
Algorithrnica (1996) 15:126-153

Algorithmica
�9 1996 Springer-Verlag New York Inc,

Sweep Methods for Parallel Computational Geometry 1

M. T. Goodrich, 2 M. R. Ghouse, 2 and J. Bright 2

Abstract. In this paper we give efficient parallel algorithms for a number of problems from computa-
tional geometry by using versions of parallel plane sweeping. We illustrate our approach with a number of
applications, which include:

�9 General hidden-surface elimination (even if the overlap relation contains cycles).
�9 CSG boundary evaluation.

�9 Computing the contour of a collection of rectangles.
�9 Hidden-surface elimination for rectangles.

There are interesting subproblems that we solve as a part of each parallelization. For example, we give an
optimal parallel method for building a data structure for line-stabbing queries (which, incidentally, improves
the sequential complexity of this problem). Our algorithms are for the CREW PRAM, unless otherwise noted.

Key Words, Parallel algorithms, Computational geometry, Constructive solid geometry, Hidden-line elimi-
nation, Plane sweeping.

I . In t roduct ion. There are a number of algorithms in computational geometry that

rely on the "sweeping" paradigm (e.g., see [20], [34], and [42]). The generic framework

in this paradigm is for one to traverse a collection of geometric objects in some uniform

way while maintaining a number of data structures for the objects that belong to a

"current" set. For example, the current set of objects could be defined by all those that

intersect a given vertical line as it sweeps across the plane, those that intersect a line

through a point p as the line rotates around p, or those that intersect a point p as it moves

through the plane. The problem is solved by updating and querying the data structures

at certain stopping points, which are usually called "events." We are interested in the

problem of parallelizing sweeping algorithms.

Most previous approaches to parallelizing sweeping algorithms have been to abandon

the sweeping approach altogether and to solve the problem using a completely differ-

ent paradigm. Examples include the line-segment intersection methods of RUb [46] and

Goodrich [23], the trapezoidal decomposition algorithm of Atallah et aL [4], the method

of Aggarwal et al. [2] for constructing Voronoi diagrams, and the method of Chow [16]

for computing rectangle intersections. A notable exception, which kept with the plane

sweeping approach, were the methods of Atallah et al. [4] for two-set dominance count-

ing, visibility from a point, and computing three-dimensional maxima points. In each of

these algorithms, Atallah et al. adapted the cascading technique used in Cole's merge

1 Thisresearchappearedinpre•iminaryforminPr•c.2ndACMSymp.•nPara•lelAlg•rithmsandArchitectures•

1990, pp. 280-289. The research ofM. T. Goodrich was supported by the National Science Foundation under
Grants CCR-8810568, CCR-9003299, CCR-9300079, and IRI-9116843. The research of M. J. Ghouse and
J. Bright was supported by the NSF and DARPA under Grant CCR-8908092.
2 Department of Computer Science, The Johns Hopkins University, 34th and Charles Street, Baltimore,
MD 21218, USA.

Received May 25, 1993; revised March 12, 1994. Communicated by M. Snir.

Sweep Methods for Parallel Computational Geometry 127

sort [17], to achieve a full parallelization of the sequential fractional cascading method

of Chazelle and Guibas [15]. This allowed them to parallelize sweeping methods that

sweep the objects with a vertical line, maintaining the set of objects cut by the line, and

computing an associative function (such as "plus" or "rain") on the current set of objects

for each event.

In this paper we give methods for parallelizing other types of sweeping algorithms.

Specifically, we address problems where the sweep can either be described as a single

sequence of data operations or a related collection of operation sequences. The techniques

do not depend on the sweep being defined by moving a vertical line across the plane,

nor any other specific geometric object for that matter. We study cases where the sweep

involves moving a point around a planar subdivision and cases where the sweep can be

viewed as involving a number of coordinated line sweeps. We motivate our approach by

giving efficient parallel algorithms for a number of computational geometry problems.

In these cases the approach of Atallah et al. is not in itself sufficient. In particular, we

derive the following results:

�9 Hidden-surface elimination. One is given a collection of opaque polygons in ~3

and asked to determine the portion of each polygon that is visible from (0, O, +~x~)

[22], [47], [50]. We show that this problem can be solved in O(logn) time using

O(n logn + I) processors) in the CREW PRAM model, where n is the number of

edges and I is the number of edge intersections in the projections of the polygons to

the xy-plane.

�9 CSG evaluation. One is given a collection of primitive objects, which are either poly-

gons (in the two-dimensional case) or polytopes (in the three-dimensional case), and a

tree T such that each leaf of T has an object associated with it and each internal node

of T is labeled with a boolean operation (such as union, intersection, exclusive-union,

or subtraction) [45], [52], [53]. The problem is to construct a boundary representation

for the object described by the root of T. We show that the two-dimensional version

of this problem can be solved in O (log n) time using O (n log n + I) processors, and

we also show how to extend this method to three-dimensional CSG evaluation.

�9 Constructing rectangle contours. One is given a collection of iso-oriented rectangles

in the plane and asked to determine the edges of the contour of their union [12],

[35], [57], [58]. We show that this problem can be solved in O(logn) time using

O (n log n + k) work (which is optimal), where k is the size of the output.

�9 Rectilinear hidden-surface elimination. One is given a collection of opaque iso-

oriented rectangles in ~3 and asked to determine the portion of each rectangle that is

visible from (0, 0, +cx~) [9], [22], [25], [28], [37], [43]. We show that this problem

can be solved in O(log 2 n) time using O((n + k) logn) work, where k is the size of

the output.

