of a demographic model. Therefore, (in 

contrast  to  SweepFinder)  the  neutral  site  frequencies  can  optionally  be  directly  estimated  from a 

demographic model. 
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Introduction

The seminal paper by Maynard Smith and Haigh (1974) coined the term “genetic hitchhiking”, that is, 

the evolutionary process where a strongly beneficial mutation emerges and spreads in a population. As 

a consequence, the frequency of linked neutral or weakly selected variants will increase. The authors 

showed  that,  in  sufficiently  large  populations,  the  hitchhiking  effect  drastically  reduces  genetic 

variation near the positively selected site, thereby inducing a so-called selective sweep. According to 

their deterministic model, diversity vanishes at the selected site immediately after the fixation of the 

beneficial allele. The model also predicts that with increasing distance (scaled by α=r /s log(2N) , 

where r is the recombination rate, s is the selection coefficient, and N is the effective population size) 

from the selected site i) diversity accumulates, ii) the distribution of the frequencies of segregating sites 

changes, and iii) linkage-disequilibrium patterns are generated around the target site of the beneficial 

mutation. 

 Neutral mutations are assumed to arise in a sufficiently large population at a rate of θ/ 2 , ( 

θ=4Nμ , μ being the mutation probability per site and per generation). Initially, they are present 

as a single copy. Thus,  according to the infinitely-many sites model (Kimura 1969), they occur at 

previously  monomorphic  sites.  The  site  frequency  spectrum  (SFS)  of  a  population denotes  the 

distribution of the expected number of polymorphic sites, ϕ(x )dx , at which the mutant allele has a 

frequency in  (x , x+dx ) ,  0<x<1 . Kimura (1971) demonstrated that the SFS  for the standard 

neutral model is given by ϕ(x)dx=θ/ x dx . For the selective sweep model, Fay and Wu (2000) have 

shown that  the  frequency  spectrum of  neutral  sites  which  are  sufficiently  close  to  the  beneficial 

mutation  shifts  toward  an  excess  of  high-  and  low-frequency  derived  alleles  in  proportions 

x ϕ(x)dx=θdx  and  (θ/ x−θ)dx , respectively. While the aforementioned neutral and selective 

models assume a constant population size, analytical results for the SFS have also been obtained for 
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scenarios in which the population is subject to  deterministic size changes (Griffiths 2003). However, 

deriving  an analytical  approximation  of  site  frequency spectrum when sites  are  subject  to  genetic 

hitchhiking (in populations with varying size over time) still remains a challenge.

Regarding analyses of DNA sequence samples, the sample SFS (and not the population SFS) is 

of interest. The sample SFS, f n , i , is the distribution of the expected number of sites at which there 

are i derived alleles, 1≤i≤n−1  , in a sample of n sequences. The relative frequencies are obtained 

from these absolute frequencies via division by the total number of segregating sites. If the mutant 

allele can not be distinguished from the wild type, the folded version of the SFS is used. Kim and 

Stephan  (2002)  interpreted  f n , i as  the  probability  of  observing a  single  site  where  i derived 

alleles are found in a sample of size  n. The authors used the derivation of the SFS  by Fay and Wu 

(2000) to  develop the first  composite  likelihood ratio test  (CLR) for detecting selective sweeps in 

typically  small  (up  to  a  few  hundred  kilobases)  genomic  regions  (henceforth  called  subgenomic 

regions).  Nielsen et al. (2005) introduced two major modifications to the CLR method by Kim and 

Stephan (2002) for detecting selective sweeps in whole-genome data. 

