
SweeD: Likelihood-based detection of selective
sweeps in thousands of genomes

Pavlos Pavlidis1*, Daniel Živković2, Alexandros Stamatakis1, Nikolaos Alachiotis1

1The Exelixis Lab, Scientific Computing Group, Heidelberg Insitute for Theoretical Studies (HITS
gGmbH), Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg, Germany

2Section of Evolutionary Biology, Biocenter, University of Munich, D-82152 Planegg-Martinsried,
Germany

*Corresponding author:

Pavlos Pavlidis
pavlidisp@gmail.com
The Exelixis Lab, Scientific Computing Group,
Heidelberg Insitute for Theoretical Studies (HITS gGmbH),
69118 Heidelberg
Germany

Keywords: selective sweep, positive selection, adaptive evolution, high-performance computing, site
frequency spectrum

Nonstandard abbreviations: CLR, SFS, VCF, BFGS, DMTCP, MPFR

Running Title: SweeD: Sweep Detector

1

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Abstract

The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-

specific genomes that can be used to detect loci that have been subject to positive selection in the recent

past. Based on selective sweep theory, beneficial loci can be detected by examining the SNP patterns in

intra-specific genome alignments. In the last decade, numerous algorithms have been developed to

identify selective sweeps. However, the majority of these algorithms has not been designed for

analyzing whole-genome data.

We present SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in

whole genomes. It analyzes site frequency spectra and represents an extension of the widely-used

SweepFinder program.

The sequential version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is

able to analyze thousands of sequences. We also provide a parallel multi-core implementation of

SweeD. Furthermore, we implemented a checkpointing mechanism that allows to also deploy SweeD

on cluster systems with queue execution time restrictions, as well as to resume long-running analyses

after processor failures. Finally, the user can specify a demographic model via the command-line to

calculate the theoretically expected site frequency spectrum of a demographic model. Therefore, (in

contrast to SweepFinder) the neutral site frequencies can optionally be directly estimated from a

demographic model.

2

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Introduction

The seminal paper by Maynard Smith and Haigh (1974) coined the term “genetic hitchhiking”, that is,

the evolutionary process where a strongly beneficial mutation emerges and spreads in a population. As

a consequence, the frequency of linked neutral or weakly selected variants will increase. The authors

showed that, in sufficiently large populations, the hitchhiking effect drastically reduces genetic

variation near the positively selected site, thereby inducing a so-called selective sweep. According to

their deterministic model, diversity vanishes at the selected site immediately after the fixation of the

beneficial allele. The model also predicts that with increasing distance (scaled by α=r /s log(2N) ,

where r is the recombination rate, s is the selection coefficient, and N is the effective population size)

from the selected site i) diversity accumulates, ii) the distribution of the frequencies of segregating sites

changes, and iii) linkage-disequilibrium patterns are generated around the target site of the beneficial

mutation.

 Neutral mutations are assumed to arise in a sufficiently large population at a rate of θ/ 2 , (

θ=4Nμ , μ being the mutation probability per site and per generation). Initially, they are present

as a single copy. Thus, according to the infinitely-many sites model (Kimura 1969), they occur at

previously monomorphic sites. The site frequency spectrum (SFS) of a population denotes the

distribution of the expected number of polymorphic sites, ϕ(x)dx , at which the mutant allele has a

frequency in (x , x+dx) , 0<x<1 . Kimura (1971) demonstrated that the SFS for the standard

neutral model is given by ϕ(x)dx=θ/ x dx . For the selective sweep model, Fay and Wu (2000) have

shown that the frequency spectrum of neutral sites which are sufficiently close to the beneficial

mutation shifts toward an excess of high- and low-frequency derived alleles in proportions

x ϕ(x)dx=θdx and (θ/ x−θ)dx , respectively. While the aforementioned neutral and selective

models assume a constant population size, analytical results for the SFS have also been obtained for

3

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

scenarios in which the population is subject to deterministic size changes (Griffiths 2003). However,

deriving an analytical approximation of site frequency spectrum when sites are subject to genetic

hitchhiking (in populations with varying size over time) still remains a challenge.

Regarding analyses of DNA sequence samples, the sample SFS (and not the population SFS) is

of interest. The sample SFS, f n , i , is the distribution of the expected number of sites at which there

are i derived alleles, 1≤i≤n−1 , in a sample of n sequences. The relative frequencies are obtained

from these absolute frequencies via division by the total number of segregating sites. If the mutant

allele can not be distinguished from the wild type, the folded version of the SFS is used. Kim and

Stephan (2002) interpreted f n , i as the probability of observing a single site where i derived

alleles are found in a sample of size n. The authors used the derivation of the SFS by Fay and Wu

(2000) to develop the first composite likelihood ratio test (CLR) for detecting selective sweeps in

typically small (up to a few hundred kilobases) genomic regions (henceforth called subgenomic

regions). Nielsen et al. (2005) introduced two major modifications to the CLR method by Kim and

Stephan (2002) for detecting selective sweeps in whole-genome data.