One of the main ingredients in each of our solutions is the use of a parallel data structure

of Atallah et al. [6] called the array-of-trees. We apply this data structure in a variety of

ways in order to solve each of the above problems. Interestingly, for each problem, there

is some additional difficulty to be overcome in order to apply our general framework,

which was not an issue in the original sequential algorithm. In the case of hidden-surface

elimination the difficulty is the definition of a comparison rule for polygons that is

consistent even if the overlap relation contains cycles. For CSG evaluation the difficulty

128 M.T. Goodrich, M. R. Ghouse, and J. Bright

involves solving an off-line expression evaluation problem (which is of independent

interest). Also, in the three-dimensional case, our method uses a parallel construction of

a line-stabbing data structure of Chazelle and Guibas [15], which, incidentally, improves

the sequential preprocessing time for constructing this structure. In the case of rectangle

contour construction the difficulty is to construct a version of the array-of-trees that allows

for optimally reporting all pieces of the output (this modification, which is perhaps the

most significant contribution of this paper, involves an interesting "pruning" technique

applied to the array of trees). In the rectilinear hidden-surface elimination problem the

difficulty involves describing a search procedure so that it only reports one copy of each

piece of the output, even though a single piece may be stored in the array-of-trees as

O (log n) separate subpieces.

The computational model we use for our algorithms is the CREW PRAM. Recall that

processors in this model act in a synchronous fashion and use a shared memory space,

where many processors may simultaneously access the same memory location only if

they are all reading that location. Many of our results use the paradigm that the pool

of virtual processors can grow as the computation progresses, provided the allocation

occurs globally [23], [46]. In this scheme r new processors are allowed to be allocated

in time t only if an r-element array that stores pointers to the r tasks these processors are

to begin performing in step t + 1 has already been constructed. This is essentially the

same as the traditional CREW PRAM model, except that in the traditional model only

one request is preformed, at the beginning of the computation (to allocate a number of

processors that usually depends on the input size, e.g., n or n2). Many of our results can

be viewed as showing that when it is wished to run a parallel algorithm on a machine

with a fixed number of processors, by simulating an algorithm that uses a dynamically

expandable pool of virtual processors, we are able to achieve superior speedups over

simulations using processor-static algorithms.

2. Parallel Persistence, We begin our discussion by reviewing a parallel data struc-

ture called the array-of-trees. We then present two extensions to this structure. All of

the structures we describe here can be viewed as parallel examples of the persistence

paradigm of Driscoll et al. [19]. In our framework a linked data structure D [19], an initial

assignment of values to the nodes of D, and a sequence cr of m update operations that

operate on the nodes of D, but do not add new links 3 to D, are given. The interpretation

of the sequence ~r is that operation i updates the structure resulting from performing

operations 1, 2 i - 1. The problem is to produce an auxiliary structure, A, such that

A allows a single processor to perform a "query in the past" on D, i.e., a query on the

instance of D as it appeared after some update operation i.

As a simple example of this approach, consider the parallel prefix problem [32], [33],

where a sequence of numbers (al, a2 an) is given for which one wishes to compute
k

all the prefix sums s~ = ~i=1 ai. This can be viewed as a sequence cr of n operations

of the form tri -- "s := s + ai," and the computational problem that of building a data

structure (i.e., an array) so that the value of s can be quickly determined after executing

3 In the sequential setting one is also allowed to change links [19].

Sweep Methods for Parallel Computational Geometry 129

the sequence al~rz. �9 �9 ai (assuming s is initially 0). We refer to the resulting array of

values for such a variable s as the event list for s, and we refer to the ith entry in this

array as the value s had at time i. Of course, such an array can be constructed in O (log n)

time using O (n/log n) processors in the EREW PRAM model [32], [33], so that a query

"in the past" can be answered in O(1) time.

In the above example the underlying "skeleton" structure was a single variable, s. We

show in the following subsections that, for a variety of other skeleton structures, D, if the

entire sequence tr is given in advance, then an efficient data structure can be constructed

in parallel to allow a single processor to answer queries in the past for D.

2.1. The Array-of-Trees. The array-of-trees data structure, which we define below,

was developed by Atallah et al. [6], who were the first to address this problem in a

parallel setting. They gave a solution for the case where the underlying data structure

is a complete n-node binary tree T and each operation in a is either an enable(v),

which "turns on" the leaf v and updates the nodes from v to the root to reflect this, or a

disable(v), which turns off the leaf v and updates the nodes from v to the root to reflect

this. The updating action here is allowed to include, for each node v involved in the

update, the computation of a constant number of labeling functions on the children of v.

Their method runs in O (log n) time and O (m log n) space, 4 using O (n + m) processors

in the CREW PRAM model, where m = Itr I.

DEFINITION. The array-of-trees, which we denote by B(r), is a directed acyclic graph

built on an underlying tree T, where T has a list a(v) at each node v. a (v) is the

subsequence of a consisting of all operations whose argument u occurs in the subtree

rooted at v (the operations in ~r(v) occur in the order that they appear in a). For each

operation at in a(v) there is a record (t, val, left, right), where t is the position of this

operation in a (i.e., its "time of execution"), val is a value for v, and left and right are

pointers (which are null if v is a leaf.) The values stored in the val field are the results of

the operation a~ performed "bottom-up" on the values stored in the subtree rooted at v.

For example, if one is interested in counting the number of active leaves, then, for

every leaf x, val could store "count = 0" if o~t = disable(x) and "count = 1" if

at = enable(x). Also, we include a record in B(x) for the initial assignment of x, giving

it a time-value t --- 0. Intuitively, B(x) represents the history of tr when one restricts

attention to the operations in a(x) . That is, if we let (tl,'t2 tlB(x)l) denote the list

of t-values in B(x), then each record (ti, vals, null, null) in B(x) can be thought of as

representing a (trivial) binary tree representing the portion of T related to x from time ti

to time ti+1 - 1.