First,  instead  of  using  the  model  by  Fay  and  Wu  (2000),  that  relies  on  the  population  mutation 

parameter θ , Nielsen et al. (2005) proposed a model that quantifies the frequency of an allele at a 

distance d from the beneficial mutation independently of θ  by conditioning on the observation of a 

SNP. Second, instead of employing the theoretical result  for the SFS (Kimura 1971) that  assumes 

standard neutrality as done by Kim and Stephan (2002), Nielsen et al. (2005) use the empirical SFS of 

the entire dataset as neutral background. The first modification allows for applying the test to large-

scale  genome  data,  where  θ  can  vary  among  regions.  The  second  modification  increases  the 

robustness of the algorithm under demographic models (e.g., mild bottlenecks). It implicitly accounts 

for this, by using the empirical SFS that is obtained from the entire genome. Nielsen  et al. (2005) 

4

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97



implemented their  method in SweepFinder (http://people.binf.ku.dk/rasmus/webpage/sf.html).  In the 

numerator of the CLR test, SweepFinder calculates the likelihood of a sweep at a certain position in the 

genome by maximizing  α . The denominator (the neutral  model)  is given by the product of the 

empirical SFS over all SNPs. Since SNPs are assumed to be independent, the overall likelihood for the  

genetic hitchhiking model is calculated as product over the per-SNP likelihood scores . 

With next generation sequencing technologies it has now become feasible to sequence whole 

genomes of thousands of individuals from a single species and to reliably detect the genomic locations 

of  selective  sweeps.  Selective  sweep  prediction  accuracy  increases  with  the  number  of  sequence 

samples.  For  instance,  Jensen  et  al. (2007)  showed  that  distinguishing  selective  sweeps  from 

demographic events in samples of moderate size (50 samples) is easier than in smaller samples (12 

samples). Nowadays, samples that comprise hundreds or even thousands (e.g.,  The 1000 Genomes 

Project  Consortium  2012  https://1000genomes.org)  of  sequences  are  becoming  available.  Hence, 

selective sweep detection is expected to become more accurate. However, the increase in sample sizes 

and sequence lengths poses novel algorithmic, numerical, and computational challenges for selective 

sweep detection. Numerically stable implementations that can handle arithmetic over- and/or underflow 

are required. An efficient use of scarce computing and memory resources is also required. Furthermore, 

efficient parallel implementations are needed to analyze large datasets in reasonable times on state-of-

the-art multi- and many-core processors.

At  present  only  a  handful  of  tools  that  scale  to  thousands  of  whole-genome  sequences  is 

available.  The implementation  of  the CLR test  by Kim and Stephan (2002) can  only  be  used for 

analyzing small subgenomic regions. Jensen et al. (2007) and Pavlidis et al. (2010) used the ω-statistic 

(Kim and Nielsen 2004), which relies on the linkage-disequilibrium signature of a selective sweep to 

detect  positively  selected  sites.  The  respective  implementations  are  also  only  able  to  handle 
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subgenomic regions. SweepFinder (Nielsen et al. 2005) can analyze whole genomes efficiently, but 

only for up to a few hundred sequences. For larger sample sizes, execution times increase substantially. 

Moreover,  SweepFinder  can  not  analyze  samples  exceeding  1,027  sequences  because  numerical 

problems associated to floating point underflow are not handled. Finally, SweepFinder only runs on a 

single core. To the best of our knowledge, the ω-statistic based OmegaPlus tool (Alachiotis et al. 2012) 

represents the sole publicly available high-performance implementation for detecting selective sweeps. 

OmegaPlus can efficiently analyze whole genomes from thousands of individuals by exploiting all 

available cores on a modern desktop or server. 

New approaches 

In the following, we describe SweeD (Sweep Detector), our open-source tool for the SFS-based rapid 

detection of selective sweeps at the whole-genome scale. The SweeD code is based on SweepFinder 

(Nielsen et  al.  2005)  and incorporates the following new features and algorithmic techniques:  Via 

respective program parameters the SFS can be calculated analytically for demographic models that 

comprise  an  arbitrary  number  of  instantaneous  population  size  changes  and,  optionally,  also  an 

exponential growth as the most recent event. Thereby, a neutral SFS can be obtained without the need 

to compute the empirical average SFS for the genome. 