First, instead of using the model by Fay and Wu (2000), that relies on the population mutation

parameter θ , Nielsen et al. (2005) proposed a model that quantifies the frequency of an allele at a

distance d from the beneficial mutation independently of θ by conditioning on the observation of a

SNP. Second, instead of employing the theoretical result for the SFS (Kimura 1971) that assumes

standard neutrality as done by Kim and Stephan (2002), Nielsen et al. (2005) use the empirical SFS of

the entire dataset as neutral background. The first modification allows for applying the test to large-

scale genome data, where θ can vary among regions. The second modification increases the

robustness of the algorithm under demographic models (e.g., mild bottlenecks). It implicitly accounts

for this, by using the empirical SFS that is obtained from the entire genome. Nielsen et al. (2005)

4

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

implemented their method in SweepFinder (http://people.binf.ku.dk/rasmus/webpage/sf.html). In the

numerator of the CLR test, SweepFinder calculates the likelihood of a sweep at a certain position in the

genome by maximizing α . The denominator (the neutral model) is given by the product of the

empirical SFS over all SNPs. Since SNPs are assumed to be independent, the overall likelihood for the

genetic hitchhiking model is calculated as product over the per-SNP likelihood scores .

With next generation sequencing technologies it has now become feasible to sequence whole

genomes of thousands of individuals from a single species and to reliably detect the genomic locations

of selective sweeps. Selective sweep prediction accuracy increases with the number of sequence

samples. For instance, Jensen et al. (2007) showed that distinguishing selective sweeps from

demographic events in samples of moderate size (50 samples) is easier than in smaller samples (12

samples). Nowadays, samples that comprise hundreds or even thousands (e.g., The 1000 Genomes

Project Consortium 2012 https://1000genomes.org) of sequences are becoming available. Hence,

selective sweep detection is expected to become more accurate. However, the increase in sample sizes

and sequence lengths poses novel algorithmic, numerical, and computational challenges for selective

sweep detection. Numerically stable implementations that can handle arithmetic over- and/or underflow

are required. An efficient use of scarce computing and memory resources is also required. Furthermore,

efficient parallel implementations are needed to analyze large datasets in reasonable times on state-of-

the-art multi- and many-core processors.

At present only a handful of tools that scale to thousands of whole-genome sequences is

available. The implementation of the CLR test by Kim and Stephan (2002) can only be used for

analyzing small subgenomic regions. Jensen et al. (2007) and Pavlidis et al. (2010) used the ω-statistic

(Kim and Nielsen 2004), which relies on the linkage-disequilibrium signature of a selective sweep to

detect positively selected sites. The respective implementations are also only able to handle

5

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

subgenomic regions. SweepFinder (Nielsen et al. 2005) can analyze whole genomes efficiently, but

only for up to a few hundred sequences. For larger sample sizes, execution times increase substantially.

Moreover, SweepFinder can not analyze samples exceeding 1,027 sequences because numerical

problems associated to floating point underflow are not handled. Finally, SweepFinder only runs on a

single core. To the best of our knowledge, the ω-statistic based OmegaPlus tool (Alachiotis et al. 2012)

represents the sole publicly available high-performance implementation for detecting selective sweeps.

OmegaPlus can efficiently analyze whole genomes from thousands of individuals by exploiting all

available cores on a modern desktop or server.

New approaches

In the following, we describe SweeD (Sweep Detector), our open-source tool for the SFS-based rapid

detection of selective sweeps at the whole-genome scale. The SweeD code is based on SweepFinder

(Nielsen et al. 2005) and incorporates the following new features and algorithmic techniques: Via

respective program parameters the SFS can be calculated analytically for demographic models that

comprise an arbitrary number of instantaneous population size changes and, optionally, also an

exponential growth as the most recent event. Thereby, a neutral SFS can be obtained without the need

to compute the empirical average SFS for the genome.

Moreover, SweeD can analyze thousands of genomes because we adapted the numerical

implementation of the arithmetic operations. For a large number of genomes, the double precision

floating-point range is frequently not sufficient. This may lead to numerical over- or underflow. SweeD

is able to analyze such large samples because it performs several calculations at the logarithmic scale.

The code also supports several additional input file formats for reading in simulated and real datasets.