For each internal node v, B(v) is defined in terms of B(u) and B(w), where u and w

are the children of v. There is a record in B(v) for each record in B(u) U B(w), and these

are sorted by t-values (i.e., a sorted merging of B(u) and B(w)), removing the duplicate

for t = 0. For a record ot = (t, vals, left, right) in B(v), the pointers left and right point

to the records at and ol r in B(u) and B(w), respectively, with the largest t-value less

than or equal to t (one of these records will have the same t-value as or). The values in

4 If all future queries need go no deeper than the root of T, then the space can be reduced to O(m) [6].

,I
The Array-ot-Trees, B

130 M.T. Goodrich, M. R. Ghouse, and J. Bright

Fig. 1. An array-of-trees.

the vals list for ~ is defined by a combination rule (specified by the application) applied

to oft and Otr. For example, if one is interested in counting active leaves, then there could

be a count field in vals that is computed by taking the sum of count fields in ~ and ~ .

By a simple inductive argument, if we let (tb t2 tlB(v)l) denote the list oft-values in

B(v), then each record in B(v) represents the root of the subtree of T rooted at v from

time ti to time ti+ 1 - - 1. (See Figure 1.)

Implicit in the definition of a combining rule is that, for each node v, the rule must

specify a combined value for all values that might be stored in at and Otr. If each combining

rule is defined over all values in the underlying universe, then this requirement presents

no problems. However, if it is wished to apply this theorem to solve the hidden-surface

elimination problem (as we do), where the natural elements at the leaves of T are

the names of polygons in ~t 3 and the natural function is "highest polygon," then care

must be taken to satisfy this implicit requirement. The main difficulties are that the

overlap relation may contain many cycles [41] and some pairs of polygons do not overlap

(hence, are incomparable by the "highest polygon" relation). We address these concerns

in Section 3.1, where we show how to apply the array-of-trees to the hidden-surface

elimination problem.

As a simple example of a use of the array-of-trees, consider the problem of counting

the number of intersections between a set of vertical line segments and a set of horizontal

line segments. In this case the skeleton tree T is a complete binary tree built on top of the

y-coordinates of the horizontal segments, and the x-coordinates of the segment endpoints

define the actions, left endpoints corresponding to enable operations and right endpoints

corresponding to disable operations. The only information that needs to be stored in vals

list for a node v is the count of the number of active leaf descendants of v. Given this

data structure, the problem is solved by assigning a processor to each vertical segment

and using that processor to search in the "copy" of T for the x-coordinate of s. The

Sweep Methods for Parallel Computational Geometry 131

search for s is a simple one-dimensional range-query based on the y-coordinates of the

endpoints of s.

More complicated types of combining rules can also be used. For example, Goodrich

[23] employs a compressed version of the array-of-trees where the combining rule affects

both the values stored in the vals list and the left and right pointers. In particular, if two

records or/and otr are combined to define a new record ~ (where ot is for a node v and or1

and otr are for v's left and right children, respectively), then, in addition to computing a

count label of the number of active leaf descendants for v, the following test is added:

If at. count = 0, then ot. left = otr. left and ot. right = otr. right, else, if otr. count =

0, then ot. left =ott. left and ot. right =otl. right. Also, if or. count = 0, then or. left =

or. right = null.

Note that by adding this simple rule, each record ot in a B(v) list represents the root of

a tree with or. count leaves, i.e., a compressed binary tree built upon the active leaves

that are descendants of v in T. Goodrich uses this approach to derive an optimal parallel

algorithm for enumerating all intersections between a set of vertical segments and a set

of horizontal segments.

2.2. Extending the Array-of-Trees. In this paper we make applications of a number

of further extensions of the array-of-trees data structure. Here we present an overview

of these extensions, which are described in detail, together with their applications, in

Section 3. The first extension we add is that we allow each internal node v in the skeleton

tree, T, to store data elements as well as the values of combining rules applied to v's

children. Thus, we allow the operations in ~r to enable and disable internal nodes of

T as well as leaves. Using a modified version of the method of Atallah et al. [6] this

version of the array-of-trees can be constructed with the same performance as before,

i.e., O (log n) time and O (n log n) space using O (n) processors. In particular, since their

method is based upon merging lists in a binary tree, we can easily transform our extension

to their framework by viewing the merge at each internal node as a three-way merge and

transforming this back to the binary tree framework of Atallah et al. For each node v of

T, construct the subsequence ~ (v) of cr consisting of those operations affecting v (as

we did previously just for the leaves of T), and construct a simple array-of-leaves list

B'(v) for cr (v). Then the merge defined for v is that of first merging B(u) and B(w), as

before, where u and w are the children of v, followed by the merge of this list and B'(v),

to form B(v). Since this modification at most doubles the depth of the tree T, and does

not increase its size by more than a constant factor, the running time of this method is

still O (log n) and the number of processors needed is still O (n).

Allowing for internal nodes of T to be enabled and disabled is not the only exten-

sion we make, however. We also allow a "pruned" version of the compressed array-

of-trees [23]. In particular, we assume the existence of a 0/1-valued prune function,

~r (or, v), and modify Goodrich's combining rule so that we use rc(Otl, u) �9 ul .count and

Jr(otr, w) * Otr.COUnt instead of otl.count and otr.count, respectively. Intuitively, if, say,

Jr(ott, u) = 0, then we are "pruning" away the subtree rooted at o#, and not passing it

up to be a part of the subtree rooted at ot. Note, however, that we do not destroy the

tree rooted at at; it is still accessible from B(u). (See Figure 2.) Thus, in this case,

each record a in B(v) corresponds to the root of a binary tree containing the number of

132

�9 ~" cut

Fig. 2. A "pruned" binary tree. Broken lines indicate the skeletar tree and solid lines indicate the pruned
(compressed) tree.