Moreover,  SweeD  can  analyze  thousands  of  genomes  because  we  adapted  the  numerical 

implementation of the arithmetic operations.  For a large number of genomes,  the double precision 

floating-point range is frequently not sufficient. This may lead to numerical over- or underflow. SweeD 

is able to analyze such large samples because it performs several calculations at the logarithmic scale. 

The code also supports several additional input file formats for reading in simulated and real datasets. 
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Regarding real datasets, it supports the FASTA and VCF formats. The VCF format is widely used in 

next  generation  sequencing  projects,  such  as,  for  instance,  the  1000  Genomes  project 

(http://www.1000genomes.org). With respect to simulated datasets, SweeD supports ms (Hudson 2002) 

and MaCS (Chen 2009) formats. 

Furthermore,  SweeD  can  exploit  all  available  cores  on  a  shared-memory  multi-core  processor  to 

substantially expedite the analysis of huge datasets that comprise millions of SNPs and thousands of 

sequences. 

Finally, SweeD offers a checkpointing capability that allows to restart (continue/resume) an analysis 

from the point where it failed, rather than running it again from scratch. This mechanism allows for 

saving CPU time and energy in the case of hardware failures or cluster queues with time limits. 

Results and Discussion

In the following, we present a performance comparison between SweeD and SweepFinder, assess the 

efficiency of the parallel implementation, and provide a usage example. 

Sequential Performance

For comparing the performance of SweeD versus SweepFinder, we generated simulated datasets with 

up to 1,000 sequences and 1,000,000 sites using msms (Ewing and Hermisson 2010).  We slightly 

modified  the source code of  msms to obtain output  files  that  can  be parsed by SweepFinder  (the 

modified version of msms is available at: http:/exelixis-lab.org/software.html). We generated datasets 

with and without selection. The programs were executed on an unloaded AMD Opteron 6174 processor 

with 12 cores running at 2.2 GHz under Ubuntu Linux.
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As shown in Table 1 SweeD outperforms SweepFinder on all datasets. The total execution times 

for both programs increase with the number of sequences  and the number of SNPs. Run-times are 

dominated by two computationally expensive parts in both programs: i) the pre-computation of a fixed 

number of likelihood values at given distances (in scaled units) around the position of the selective 

sweep, and ii)  the computation of the CLR test  at  those positions as specified by the user via the 

-grid option. To precompute the likelihood values at certain distances around the position of the 

selective sweep, SweeD carries out the arithmetic operations in a different order than SweepFinder. 

SweeD  employs  a  lookup  table  to  store  these  intermediate  results  that  can  be  reused  for  the 

precomputation of the constant, fixed likelihood values. In contrast, SweepFinder recalculates these 

intermediate  constant  values-on-the-fly.  The  performance  benefit  of  using  a  lookup  table  can  be 

observed when the  number  of  sequences  is  increased,  because  the  number  of  lookups  (redundant 

recalculations  in  SweepFinder)  is  proportional  to  the  number  of  sequences.  For  small  numbers  of 

sequences, lookups and recalculations need approximately the same time. As the number of sequences 

increases, the lookup-based approach outperforms the recalculation approach. SweeD and SweepFinder 

employ the same approach to compute the CLR test at a specific position. However, we optimized the 

CLR computation in SweeD via low-level technical optimizations. Nonetheless, the computation of the 

CLR test as such is only marginally faster in SweeD. 

Table 1 also shows that, for a small number of sequences, SweeD becomes faster than SweepFinder as 

the number of SNPs increases . This is because the order and the number of operations at each position, 

where  the  CLR  is  calculated,  is  different  in  SweeD  (see  section  Arithmetic  deviations  from 

SweepFinder for more details). We obtained speedups between 1.07X and 3.90X. For larger numbers 

of sequences (1,000), the speedup of SweeD over SweepFinder drops from 22X (10,000 SNPs) to 2.9X 

(1,000,000 SNPs) with an increasing number of SNPs because a larger fraction of overall execution 

time is spent for CLR computations. 
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Due to  the  aforementioned lookup table,  SweeD requires  more  memory than SweepFinder. 