6

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Regarding real datasets, it supports the FASTA and VCF formats. The VCF format is widely used in

next generation sequencing projects, such as, for instance, the 1000 Genomes project

(http://www.1000genomes.org). With respect to simulated datasets, SweeD supports ms (Hudson 2002)

and MaCS (Chen 2009) formats.

Furthermore, SweeD can exploit all available cores on a shared-memory multi-core processor to

substantially expedite the analysis of huge datasets that comprise millions of SNPs and thousands of

sequences.

Finally, SweeD offers a checkpointing capability that allows to restart (continue/resume) an analysis

from the point where it failed, rather than running it again from scratch. This mechanism allows for

saving CPU time and energy in the case of hardware failures or cluster queues with time limits.

Results and Discussion

In the following, we present a performance comparison between SweeD and SweepFinder, assess the

efficiency of the parallel implementation, and provide a usage example.

Sequential Performance

For comparing the performance of SweeD versus SweepFinder, we generated simulated datasets with

up to 1,000 sequences and 1,000,000 sites using msms (Ewing and Hermisson 2010). We slightly

modified the source code of msms to obtain output files that can be parsed by SweepFinder (the

modified version of msms is available at: http:/exelixis-lab.org/software.html). We generated datasets

with and without selection. The programs were executed on an unloaded AMD Opteron 6174 processor

with 12 cores running at 2.2 GHz under Ubuntu Linux.

7

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

As shown in Table 1 SweeD outperforms SweepFinder on all datasets. The total execution times

for both programs increase with the number of sequences and the number of SNPs. Run-times are

dominated by two computationally expensive parts in both programs: i) the pre-computation of a fixed

number of likelihood values at given distances (in scaled units) around the position of the selective

sweep, and ii) the computation of the CLR test at those positions as specified by the user via the

-grid option. To precompute the likelihood values at certain distances around the position of the

selective sweep, SweeD carries out the arithmetic operations in a different order than SweepFinder.

SweeD employs a lookup table to store these intermediate results that can be reused for the

precomputation of the constant, fixed likelihood values. In contrast, SweepFinder recalculates these

intermediate constant values-on-the-fly. The performance benefit of using a lookup table can be

observed when the number of sequences is increased, because the number of lookups (redundant

recalculations in SweepFinder) is proportional to the number of sequences. For small numbers of

sequences, lookups and recalculations need approximately the same time. As the number of sequences

increases, the lookup-based approach outperforms the recalculation approach. SweeD and SweepFinder

employ the same approach to compute the CLR test at a specific position. However, we optimized the

CLR computation in SweeD via low-level technical optimizations. Nonetheless, the computation of the

CLR test as such is only marginally faster in SweeD.

Table 1 also shows that, for a small number of sequences, SweeD becomes faster than SweepFinder as

the number of SNPs increases . This is because the order and the number of operations at each position,

where the CLR is calculated, is different in SweeD (see section Arithmetic deviations from

SweepFinder for more details). We obtained speedups between 1.07X and 3.90X. For larger numbers

of sequences (1,000), the speedup of SweeD over SweepFinder drops from 22X (10,000 SNPs) to 2.9X

(1,000,000 SNPs) with an increasing number of SNPs because a larger fraction of overall execution

time is spent for CLR computations.

8

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Due to the aforementioned lookup table, SweeD requires more memory than SweepFinder.

Figure 1 shows the peak memory consumption for SweeD and SweepFinder as a function of the

number of sequences, when a dataset of 100 SNPs is analyzed (using the SF data format). For this

specific dataset, SweeD consumes about 4.6 times more memory than SweepFinder. Nonetheless, the

memory requirements increase linearly for both programs. Despite the larger memory footprint of

SweeD, the additional memory for storing the lookup table is negligible with respect to the memory

capacity of modern computers. For instance, storing a lookup table for a dataset with 10,000 sequences

requires approximately 24 MB. Thus, the analysis of very large population genetics datasets is feasible.

SweeD uses the same suite of parsers as OmegaPlus for ms, MaCS, VCF, and FASTA files. Since the

parser suite is not yet fully optimized for memory efficiency, SweeD may exhibit temporary (during

parsing and conversion into the internal SF data format) memory consumption peaks (depending on the

input format), which exceed the amount of memory required for the actual computations.

Parallel Performance

To assess the parallel efficiency of SweeD, we generated datasets with up to 10,000 sequences and

1,000,000 sites. Figure 2 shows the respective speedups for up to 48 cores/threads (4 AMD Opteron

6174 processors) on simulated datasets with 100 and 10,000 sequences, and 10,000, 100,000, and

1,000,000 SNPs, respectively. The execution times for the sequential analysis of the dataset with 100

sequences are shown in Table 1. The datasets with 10,000 sequences as well as 10,000, 100,000, and

1,000,000 SNPs required 30,717, 32,299, and 37,212 seconds, respectively.