M. T. Goodrich, M. R. Ghouse, and J. Bright

active descendent nodes of v in T that "survived" the pruning function at least as far up

T a s v .

The final extension we make to the array-of-trees is to develop the skeleton data

structure upon which it is defined, so as to be something other than a complete binary

tree. In particular, we allow the skeleton structure to be an order-k pseudotree, for fixed

k. A pseudotree is a directed acyclic graph G = (V, E) such that the nodes in V have

been partitioned into V1, V2 Vm with the V/'s forming the nodes of a binary tree T.

For each edge (v, w) ~ E, either v, w ~ Vi for some i or (Vi, Vj) is an edge in T and

v ~ Vi and w 6 Vj. A pseudotree is of order k if [Vii < k for each i 6 {1, 2 m}.

Thus, if G is a tree, it is an order-1 pseudotree. For our applications, we assume that

the underlying tree, T, is a binary tree with height O(logn), and that G is an order-k

pseudotree with k being O (1). Our approach to constructing B (r), where r is the "root"

of G, is as above, except that now the merge at each node is possibly a (2k + 1)-way

merge and the underlying graph is now a pseudotree, not a tree. Still, using the cascade

merging scheme of Goodrich and Kosaraju [26], which is based on linked lists instead of

arrays, this "array-of-pseudotrees" data structure can be easily constructed in O (log n)

time and O (n log n) space using O (n) processors. Note: the method of Atallah et al. [6]

cannot be applied here, because their method is based on a cascade merging with arrays

that would introduce a potentially large number of duplicate entries.

2.3. Off-Line Expression Evaluation. As an application of our extensions to the array-

of-trees data structure, consider the following problem. Suppose one is given an n-node

binary tree T such that each leaf represents a value taken from some universe L/and

each internal node v is labeled with a binary function f~: U • ~ b/taken from a

family of functions 5 c. The height of T is allowed to be as large as O(n). The expression

evaluation problem is to determine the value represented by the root of T based on a

bottom-up evaluation. To make the problem tractable in a parallel setting, we assume

the functions in F and the universe b / form a eontractable algebraic structure, that is,

an algebraic structure that satisfies the composition, closure, and combination properties

of Miller and Teng [39]. Intuitively, an algebraic structure (/J, ~') is contractable if the

parallel tree-contraction schemes of Brent [11] or Miller and Reif [38] can be applied

Sweep Methods for Parallel Computational Geometry

+

x , = l -!-

10

X2=5 X3=2

Fig. 3. The off-line expression-evaluation problem.

133

to evaluate T in O(logn) time using O(n) processors (which can in fact be reduced

to O (n/log n) [1], [30]). For example, any semiring is contractable [11], [38], as is the

algebraic structure defined by the boolean operations used in CSG evaluation (on the

universe {0, 1}) [24].

Suppose that, in addition to the expression tree T, a sequence ~r of m update operations

defined on the leaves of T are given. That is, each tth operation, ~ , in cr is an assignment

of the form xj := u, where xj is a leaf of T and u is value taken from L/. The off-

line expression-evaluation problem is to determine for each t ~ {1, 2 m} the value

that would be defined by the root of T after sequentially performing the assignments

or1, o'2 ~ , given the initial values assigned to the leaves of T. (See Figure 3.)

Using the methods of Abrahamson et al. [1] or Kosaraju and Delcher [30] T can be

converted into an equivalent circuit C, where C has O (log n) depth and is an order-4

pseudotree. The time needed for this conversion is O (log n) using O (n/log n) proces-

sors [1], [30] (see also [11] and [24]). Given this circuit, and the initial values associated

with its "leaves," we then apply the array-of-pseudotrees construction described above.

This requires an additional O (log n) time using O (n/log n + m) processors, and gives

us a solution to the off-line expression evaluation problem (by simply reading off the

values stored at the "root" of C for each time instance in ~r). Moreover, since we are

only interested in the value of the "root" of C, we need not store all portions of the

array-of-pseudotrees, and can implement the construction using only O (n + m) space

[26]. Thus, we have the following lemma:

LEMMA 2.1. Given an n-node binary expression tree T whose operations are taken

from a contractable algebraic structure, and an m-operation sequence cr of leaf-update

operations, the value associated with the root of T can be determined after performing

each operation in ~r (as in a sequential evaluation) in 0 (log n) time using 0 (n/ log n +m)

processors.

In the next two sections we address a number of applications of our extensions to the

array-of-trees.

134 M.T. Goodrich, M. R. Ghouse, and J. Bright

3. Sweeping Arrangements. Given a collection C of line segments ~2, the arrange-

ment of C is defined to be the embedded planar graph G whose vertices correspond to

the intersection points determined by pairs of segments in C, and such that (v, w) is an

edge if there is a segment s in C containing v and w (and there is no other vertex in

G between v and w on s). It is also common to add an edge to G from each segment

endpoint v to the first vertex hit by a vertical ray emanating upward (resp. downward)

from v. Such a graph is a special case of a larger class of graphs, planar subdivisions,

defined by a subdivision of the plane into a collection of simple polygons (see [42] and

[20]). There are a number of sequential algorithms that follow an approach of construct-

ing an arrangement [20] and traversing that arrangement to solve the problem at hand.

We address this approach from a parallel perspective.

One of the main subproblems that we must solve in each application is the construc-

tion of a spanning tree in a connected planar subdivision, which the following lemma

addresses:

LEMMA 3.1. Given a connected planar subdivision R, a spanning tree for R can be

constructed in 0 (log n) time using 0 (n/log n) processors in the CREW PRAM model.