Figure  1 shows the  peak memory consumption  for  SweeD and SweepFinder  as  a  function  of  the 

number of sequences, when a dataset of 100 SNPs is analyzed (using the SF data format). For this 

specific dataset, SweeD consumes about 4.6 times more memory than SweepFinder. Nonetheless, the 

memory requirements  increase  linearly for  both programs.  Despite  the  larger  memory footprint  of 

SweeD, the additional memory for storing the lookup table is negligible with respect to the memory 

capacity of modern computers. For instance, storing a lookup table for a dataset with 10,000 sequences 

requires approximately 24 MB. Thus, the analysis of very large population genetics datasets is feasible. 

SweeD uses the same suite of parsers as OmegaPlus for ms, MaCS, VCF, and FASTA files. Since the 

parser suite is not yet fully optimized for memory efficiency, SweeD may exhibit temporary (during 

parsing and conversion into the internal SF data format) memory consumption peaks (depending on the 

input format), which exceed the amount of memory required for the actual computations. 

Parallel Performance

To assess the parallel efficiency of SweeD, we generated datasets with up to 10,000 sequences and 

1,000,000 sites. Figure 2 shows the respective speedups for up to 48 cores/threads (4 AMD Opteron 

6174 processors) on simulated datasets  with 100 and 10,000 sequences,  and 10,000,  100,000,  and 

1,000,000 SNPs, respectively. The execution times for the sequential analysis of the dataset with 100 

sequences are shown in Table 1. The datasets with 10,000 sequences as well as 10,000, 100,000, and 

1,000,000 SNPs required 30,717, 32,299, and 37,212 seconds, respectively. 

As can be observed in Figure 2A, the parallel implementation scales well with the number of cores,  

achieving speedups between 41X and 45X on 48 cores for the small  sample of 100 sequences. In 

contrast,  Figure 2B shows speedups that only range between 7X and 37X for the large sample of 
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10,000 sequences on 48 cores. This is due to the small amount of SNPs for the comparatively large 

number of sequences, which in turn leads to a significantly larger amount of time spent in the BFGS 

(Broyden-Fletcher-Goldfarb-Shanno,  Fletcher  1987)  algorithm  that  optimizes  the  neutral  SFS. 

Specifically,  the  BFGS algorithm estimates  the  neutral  SFS that  maximizes  the  probability  of  the 

dataset (i.e., the overall likelihood) given the input SFS and the data. This step is needed because the 

input dataset may contain missing data, and thus the input SFS does not correspond precisely to the 

sample SFS. These likelihood computations have been parallelized.  However,  when the number of 

SNPs is small compared to the number of sequences, substantially more iterations (and hence thread 

synchronization events) are required for the BFGS algorithm to converge. This step cannot be further 

parallelized because the iterative optimization procedure uses the likelihood values sequentially, that is, 

there exists a hard-to-resove sequential dependency between iterations i and i+1.

For  example,  when  we  analyze  the  dataset  with  10,000  sequences  and  10,000  SNPs,  the  BFGS 

algorithm computes the likelihood of the input dataset conditional on the SFS 4,477,114 times, whereas 

only 396 such likelihood calculations are required for the dataset with 100 sequences and 10,000 SNPs. 

The parallel efficiency of each iteration improves with an increasing number of SNPs because 

more  computations  are  carried  out  per  iteration/synchronization  inbetween  synchronization  events. 

Therefore, for 10,000 SNPs and 10,000 sequences we observe the worst-case speedup of 7 due to an 

unfavorable combination of relatively few SNPs (low workload per iteration) and a large number of 

such parallel iterations (4,477,114). For the same sample size, but with 1,000,000 instead of 10,000 

SNPs, the parallel efficiency improves and we obtain good speedups (37X).

Since a parallel implementation of SweepFinder is not available as a reference, we report on 

OmegaPlus performance as a rough reference. Compared to OmegaPlus, SweeD exhibits better parallel 

efficiency, since it scales well up to 48 cores in most cases. Parallel OmegaPlus only scales up to 12 

cores (Alachiotis et al. 2012a). Note however that, for a single core or a small number of cores (up to 

10

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234



12 in our tests), OmegaPlus outperforms SweeD due to algorithmic innovations and because it mostly 

relyies on integer rather than on floating-point arithmetics.