As can be observed in Figure 2A, the parallel implementation scales well with the number of cores,

achieving speedups between 41X and 45X on 48 cores for the small sample of 100 sequences. In

contrast, Figure 2B shows speedups that only range between 7X and 37X for the large sample of

9

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

10,000 sequences on 48 cores. This is due to the small amount of SNPs for the comparatively large

number of sequences, which in turn leads to a significantly larger amount of time spent in the BFGS

(Broyden-Fletcher-Goldfarb-Shanno, Fletcher 1987) algorithm that optimizes the neutral SFS.

Specifically, the BFGS algorithm estimates the neutral SFS that maximizes the probability of the

dataset (i.e., the overall likelihood) given the input SFS and the data. This step is needed because the

input dataset may contain missing data, and thus the input SFS does not correspond precisely to the

sample SFS. These likelihood computations have been parallelized. However, when the number of

SNPs is small compared to the number of sequences, substantially more iterations (and hence thread

synchronization events) are required for the BFGS algorithm to converge. This step cannot be further

parallelized because the iterative optimization procedure uses the likelihood values sequentially, that is,

there exists a hard-to-resove sequential dependency between iterations i and i+1.

For example, when we analyze the dataset with 10,000 sequences and 10,000 SNPs, the BFGS

algorithm computes the likelihood of the input dataset conditional on the SFS 4,477,114 times, whereas

only 396 such likelihood calculations are required for the dataset with 100 sequences and 10,000 SNPs.

The parallel efficiency of each iteration improves with an increasing number of SNPs because

more computations are carried out per iteration/synchronization inbetween synchronization events.

Therefore, for 10,000 SNPs and 10,000 sequences we observe the worst-case speedup of 7 due to an

unfavorable combination of relatively few SNPs (low workload per iteration) and a large number of

such parallel iterations (4,477,114). For the same sample size, but with 1,000,000 instead of 10,000

SNPs, the parallel efficiency improves and we obtain good speedups (37X).

Since a parallel implementation of SweepFinder is not available as a reference, we report on

OmegaPlus performance as a rough reference. Compared to OmegaPlus, SweeD exhibits better parallel

efficiency, since it scales well up to 48 cores in most cases. Parallel OmegaPlus only scales up to 12

cores (Alachiotis et al. 2012a). Note however that, for a single core or a small number of cores (up to

10

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

12 in our tests), OmegaPlus outperforms SweeD due to algorithmic innovations and because it mostly

relyies on integer rather than on floating-point arithmetics.

Usage Example

To demonstrate the capability of SweeD to handle real-world genomic data, we downloaded and

analyzed the chromosome 1 dataset from the 1000 Genome Project

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ phase1/analysis_results/i ntegrated_call_sets/). This dataset

contains the genetic variation from 1092 humans, that is, the sample size is 2184. The size of the input

file is 87 GB, and it comprises 2,896,960 SNPs. We carried out the analysis on an Intel Core i7-2600

processor with 4 cores (8 threads with hyperthreading) running at 3.4 GHz. We calculated the CLR test

at 100,000 points (gridsize), and the SFS was obtained from the entire dataset. The total execution time

was 8 hours and 15 minutes. In contrast to SweeD, SweepFinder fails to analyze this dataset because of

the large sample size (see section Arithmetic deviations from SweepFinder). We also analyzed this

dataset with OmegaPlus (command line flags: maxwin=280,000, minwin=1,000; see manual for

further details on the OmegaPlus command line). OmegaPlus was faster than SweeD (total execution

time: 2 hours and, 37 minutes). The OmegaPlus and SweeD output results are illustrated in Figure 3.

Conclusions and future work

SweeD is an improved and scalable implementation of SweepFinder that allows for analyzing

thousands of genomes. In contrast to SweepFinder, SweeD can also analytically calculate the SFS

based on a user-specified demographic model. It can also parse several common input file formats such

as, ms, MaCS, FASTA, and VCF. Furthermore, SweeD leverages the computational power of multi-

core systems, shows good speedups, and thereby substantially decreases the time-to-solution. Finally, a

checkpointing mechanism allows to resume analyses from where they were interrupted in the case of

11

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/

hardware failures or queue limitations, leading to time and energy savings.