PROOF. The method is quite simple: for each face f in R (other than the external face),

remove the edge preceding the leftmost vertex of f in a counterclockwise traversal of f

(see Figure 4). This is easily accomplished in O (log n) time using O (n/log n) processors

via list ranking [3], [18] and parallel prefix computations [32], [33]. We have yet to show

that this produces a spanning tree for R, of course. Let T denote the subgraph resulting

from this computation.

Fig. 4. The spanning tree for a connected planar subdivision. Light lines indicate the subdivision, heavy lines
indicate the spanning tree.

Sweep Methods for Parallel Computational Geometry 135

CLAIM 1. T is acyclic.

PROOF OF THE CLAIM. Suppose, for the sake of contradiction, that there is a cycle

C = (v0, Vl vk, v0) in T. Without loss of generality, C is a simple cycle. Let vi be

the leftmost vertex in C. Since C is a simple cycle in a planar subdivision, vi must also

be the leftmost vertex on a face of R other than the external face. However, this implies

that (Ui_I, Pi) is not an edge in T; hence, C cannot be a cycle. Thus, T is acyclic. []

CLAIM 2. T is connected.

PROOF OF THE CLAIM. Suppose, for the sake of contradiction, that T is not connected.

Let C1 and C2 be two connected components of T such that there is a vertex v E C1

and a vertex w 6 C2 with v and w being adjacent in R. Note that C1 and (72 must exist,

since R is connected. Since (v, w) is not an edge of T, it must be an edge of a face f of

T other than the external face of T. Thus, there must be another edge (v', w t) on f with

v' ~ C1 and w' ~ (72. Since (v', w') is not an edge of T, this in turn implies that there is

a face f ' ~ f containing (v', w I) such that f ' is not the external face. We can continue

this argument, defining a sequence of faces f l , f~_ that are adjacent in the planar dual

of R. Since R is finite, these faces must form a cycle in the planar dual of R. However,

we only remove an edge if it precedes the leftmost vertex on a face. Thus, the leftmost

vertices on each of these faces must all have the same x-coordinate (for, otherwise, we

have removed an edge preceding a vertex that is not leftmost in some face in this cycle).

Moreover, there can be no edge on any face j~ that is incident to a vertex with smaller

x-coordinate than this. However, this contradicts the observation that each j~ is not the

external face. Therefore, T must be connected. []

Since T is by definition a spanning subgraph of R, these two claims immediately imply

that T is a spanning tree for R. []

This lemma can be easily extended to construct a spanning forest of a disconnected

subdivision, We leave the details to the interested reader. Having presented this lemma,

we now turn to some applications of our parallel plane-sweeping approach.

3.1. Hidden-Surface Elimination. The first application we address is the hidden-surface

elimination problem. Suppose a collection of polygonal faces in ~t 3 that do not intersect

(except possibly at boundaries) is given. The problem is to determine the portions of

each polygon that are visible from (0, 0, +cx~) assuming each polygonal face is opaque.

(See Figure 5.) For simplicity of expression we assume that no two polygon edges (resp.

vertices) project to the same edge (resp. vertex) in the projection plane (the xy-plane).

Our method can be easily modified for the more general case by using parallel prefix

computations where appropriate.

Our method for solving this problem follows the general approach of Goodrich [22]

and Schmitt [47]. This approach is based on the construction of the arrangement of

polygons determined by projecting the polygons in S to the xy-plane and then traversing

this arrangement to solve the hidden-surface elimination problem. This arrangement is

136 M.T. Goodrich, M. R. Ghouse, and J. Bright

Fig. 5. The hidden-surface elimination problem.

the connected graph whose nodes are the polygon vertices and the intersection points

between pairs of (projected) polygonal edges. In addition, for each edge e in the projection

plane, we store the name of the polygon P that has an edge projecting to e, and to which

side of e the interior of P projects. We say such an arrangement is polygon-connected

provided two polygons P and Q intersect if and only if the vertices of P and Q are in the

same connected component of the arrangement. Of course, this will always be true if the

boundaries of P and Q intersect, but may not be the case if, say, Q is properly contained

in the interior of P. We can easily force a polygon arrangement to be polygon-connected,

however, by drawing an edge from each vertex v to the first point(s) in the arrangement

that are hit by vertical rays emanating upward and downward (in the y-direction).from

v. Of course, some vertices will have edges to shadows "at infinity," but this presents no

difficulties. Our method, then, consists of the following six steps:

Step 1. In this step we construct the polygon arrangement R of S projected to the xy-

plane. Using the parallel segment-intersection algorithm of Goodrich [23], along with

the shadow-finding algorithm of Atallah et al. [4], this arrangement can be constructed

in O (log n) time using O (n log n + I) processors in the CREW PRAM model.

Step 2. In this step we construct a spanning forest F of R using the method of

Lemma 3.1, which implies that this step can be implemented in O(logn) time using

0 ((n + I)/log n) processors.

Step 3. In this step we prepare for an application (in Step 4) of a variation on the

Euler-tour technique of Tarjan and Vishkin [51] to operation sequences, by constructing

an Euler tour of each tree of F. For each connected component of F we make the first

edge in the tour of that component an edge leaving the (unique) vertex with the smallest

x-coordinate. In addition, with each edge ei in a tour we associate a point pi on ei in

the xy-plane (we use these points in Step 4). pi can be anywhere on the projection of

ei onto the xy-plane. Let U denote the union of these tours. We can easily perform this

step in O (log n) time using O ((n + I)/log n) processors.