Usage Example

To demonstrate  the  capability  of  SweeD to  handle  real-world  genomic  data,  we  downloaded  and 

analyzed  the  chromosome  1  dataset  from  the  1000  Genome  Project 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/  phase1/analysis_results/i  ntegrated_call_sets/  ).  This  dataset 

contains the genetic variation from 1092 humans, that is, the sample size is 2184. The size of the input 

file is 87 GB, and it comprises 2,896,960 SNPs. We carried out the analysis on an Intel Core i7-2600  

processor with 4 cores (8 threads with hyperthreading) running at 3.4 GHz. We calculated the CLR test 

at 100,000 points (gridsize), and the SFS was obtained from the entire dataset. The total execution time 

was 8 hours and 15 minutes. In contrast to SweeD, SweepFinder fails to analyze this dataset because of 

the large sample size (see section Arithmetic deviations from SweepFinder). We also analyzed this 

dataset  with  OmegaPlus  (  command  line  flags:  maxwin=280,000,  minwin=1,000;  see  manual  for 

further details on the OmegaPlus command line). OmegaPlus was faster than SweeD (total execution 

time: 2 hours and, 37 minutes). The OmegaPlus and SweeD output results are illustrated in Figure 3. 

Conclusions and future work

SweeD  is  an  improved  and  scalable  implementation  of  SweepFinder  that  allows  for  analyzing 

thousands of genomes.  In contrast  to SweepFinder,  SweeD can also analytically calculate  the SFS 

based on a user-specified demographic model. It can also parse several common input file formats such 

as, ms, MaCS, FASTA, and VCF. Furthermore, SweeD leverages the computational power of multi-

core systems, shows good speedups, and thereby substantially decreases the time-to-solution. Finally, a 

checkpointing mechanism allows to resume analyses from where they were interrupted in the case of 
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hardware failures or queue limitations, leading to time and energy savings. 

Regarding future work, we plan to parallelize the calculations of the theoretical SFS and employ 

an out-of-core (external memory algorithm) approach to make the calculations of the theoretical SFS 

feasible on off-the-shelf  computers.  Finally,  we intend to evaluate the accuracy of scalable sweep-

detection tools such as SweeD and OmegaPlus as a function of increasing sample size. 

Materials and Methods

The SFS of samples for deterministically varying population size

Analytical results for sample frequency spectra can either be directly derived via the coalescent or be 

obtained via binomial sampling from the population version as derived within the diffusion framework. 

This  is  also  the  case  for  a  neutral  model  of  a  population  whose  size  varies  over  time.  Here 

ρ(t )= N ( t )/N denotes the ratio between the ancestral  and the current population size at  time  t. 

Changes in population size can be included into the standard neutral model as the harmonic mean of 

the  relative  population  sizes  via  time-rescaling  t →∫
0

t
1 /ρ(s)ds .  Griffiths  and  Tavaré  (1998) 

established the  SFS within  the  coalescent  framework,  and  Živković and Stephan (2011)  found an 

equivalent solution based on diffusion theory (Evans et al. 2007) as

f n , i=
θ
i
∑k =2

n

(−1)
k
(2k−1)(k

2) 3 F 2(n−i+1, k ,1−k ;n+1,2 ;1)∫0

∞

exp (−(k
2)∫0

t

1/ρ(s)ds)dt
, 

where
3 F 2(a , b ,c ; d ,e ; z)=∑l≥0

(a( l)b(l) c(l))/(d(l) e(l)) z l
/l ! is  a  generalized  hypergeometric 

function, in which p(0)=1 and  p( l)= p ( p+1)...( p+l−1) , l≥1 . For the standard neutral model, 
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this equation reduces to  f n , i=
θ
i

. The relative frequency spectrum is obtained via division by the 

total number of segregating sites. The equation for the SFS can be applied to demographic models 

including various instantaneous size changes and multiple phases of exponential growth. It can also be 

used  to  calculate  the  composite  likelihood  of  all  considered  sites  of  a  dataset  based  on  a  given 

demographic model and in analogy to Kim and Stephan (2002).