Regarding future work, we plan to parallelize the calculations of the theoretical SFS and employ

an out-of-core (external memory algorithm) approach to make the calculations of the theoretical SFS

feasible on off-the-shelf computers. Finally, we intend to evaluate the accuracy of scalable sweep-

detection tools such as SweeD and OmegaPlus as a function of increasing sample size.

Materials and Methods

The SFS of samples for deterministically varying population size

Analytical results for sample frequency spectra can either be directly derived via the coalescent or be

obtained via binomial sampling from the population version as derived within the diffusion framework.

This is also the case for a neutral model of a population whose size varies over time. Here

ρ(t)= N (t)/N denotes the ratio between the ancestral and the current population size at time t.

Changes in population size can be included into the standard neutral model as the harmonic mean of

the relative population sizes via time-rescaling t →∫
0

t
1 /ρ(s)ds . Griffiths and Tavaré (1998)

established the SFS within the coalescent framework, and Živković and Stephan (2011) found an

equivalent solution based on diffusion theory (Evans et al. 2007) as

f n , i=
θ
i
∑k =2

n

(−1)
k
(2k−1)(k

2) 3 F 2(n−i+1, k ,1−k ;n+1,2 ;1)∫0

∞

exp (−(k
2)∫0

t

1/ρ(s)ds)dt
,

where
3 F 2(a , b ,c ; d ,e ; z)=∑l≥0

(a(l)b(l) c(l))/(d(l) e(l)) z l
/l ! is a generalized hypergeometric

function, in which p(0)=1 and p(l)= p (p+1)...(p+l−1) , l≥1 . For the standard neutral model,

12

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

this equation reduces to f n , i=
θ
i

. The relative frequency spectrum is obtained via division by the

total number of segregating sites. The equation for the SFS can be applied to demographic models

including various instantaneous size changes and multiple phases of exponential growth. It can also be

used to calculate the composite likelihood of all considered sites of a dataset based on a given

demographic model and in analogy to Kim and Stephan (2002).

Implementation

SweeD is implemented in C and has been developed and tested on Linux platforms. The parallel

SweeD version uses Posix threads (Pthreads). The checkpointing procedure relies on the DMTCP

(Distributed MultiThreaded CheckPointing, Ansel et al. 2009) library.

Optional computation of the SFS for a given demographic model

A new feature of SweeD that is not available in SweepFinder is the calculation of the theoretical

sample SFS for a user-specified demographic model. The model can comprise an arbitrary number of

instantaneous population size changes and, optionally, an exponential growth as the most recent event.

For the calculation of the theoretical sample SFS, numerical issues can arise for samples exceeding 60

sequences. To solve recurrent issues with numerical precision that are related to the harmonic sum

representation of the SFS, we used the MPFR (Multiple-Precision Floating-point library with correct

Rounding, Fousse et al. 2007) library. The MPFR library can be used to conduct arbitrary precision

floating-point operations where required. Using arbitrary precision arithmetics, however, leads to

increased run times and memory requirements for the analytical computation of the SFS compared to

double precision floating point arithmetics. Although the run time differences are negligible for small

13

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

sample sizes (up to approximately 50 sequences), computing times can increase substantially (up to 5

times in Figure 4B) with the number of sequences. We employ a lookup table to alleviate this

performance issue by avoiding frequent re-computations of these values. This approach reduces run

times by a factor that is approximately equal to the number of sequences. However, the size of the

lookup table also increases quadratically with the number of sequences and may induce excessive

memory requirements (Figure 4A).

However, the implementation of the theoretical sample SFS is useful since it does not require using

additional programs. For instance, one could use ms (Hudson 2002) to simulate thousands of samples

(typically > 10,000) and then compute the average SFS using some ad hoc implementation..

Furthermore, the option to calculate the theoretical sample SFS is useful when a representative average

genome SFS is not available (e.g., when sub-genomic regions are analyzed).

Parallelization

Multi-core systems can run several threads of execution in parallel which can decrease run

times of an application. However, substantial changes to the sequential code may be required to obtain

an efficient parallel algorithm. Therefore, we focused on parallelizing the most compute-intensive parts

of SweeD. As already described, SweeD computes the likelihood and optimizes the α-parameter of the

CLR test at several positions of the alignment. Since the CLR calculations at different positions (CLR

positions) are independent, they are equally divided among the available cores. However, there is load

imbalance among CLR computations because the inference of α-parameters at CLR positions that are

located close to a selected site requires a larger amount of arithmetic operations. When a CLR position

is located near a positively selected site, the α-parameter value that maximizes the likelihood of the

sweep model is smaller (α is inversely proportional to the selection coefficient). However, the size of a

14

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

genomic region that a selective sweep may affect is inversely proportional to α. Thus, more SNPs are

required to compute α, when the α value decreases. Therefore, we distribute CLR positions in a cyclic

way to cores such as to improve load balance. We plan to test whether more elaborate load balancing

schemes, such as dynamic scheduling or guided scheduling can further improve load balance.