Step 4. In this step, from U, we construct a sequence of operations cr = (a0, trl a,n)

that operate on a binary tree T such that each leaf of T is associated with a polygon

P. For each edge ei in U we associate an operation ai, where cri is enable(P) (resp.

Sweep Methods for Parallel Computational Geometry 137

disable(P)) if in traversing the projection ofe we would enter (resp. leave) the projection

of the interior of P. In addition to enabling the polygon P, the enable(P) operation

assigns the name of a point p on ei to a label rep in the vats list for P (this is the

representative for P for as long as P is active). We also maintain a max label for each

node v in T (stored in the vals list for a record in B(v)), which stores the polygon-

representative pair (P, p), where P is the "highest" polygon when comparisons are

based on the following rule ~ : Given the query "(P, p) > (Q, q)?", return "yes" if and

only if the projection of point p onto the plane containing face P is above the projection

of p onto the plane containing face Q, where P is the more recently inserted polygon

(otherwise, we would use q in this comparison). This step can easily be implemented by

performing a list-ranking procedure within the individual tours in U. Using the methods

of Cole and Vishkin [18] or Anderson and Miller [3], this requires O (log n) time using

O ((n + 1) log n) processors.

Comment. A vertex with the smallest x-coordinate in its component is not contained

inside the interior of any polygon projection in the xy-plane. Thus, for each (ri, the set

of active polygons at "time" i consists of all the polygons that contain the projection of

edge ei in the interior of their projection onto the xy-plane, since we start with 0 for each

such tour.

Step 5. In this step we perform an array-of-trees construction on ~r using the labels

listed above (with comparison rule ~) . This step requires O (log n) time and O (n + I)

space using O(n + I) processors. We show below that even if the overlap relationship

contains cycles, the computation of the max labels still proceeds correctly.

Step 6. For each edge e i in F, with associated operation ai, the max label associated

with the record for time i stored at the root of T stores the name of the polygon visible

along ei (i.e., the "highest" polygon). I f el is on or above this polygon, then ei is visible;

otherwise, ei is invisible. In this step we remove from R all the edges that are invisible,

and indicate for each visible edge ei the polygons of S that are visible on each side of ei.

Given the information computed in previous steps, this step can easily be implemented

in O(log n) time using O((n + l) / logn)processors .

End of Algorithm.

The correcmess of the above algorithm crucially depends on 7~ being a consistent

relation even in the face of possible cycles and gaps in the overlap relationship. That 7~

is symmetric follows immediately from its definition. The next lemma establishes that

7~ is also transitive.

LEMMA 3.2. For any i ~ {0, 1 m}, i f three polygons, P, Q, and R, are act&e at

time i, then (P , p) > (Q , q) and (Q , q) > (R, r) imply that (P , p) > (R, r), where p,

q, and r are the respective representatives for P, Q, and R at time i.

PROOF. Suppose not. Then P is above Q at p or q, Q is above R at q or r, but P is

below R at p or r. Since the polygons in S do not intersect (although their intersections

in ~2 do in this case), this implies that the path in the Euler tour that contains p, q, and r

must leave and re-enter P, Q, or R along an edge not containing p, q, or r, respectively.

However, this implies that one of (P, p), (Q, q), and (R, r) is not an active polygon-

138 M.T. Goodrich, M. R. Ghouse, and J. Bright

representative pair at time i, which is a contradiction. For example, suppose the relative

order of polygon-point pairs in the tour is . . . (P, p) . - - (Q, q) . . . (R, r) That is, P

is above Q at q, Q is above R at r, while, by assumption, P is below R at r. Then P is

above Q at q but P is below Q at r. Thus, in going from q to r we must have left and

re-entered P or Q; hence, (P, p) or (Q, q) cannotbe active at time i (contradiction).

The arguments for the other cases are similar, and are left to the interested reader. []

Thus, the comparison procedure used in Step 5 is a consistent relation; hence, the

max label associated with each record in the B list for the root in T stores the name

of the polygon visible along the edge ei, where i is the time value associated with that

record. Thus, we have the following theorem:

THEOREM 3.3. Given a collection S of nonintersecting polygons in ~R 3, the hidden-

surface elimination problem for S can be solved in 0 (log n) time using 0 ((n + I) log n)

processors in the CREW PRAM model, where n is the total number of edges and I is the

number of edge intersections in the projection plane.

3.2. Arrangement Queries. The arrangement sweeping technique can also be used

to build various geometric data structures in parallel. The main idea is to build the

arrangement, an operation sequence for that arrangement, use the array-of-trees data

structure to evaluate the sequence, and then perform queries for this sequence to solve

the problem.

We illustrate this with an example. Suppose one is given a collection of line segments

in the plane and it is wished to construct a data structure that allows the segments

that are intersected by a query line I to be quickly counted or reported, or to return a

line that intersects the most number of line segments. Using a well-known point-line

duality [21], [40], the set of all lines intersecting a line segment dualizes to the set of

all points lying in a certain double-wedge (a region defined by all points between two

intersecting lines). In particular, using a duality that preserves "above" relations (so a

point p above a line I dualizes to a line 79p above the point ~l), all the lines intersecting

a line segment s dualize to all the points contained between the duals of s 's endpoints.

Thus, answering segment-intersection queries is equivalent to the problem where one is

given a collection of double-wedges and asked to build a data structure that counts or

reports all double-wedges containing a query point I.