Implementation

SweeD is  implemented in  C and has  been developed and tested on Linux platforms.  The parallel 

SweeD version  uses  Posix  threads  (Pthreads).  The checkpointing  procedure  relies  on the  DMTCP 

(Distributed MultiThreaded CheckPointing, Ansel et al. 2009) library. 

Optional computation of the SFS for a given demographic model 

A new feature of  SweeD that  is  not  available  in  SweepFinder  is  the calculation of the theoretical 

sample SFS for a user-specified demographic model. The model can comprise an arbitrary number of 

instantaneous population size changes and, optionally, an exponential growth as the most recent event. 

For the calculation of the theoretical sample SFS, numerical issues can arise for samples exceeding 60 

sequences. To solve recurrent issues with numerical precision that are related to the harmonic sum 

representation of the SFS, we used the MPFR (Multiple-Precision Floating-point library with correct 

Rounding, Fousse et al. 2007) library. The MPFR library can be used to conduct arbitrary precision 

floating-point  operations  where  required.  Using  arbitrary  precision  arithmetics,  however,  leads  to 

increased run times and memory requirements for the analytical computation of the SFS compared to 

double precision floating point arithmetics. Although the run time differences are negligible for small 
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sample sizes (up to approximately 50 sequences), computing times can increase substantially (up to 5 

times  in  Figure  4B)  with  the  number  of  sequences.  We  employ  a  lookup  table  to  alleviate  this 

performance issue by avoiding frequent re-computations of these values. This approach reduces run 

times by a factor that is approximately equal to the number of sequences. However, the size of the 

lookup table also increases quadratically with the number of sequences and may induce excessive 

memory requirements (Figure 4A). 

However, the implementation of the theoretical sample SFS is useful since it does not require using 

additional programs. For instance, one could use ms (Hudson 2002) to simulate thousands of samples 

(typically  >  10,000)  and  then  compute  the  average  SFS  using  some  ad  hoc  implementation.. 

Furthermore, the option to calculate the theoretical sample SFS is useful when a representative average 

genome SFS is not available (e.g., when sub-genomic regions are analyzed).

Parallelization

Multi-core systems can run several threads of execution in parallel  which can decrease run 

times of an application. However, substantial changes to the sequential code may be required to obtain 

an efficient parallel algorithm. Therefore, we focused on parallelizing the most compute-intensive parts 

of SweeD. As already described, SweeD computes the likelihood and optimizes the α-parameter of the 

CLR test at several positions of the alignment. Since the CLR calculations at different positions (CLR 

positions) are independent, they are equally divided among the available cores. However, there is load 

imbalance among CLR computations because the inference of α-parameters at CLR positions that are 

located close to a selected site requires a larger amount of arithmetic operations. When a CLR position 

is located near a positively selected site, the α-parameter value that maximizes the likelihood of the 

sweep model is smaller (α is inversely proportional to the selection coefficient). However, the size of a 
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genomic region that a selective sweep may affect is inversely proportional to α. Thus, more SNPs are 

required to compute α, when the α value decreases. Therefore, we distribute CLR positions in a cyclic 

way to cores such as to improve load balance. We plan to test whether more elaborate load balancing 

schemes, such as dynamic scheduling or guided scheduling can further improve load balance. 

Arithmetic deviations from SweepFinder 

Since SweeD mainly represents a re-engineered version of SweepFinder, one would expect to obtain 

exactly the same output from both programs, when the same input data is analyzed. However, both 

SweeD and SweepFinder, heavily rely on floating-point arithmetics, which are not associative. In other 

words the following equality does not hold under floating-point arithmetics: A + (B + C) = (A + B) + C. 