Arithmetic deviations from SweepFinder

Since SweeD mainly represents a re-engineered version of SweepFinder, one would expect to obtain

exactly the same output from both programs, when the same input data is analyzed. However, both

SweeD and SweepFinder, heavily rely on floating-point arithmetics, which are not associative. In other

words the following equality does not hold under floating-point arithmetics: A + (B + C) = (A + B) + C.

Therefore, the order of floating point operations affects the final result. For each CLR position both

SweeD and SweepFinder compute the probability of each SNP (under the sweep and the neutral model)

in a certain region around the CLR position. To calculate these probabilities, SweepFinder moves from

left to right along the genome, whereas SweeD moves from the CLR position toward the boundaries of

the region. Consequently, the order of operations is different. Therefore, slight numerical deviations

between the respective results are to be expected.

There are two additional factors that contribute to the numeric differences between SweeD and

SweepFinder. First, logarithmic operations are required in SweeD to ensure scalability for a large

number (thousands) of sequences. To avoid arithmetic underflow as frequently observed in

SweepFinder, several multiplications are implemented as sums of logarithms in SweeD. When the

number of sequences is large, the operands in these multiplications approach the lower limit of the

double-precision floating-point range, which can result in floating-point underflows. This is the main

reason why SweepFinder cannot analyze datasets that comprise more than 1,027 sequences and exits

with a failing assertion: “SweepFinder: SweepFinder.c:365: get_pstar: Assertion `sum <= 1.0 && sum

15

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

> 0.0' failed”.

Second, SweeD implements a linear instead of a cubic spline interpolation. Both SweepFinder

and SweeD calculate the probability P(b) of observing a SNP with a frequency b at k fixed distances d

(as scaled by α). For all other values of αd, P(b) is calculated by interpolating the probability values of

the k fixed distances. SweepFinder uses k := 60 in conjunction with a cubic spline interpolation. We

observed that the spline function calculates erroneous values for k := 60. By increasing the value of k,

we found that, using a linear interpolation between distance points is sufficiently accurate to calculate

P(b). Thus, we use k:=300 and a linear instead of a cubic spline in SweeD.

Checkpoint and restart capability

Due to the typical time limitations imposed by job submission queues on cluster systems, a

checkpointing and restart capability represents an important feature of scientific codes. In typical

cluster installations, job queues have 24 or 48 hour time limits. A job submitted to a 24-hour queue is

killed immediately, if it takes longer, effectively wasting the energy spent during the past 24 hours,

since the user will have to resubmit the job to a queue with a higher time limit, say 48 hours. However,

if the application is checkpointed, the user can resume the job from the point, where its execution was

interrupted to achieve time and energy savings.

SweeD uses the open-source checkpointing library DMTCP (Ansel et al. 2009) for this purpose.

With the respective makefiles (with the file extension .CHECKPOINTS), users can compile the

checkpointable version of SweeD: SweeD-C. Note that the non-checkpointable version does not

require the DMTCP library and is hence easier to compile and install. The checkpointable version takes

one additional input parameter, the checkpointing interval, which defines how often checkpoints are

created and stored during the execution of SweeD-C. To enable checkpointing, the dmtcp_coordinator

process has to be started before executing SweeD-C. Subsequently, the program can be invoked as

16

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

usual (with the additional parameter for the checkpointing interval). When an unexpected event such as

a queue time-out or an electricity or processor failure interrupts the execution of the program, the user

will be able to resume the execution by using the restart script provided with the DMTCP library.

Command line arguments and output files

SweeD is a command line tool and requires at least three parameters for a typical analysis: i) a name

for the run (-name), ii) the name of the input file (-input), and iii) the number of CLR positions (-grid).

In addition to the input file format of SweepFinder (see SweeD manual Section at http://exelixis-

lab.org/software.html).

In the following we provide a few example command line invocations:

i) SweeD -name test -input file.sf -grid 10000

ii) SweeD-P -name test -input file.sf -grid 10000 -threads 4

iii) SweeD-C -name test -input file.sf -grid 10000 -checkpoint 1200

In the first example, SweeD is called with the minimum number of parameters to compute the CLR at

10,000 positions along the dataset as provided in file.sf. In the second example, the parallel version of

SweeD is called. Hence we need an additional parameter to specify the number of cores/threads that

shall be used. In the last example, we start the checkpointable version. This requires the additional

parameter that specifies how frequently (in seconds) checkpoints should be stored. For more examples

and a detailed description of all supported command line parameters please refer to the manual

(http://exelixis-lab.org/software.html).