We can solve this problem as follows. First, we can construct the arrangement formed

by all the double-wedges using the line-arrangement algorithm of Goodrich [24], com-

pute a spanning tree of this arrangement (as above), and build an Euler tour of this

tree. This can all be done in O(logn) time using O(n2/logn) processors. We can then

construct a skeleton binary tree T, whose leaves correspond to double-wedges, and an

operation sequence cr for the Euler tour, where the operations are enable(s), which corre-

sponds to entering the double-wedge for s, and disable(s), which corresponds to leaving

the double-wedge for s. Building the compressed array-of-trees data structure for this T

and a allows us to label each face f with the number of double-wedges containing it, or,

alternately, with a pointer to the root of the array-of-trees corresponding to the position

in the tour where we entered f . If we are only interested in counting queries, then we

can evaluate ~r by a simple parallel prefix computation, as described in Section 2, which

Sweep Methods for Parallel Computational Geometry 139

requires O (log n) time using O (n2/log n) processors, and allows counting queries to be

answered in O (1) time given the position of f ' s visitation in the tour. This immediately

implies that we can find a maximum stabbing line in O (log n) time using O (nZl log n)

processors. If we wish to answer reporting queries, then we can construct an array-

of-trees data structure for a , which requires O (log n) time using O (n 2) processors. A

reporting query can then be answered in O(logn) time, where we first determine the

number, k, of answers, with a single processor, and then allocate [k/log n] processors

to the task of enumeration.

In the next subsection we give an application of arrangement sweeping via off-line

expression evaluation.

3.3. CSG Boundary Evaluation. Suppose a collection of"primitive" polygonal shapes

and an expression tree T are given such that each leaf of T has a primitive object

associated with it and each internal node of T is labeled with a boolean operation, such

as union, intersection, exclusive-union, or subtraction (a CSG representation [45]). Note

that while T is defined in terms of primitive shapes, the definition is such that T defines

the boundary of the overall object when considered as a boolean expression. The problem

we address in this subsection is that of constructing a boundary representation for the

object defined by the root of T. (See Figure 6.)

We first address the two-dimensional version of the problem, where the primitive

objects are simple polygons. Using the approach of Goodrich [23], we can solve this

problem in parallel as follows. We construct the arrangement of the polygons that define

the primitives (including the vertical shadows of each vertex), find a spanning forest for

this arrangement, and build an Euler tour of each tree in this forest (similar to the first

three steps in our hidden-surface elimination algorithm). This takes O (log n) time using

O (n log n + I) processors, where I is the number of pairwise edge intersections.

We then build an instance of the off-line expression-evaluation problem, which will

allow us to label each vertex, edge, and face of the arrangement as being either "inside" or

"outside" of the region defined by T. In particular, we construct an operation sequence

for each Euler tour just constructed. We begin each such a with a vertex in the

tour with a vertical shadow extending to - oo . Each operation in a is an assignment

of the form xi = b, where x/ is some leaf in T and b is a boolean constant with the

m

Fig. 6. The CSG boundary-evaluation problem.

m

m

140 M.T. Goodrich, M. R. Ghouse, and J. Bright

following interpretation: a "0" represents the proposition "outside of primitive i" and a

"1" represents "inside primitive i." We assume that each leaf of T begins with a value

of "0," since we begin a with a vertex with a vertical shadow extending to - e ~ . Note

that while T is defined in terms of regions, its definition is such that, given any point p

in the plane, we can evaluate T as a boolean expression, where each leaf value contains

the appropriate value relative to p, and this evaluation will tell us whether or not p is

inside ("1") or outside ("0") the object described by T. Thus, a solution to the off-line

expression-evaluation problem for a will allow us to label each vertex, edge, and face

of the arrangement as either being inside or outside the object defined by T. Therefore,

by applying the off-line expression-evaluation theorem of the previous section, we can

evaluate T for each cell of the polygon arrangement in O(log n) time using O(n + I)

processors. Constructing a boundary representation of the defined region is then a simple

matter of removing edges and vertices that are not on the boundary (which can now be

determined by a simple local test). This gives us the following theorem:

THEOREM 3.4. Two-dimensional CSG evaluation can be performed in 0 (log n) time

using 0 (n log n + I) processors, where n is the total number of primitive edges and I

is the number of edge intersections in the polygon arrangement (which is 0 (n 2) in the

worst case).

4. Sweeping Through a Set of Rectangles. In this section we address the situation

when it is desired to perform a number of coordinated sweeps in parallel, which together

define a sweep through a set of rectangles. We motivate our approach with two important

applications: computing the contour of a collection of rectangles in the plane [35], [58],

[57], [12], and performing hidden-surface elimination on a collection of rectangles in

~3 [28], [25], [9], [37], [43].

In keeping with our notion of parallel persistence, one of the paradigms we use in

our algorithms is that of an event list. Recall that an event list E is an array representing

the history of some variable e. Each record in an event list E corresponds to a change

in the value of e, and stores both the new value of e and the "time" at which the change

occurred (where, in the context of this section, we let the time be a real number that

corresponds to the position in the operation sequence of the operation that caused the

change to e). Both of our methods also depend on the use of a number of additional

parallel techniques, which we discuss in the following two subsections.

4.1. Some Algorithmic Tools. The first algorithmic tool we review is the fractional

cascading of Chazelle and Guibas [15], and how it can be implemented in parallel [4].

The general framework is one in which we are given a directed bounded-degree graph

G = (V, E), where each node v in G contains a sorted list C(v). The problem is to

construct a data structure so that given a walk (Vl, v2 Urn) and an arbitrary element

x, one processor can locate x in all of the C(vi) 's quickly. An efficient solution involves

constructing an "auxiliary" list A(v) for each C(v) list, such that

(i) C(v) c_ A(v),

(ii) ~ v IA(v)I is O (~ c v IC(v)[), and

Sweep Methods for Parallel Computational Geometry 141

(iii) given the position of x in A(v) one can locate x in C(v) and in A(w), for each

neighbor w of v, in O(1) time.