Therefore, the order of floating point operations affects the final result. For each CLR position both 

SweeD and SweepFinder compute the probability of each SNP (under the sweep and the neutral model) 

in a certain region around the CLR position. To calculate these probabilities, SweepFinder moves from 

left to right along the genome, whereas SweeD moves from the CLR position toward the boundaries of 

the region. Consequently, the order of operations is different. Therefore, slight numerical deviations 

between the respective results are to be expected. 

There are two additional factors that contribute to the numeric differences between SweeD and 

SweepFinder.  First,  logarithmic operations  are  required  in  SweeD to  ensure scalability  for  a  large 

number  (thousands)  of  sequences.  To  avoid  arithmetic  underflow  as  frequently  observed  in 

SweepFinder,  several  multiplications are implemented as sums of logarithms in SweeD. When the 

number of sequences is large, the operands in these multiplications approach the lower limit of the 

double-precision floating-point range, which can result in floating-point underflows. This is the main 

reason why SweepFinder cannot analyze datasets that comprise more than 1,027 sequences and exits 

with a failing assertion: “SweepFinder: SweepFinder.c:365: get_pstar: Assertion `sum <= 1.0 && sum 
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> 0.0' failed”. 

Second, SweeD implements a linear instead of a cubic spline interpolation. Both SweepFinder 

and SweeD calculate the probability P(b) of observing a SNP with a frequency b at k fixed distances d 

(as scaled by α). For all other values of αd, P(b) is calculated by interpolating the probability values of 

the  k fixed distances. SweepFinder uses  k := 60 in conjunction with a cubic spline interpolation.  We 

observed that the spline function calculates erroneous values for k := 60. By increasing the value of k, 

we found that, using a linear interpolation between distance points is sufficiently accurate to calculate 

P(b). Thus, we use k:=300 and a linear instead of a cubic spline in SweeD.

Checkpoint and restart capability

Due  to  the  typical  time  limitations  imposed  by  job  submission  queues  on  cluster  systems,  a 

checkpointing  and restart  capability  represents  an  important  feature  of  scientific  codes.  In  typical 

cluster installations, job queues have 24 or 48 hour time limits. A job submitted to a 24-hour queue is  

killed immediately, if it takes longer, effectively wasting the energy spent during the past 24 hours, 

since the user will have to resubmit the job to a queue with a higher time limit, say 48 hours. However,  

if the application is checkpointed, the user can resume the job from the point, where its execution was 

interrupted to achieve time and energy savings.

SweeD uses the open-source checkpointing library DMTCP (Ansel et al. 2009) for this purpose. 

With  the  respective  makefiles  (with  the  file  extension  .CHECKPOINTS),  users  can  compile  the 

checkpointable  version  of  SweeD:  SweeD-C.  Note  that  the  non-checkpointable  version  does  not 

require the DMTCP library and is hence easier to compile and install. The checkpointable version takes 

one additional input parameter, the checkpointing interval, which defines how often checkpoints are 

created and stored during the execution of SweeD-C. To enable checkpointing, the dmtcp_coordinator 

process has to be started before executing SweeD-C. Subsequently, the program can be invoked as 
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usual (with the additional parameter for the checkpointing interval). When an unexpected event such as 

a queue time-out or an electricity or processor failure interrupts the execution of the program, the user 

will be able to resume the execution by using the restart script provided with the DMTCP library. 

Command line arguments and output files

SweeD is a command line tool and requires at least three parameters for a typical analysis: i) a name 

for the run (-name), ii) the name of the input file (-input), and iii) the number of CLR positions (-grid). 

In addition to the input file format of SweepFinder  (see SweeD manual Section at http://exelixis-

lab.org/software.html). 