17

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

http://exelixis-lab.org/software.html

SweeD generates two output files: i) an information file that provides information regarding the dataset

(number of sequences, sites, etc.) and the analysis (e.g., execution time), and ii) a report file that

contains the likelihood value and α-parameter for each CLR position. Finally, a warning file might be

written, when ms or MaCS input file formats are used to report possible conflicting SNP positions, that

is, SNPs that refer to the same alignment site.

18

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

References

Alachiotis N, Pavlidis P, Stamatakis A. 2012. Exploiting Multi-grain Parallelism for Efficient

Selective Sweep Detection. In: Algorithms and Architecture for Parallel Processing (ICA3PP).

Vol. 7439. p. 56–68.

Alachiotis N, Stamatakis A, Pavlidis P. 2012. OmegaPlus: A Scalable Tool for Rapid Detection

of Selective Sweeps in Whole-Genome Datasets. Bioinformatics (Oxford, England) 28:2274–

2275.

Ansel J, Arya K, Cooperman G. 2009. DMTCP: Transparent Checkpointing for Cluster

Computations and the Desktop. In: 23rd IEEE International Parallel and Distributed

Processing Symposium (IPDPS’09). p. 1–12.

Chen GK, Marjoram P, Wall JD. 2009. Fast and flexible simulation of DNA sequence data.

Genome research 19:136–42.

Evans SN, Shvets Y, Slatkin M. 2007. Non-equilibrium theory of the allele frequency

spectrum. Theoretical population biology 71:109–19.

Ewing G, Hermisson J. 2010. MSMS: a coalescent simulation program including

recombination, demographic structure and selection at a single locus. Bioinformatics (Oxford,

England) 26:2064–5.

Fay JC, Wu CI. 2000. Hitchhiking under positive Darwinian selection. Genetics 155:1405–13.

19

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

Fletcher R. 1987. Practical methods of optimization. New York: John Wiley & Sons, Ltd

Fousse L, Hanrot G, Lefevre V, Pélissier P, Zimmermann P. 2007. MPFR: A multiple-precision

binary floating-point library with correct rounding. ACM Transactions on Mathematical

Software 33:1–15.

Griffiths RC, Tavaré S. 1998. The age of a mutation in a general coalescent tree.

Communications in Statistics. Stochastic Models 14:273–295.

Griffiths RC. 2003. The frequency spectrum of a mutation, and its age, in a general diffusion

model. Theoretical population biology 64:241–51.

Hudson RR. 2002. Generating samples under a Wright-Fisher neutral model of genetic

variation. Bioinformatics (Oxford, England) 18:337–8.

Jensen JD, Thornton KR, Bustamante CD, Aquadro CF. 2007. On the utility of linkage

disequilibrium as a statistic for identifying targets of positive selection in nonequilibrium

populations. Genetics 176:2371–9.

Kim Y, Nielsen R. 2004. Linkage disequilibrium as a signature of selective sweeps. Genetics

167:1513–1524.

Kim Y, Stephan W. 2002. Detecting a local signature of genetic hitchhiking along a

recombining chromosome. Genetics 160:765–777.

Kimura M. 1969. The number of heterozygous nucleotide sites maintained in a finite

20

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

population due to steady flux of mutations. Genetics:893–903.

Kimura M. 1971. Theoretical foundation of population genetics at the molecular level.

Theoretical population biology 2:174–208.

Maynard Smith J, Haigh J. 1974. The hitch-hiking effect of a favourable gene. Genetical

research 23:23–35.

Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. 2005. Genomic scans

for selective sweeps using SNP data. Genome research 15:1566–75.

Pavlidis P, Jensen JD, Stephan W. 2010. Searching for footprints of positive selection in

whole-genome SNP data from nonequilibrium populations. Genetics 185:907–22.

Seward J, Nethercote N. 2005. Using Valgrind to detect undefined value errors with bit-

precision. In: Proceedings of the annual conference on USENIX Annual Technical Conference

(ATEC ’05). p. 2--2

The 1000 Genomes Project Consortium. 2012. An integrated map of genetic variation from

1,092 human genomes. Nature 491:56–65.

Živković D, Stephan W. 2011. Analytical results on the neutral non-equilibrium allele

frequency spectrum based on diffusion theory. Theoretical population biology 79:184–91.

21

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

Tables

Table 1: Total execution times and speedups for simulated datasets with and without selection.