In the following we provide a few example command line invocations:

i) SweeD -name test -input file.sf -grid 10000

ii) SweeD-P -name test -input file.sf -grid 10000 -threads 4

iii) SweeD-C -name test -input file.sf -grid 10000 -checkpoint 1200

In the first example, SweeD is called with the minimum number of parameters to compute the CLR at 

10,000 positions along the dataset as provided in file.sf. In the second example, the parallel version of 

SweeD is called. Hence we need an additional parameter to specify the number of cores/threads that 

shall be used. In the last example, we start the checkpointable version. This requires the additional 

parameter that specifies how frequently (in seconds) checkpoints should be stored. For more examples 

and  a  detailed  description  of  all  supported  command  line  parameters  please  refer  to  the  manual 

(http://exelixis-lab.org/software.html).
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SweeD generates two output files: i) an information file that provides information regarding the dataset 

(number of sequences,  sites,  etc.)  and the analysis  (e.g.,  execution time),  and ii)  a  report  file  that 

contains the likelihood value and α-parameter for each CLR position. Finally, a warning file might be 

written, when ms or MaCS input file formats are used to report possible conflicting SNP positions, that  

is, SNPs that refer to the same alignment site.
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Tables

Table 1: Total execution times and speedups for simulated datasets with and without selection.

SweepFinder SweeD Speedup
Sequences SNPs Neutral Selection Neutral Selection Neutral Selection

50 10,000 199.908 434.744 142.200 399.440 1.406 1.088
50 100,000 2005.075 4380.188 1085.240 3563.890 1.848 1.229
50 1,000,000 34563.920 52560.680 8881.410 32466.250 3.892 1.619

100 10,000 207.123 427.885 142.650 400.050 1.452 1.070
100 100,000 1924.353 3695.948 1082.370 2890.020 1.778 1.279
100 1,000,000 32140.840 45531.370 9013.630 23762.100 3.566 1.916
500 10,000 984.357 869.217 158.730 181.100 6.201 4.800
500 100,000 2548.083 2991.866 1121.820 1841.540 2.271 1.625
500 1,000,000 23431.980 45118.190 9091.370 16684.070 2.577 2.704
750 10,000 2382.910 2418.270 186.660 231.510 12.766 10.446
750 100,000 4172.555 4657.067 1120.780 1810.410 3.723 2.572
750 1,000,000 29006.060 -* 9181.570 20601.350 3.159 -*

1,000 10,000 5375.578 5385.314 244.460 270.410 21.990 19.915
1,000 100,000 7031.194 7435.575 1173.320 1751.660 5.993 4.245
1,000 1,000,000 27360.160 29893.300 9214.810 13036.350 2.969 2.293

* SweepFinder terminated abruptly due to a failed assertion: “SweepFinder: SweepFinder.c:595: ln_likelihood: Assertion `pr >=0.0 && 

pr<1.00000001' failed”
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Figure Legends

Figure 1

Figure1:  Comparison  of  peak  memory  consumption  between  SweeD and  SweepFinder.  Simulated 

datasets  of  100  SNPs  and  25,  50,  100,  200,  and  400  respective  sequences  were  used  for  the 

measurements.  Memory consumption was quantified with the massif  tool  of  the valgrind software 

(Seward and Nethercote 2005). SweeD consumes more memory than SweepFinder due to the lookup 

table implementation.

Figure 2

Figure 2: Speedup measurements using up to 48 cores for the analysis of simulated datasets consisting 

of 100 (A) and 10000 (B) sequences with 10,000, 100,000 and 1,000,000 SNPs, respectively. 

Figure 3

Figure 3: Genome-scan for selective sweeps of the human chromosome 1.  The x-axis denotes the 

position on chromosome 1, and the y-axis shows the ω-statistic (A) and the CLRs evaluated by SweeD 

(B), respectively. 

Figure 4

Figure 4: Comparison of memory consumption (A) and run-time (B) of SweeD (where the average SFS 

is computed by the data itself) and SweeD using the MPFR library to calculate the analytical SFS. 
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Simulated standard neutral datasets of 500 SNPs and 25, 50, 100, 200, and 400 sequences were used 

for  the  measurements.  Memory  consumption  was  quantified  with  the  massif  tool  of  the  valgrind 

software (Seward and Nethercote 2005). 
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