SweepFinder SweeD Speedup
Sequences SNPs Neutral Selection Neutral Selection Neutral Selection

50 10,000 199.908 434.744 142.200 399.440 1.406 1.088
50 100,000 2005.075 4380.188 1085.240 3563.890 1.848 1.229
50 1,000,000 34563.920 52560.680 8881.410 32466.250 3.892 1.619

100 10,000 207.123 427.885 142.650 400.050 1.452 1.070
100 100,000 1924.353 3695.948 1082.370 2890.020 1.778 1.279
100 1,000,000 32140.840 45531.370 9013.630 23762.100 3.566 1.916
500 10,000 984.357 869.217 158.730 181.100 6.201 4.800
500 100,000 2548.083 2991.866 1121.820 1841.540 2.271 1.625
500 1,000,000 23431.980 45118.190 9091.370 16684.070 2.577 2.704
750 10,000 2382.910 2418.270 186.660 231.510 12.766 10.446
750 100,000 4172.555 4657.067 1120.780 1810.410 3.723 2.572
750 1,000,000 29006.060 -* 9181.570 20601.350 3.159 -*

1,000 10,000 5375.578 5385.314 244.460 270.410 21.990 19.915
1,000 100,000 7031.194 7435.575 1173.320 1751.660 5.993 4.245
1,000 1,000,000 27360.160 29893.300 9214.810 13036.350 2.969 2.293

* SweepFinder terminated abruptly due to a failed assertion: “SweepFinder: SweepFinder.c:595: ln_likelihood: Assertion `pr >=0.0 &&

pr<1.00000001' failed”

22

456

457

458

459

460

461

Figure Legends

Figure 1

Figure1: Comparison of peak memory consumption between SweeD and SweepFinder. Simulated

datasets of 100 SNPs and 25, 50, 100, 200, and 400 respective sequences were used for the

measurements. Memory consumption was quantified with the massif tool of the valgrind software

(Seward and Nethercote 2005). SweeD consumes more memory than SweepFinder due to the lookup

table implementation.

Figure 2

Figure 2: Speedup measurements using up to 48 cores for the analysis of simulated datasets consisting

of 100 (A) and 10000 (B) sequences with 10,000, 100,000 and 1,000,000 SNPs, respectively.

Figure 3

Figure 3: Genome-scan for selective sweeps of the human chromosome 1. The x-axis denotes the

position on chromosome 1, and the y-axis shows the ω-statistic (A) and the CLRs evaluated by SweeD

(B), respectively.

Figure 4

Figure 4: Comparison of memory consumption (A) and run-time (B) of SweeD (where the average SFS

is computed by the data itself) and SweeD using the MPFR library to calculate the analytical SFS.

23

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

Simulated standard neutral datasets of 500 SNPs and 25, 50, 100, 200, and 400 sequences were used

for the measurements. Memory consumption was quantified with the massif tool of the valgrind

software (Seward and Nethercote 2005).

24

483

484

485

486

Figures

Figure 1

25

487

488

489

490

491

492

493

Figure 2

26

494

495

Figure 3

27

496

498

499

500

28

501

502

503

504

505

506

507

Figure 4

29

508

509

510

511

30

513

514

	Abstract
	Introduction
	New approaches
	Results and Discussion
	Materials and Methods
	Optional computation of the SFS for a given demographic model

	References
	Tables
	Figure Legends
	Figure 1
	Figure1: Comparison of peak memory consumption between SweeD and SweepFinder. Simulated datasets of 100 SNPs and 25, 50, 100, 200, and 400 respective sequences were used for the measurements. Memory consumption was quantified with the massif tool of the valgrind software (Seward and Nethercote 2005). SweeD consumes more memory than SweepFinder due to the lookup table implementation.
	Figure 2
	Figure 2: Speedup measurements using up to 48 cores for the analysis of simulated datasets consisting of 100 (A) and 10000 (B) sequences with 10,000, 100,000 and 1,000,000 SNPs, respectively.
	Figure 3
	Figure 3: Genome-scan for selective sweeps of the human chromosome 1. The x-axis denotes the position on chromosome 1, and the y-axis shows the ω-statistic (A) and the CLRs evaluated by SweeD (B), respectively.
	Figure 4
	Figure 4: Comparison of memory consumption (A) and run-time (B) of SweeD (where the average SFS is computed by the data itself) and SweeD using the MPFR library to calculate the analytical SFS. Simulated standard neutral datasets of 500 SNPs and 25, 50, 100, 200, and 400 sequences were used for the measurements. Memory consumption was quantified with the massif tool of the valgrind software (Seward and Nethercote 2005).
	Figures
	Figure 1
	Figure 2
	Figure 3