Atallah et al. [4] derive the following lemma for this problem:

LEMMA 4.l. Given a directed bounded-degree graph G = (V, E), a fractional cas-

cading data structure for G, including all the auxiliary lists A(v) for each v ~ V, can

be built in 0 (log N) time using 0 (N) space with 0 (N/log N) processors on a CREW

PRAM, where N is IVl + IEI + ~v~v IC(v)l.

As observed by previous researchers [15], [4], this technique is quite useful for re-

ducing the time complexity for performing a sequence of similar searches, provided the

sequence forms a single path in the graph G. In some instances, however, it is conve-

nient to allow the collection of similar searches to grow as a tree, rather than a single

path. Specifically, one can imagine such a collection of searches being implemented by

a group of processors, where, in any step t, one may wish to allow for various proces-

sors to each "spawn" another processor, and have the new processor begin executing

in step t + 1 [44]. The next lemma shows that the only real cost of allowing for this

extension is in the parallel time. In terms of work, it is essentially free, in that it only

requires an increase of at most a constant factor in the work needed to simulate it for

our problems.

LEMMA 4.2 [23]. Given an algorithm A designed for a PRAM model that uses a spawn-

ing processor allocation scheme and requires O (w) work in t time, A can be simulated

on an analogous PRAM with global allocation with O(w) work and time O(t log p),

where p is the final number of processors.

For an example of an application that uses both of the above lemmas, consider the

following problem. Suppose an n-node simple polygon P is given, and it is Wished to

build a data structure for P that allows the determination of all the intersections of a

query line L with P efficiently in parallel. One possible solution is to build a parallel

version of the data structure of Chazelle and Guibas [15], for performing such queries

sequentially in O (k log n) time. The method is as follows:

1. Build a complete binary tree B on the edges of P, in the order that they appear in a

clockwise traversal. So each node v in B corresponds to a chain, Pv, of P, consisting

of all edges stored in descendants of v.

2. For each v in B construct the convex hull, Hv, of Pv. This can be done in O(logn)

time using O(n/log n)processors [55], [56].

3. Construct a fractional cascading data structure on the upper and lower chains of

the Ho's (which form lists at each node in B) using edge slopes as keys for the

fractional cascading. The underlying graph is the tree B. This can also be done

in O(logn) time using O(n/logn) processors, by Lemma 4.1, and completes the

construction.

142 M.T. Goodrich, M. R. Ghouse, and J. Bright

Thus, the entire construction can be implemented in O(log n) time using O(n/ log n)

processors. 5 Given the position of the slope of L in the upper and lower hulls of By (based

on slope), it can be determined if L intersects Bo (and hence Po) in constant time [15]

(by a few simple calculations). Therefore, given a line L, by a top-down search (using

the fractional cascading auxiliary lists) all the places L intersects P can be determined in

O (log n) time using O (1 + k) processors, assuming a local processor allocation scheme,

where k is the number of answers. By applying Lemma 4.2, this immediately implies

that such a query can be performed in O (log 2 n) time using O (1 + k/ log n) processors

in the CREW PRAM model.

Returning to the problem of sweeping through a set of rectangles, in the follow-

ing subsection we review an important data structure, which our algorithms use as ~the

skeleton structure for an array-of-trees construction.

4.2. The Segment Tree. Let S = {S1 , S 2 Sn} be a set of vertical line segments

in the plane, and let Y = (Yl, Yz Yzn) be the (nondecreasing) sorted list of the

y-coordinates of the endpoints of the segments in S. To simplify the exposition we

assume that no two endpoints in S have the same x-coordinate, i.e., xi < xi+l. (It is

straightforward to modify our algorithm for the general case.) Let T be the complete

binary tree whose 2n + 1 leaves, in left to right order, correspond to the intervals (-~x~, Yl],

[Yl, Y2], [y2, Y3] [Ym-1, Ym], [Ym, +C~), respectively. Associated with each internal

node v ~ T is a closed interval Iv = [Yi, yj] which is the union of the intervals associated

with the descendants of v. (Of course, the leftmost and rightmost nodes at each level

will have intervals Io = (-cx~, Yi] and Iv = [yj, +e~).) Let rio denote the horizontal

slab Io x (- ~ c , +ec) . We say a segment si covers a node v ~ T if it spans rio but not

I'Iparent(o) . Clearly, no segment covers more than two nodes of any level of T; hence,

every segment covers at most O (log m) nodes of T. For each node v E T we define two

sets, Cover(v), End(v):

�9 Cover(v) is the set of segments in S that cover v.

�9 End(v) is the set of all segments that do not span l-Iv but have an endpoint in rio.

The tree T together with the above lists constructed for each node in T constitutes

the segment tree for S [8]. (See Figure 7.)

4.3. Computing the Contour. Given a set of isothetic rectangles, we consider the prob-

lem of computing and reporting the contour of the union of the rectangles. (See Figure 8.)

Sequentially, this problem was first studied by Lipski and Preparata [35], and time opti-

mality was achieved by Wood [58]. Time and space optimality was subsequently achieved

by Widmayer and Wood [57]. In the parallel domain Chandran and Mount [12] produced

a CREW PRAM algorithm that runs with 0 (n) processors in 0 (kmax) time, where kmax

is the largest number of output subsegments associated with any one line segment (which

can be O(n)).

We achieve 0 (log n) time with 0 (n + k~ log n) processors (which is optimal), where

k is the size of the output. Our method reports the edges of the contour. If the contour

5 This method actually improves the sequential time complexity of constructing the Chazelle-Guibas data
structure [15], as their method runs in O (n log n) time.

Sweep Methods for Parallel Computational Geometry 143

1

. 4 5 ~ ~ 1 5

.

. 14

Fig. 7. A segment tree. R is in Cover(2), Cover(lO), Cover(11), End(l), End(7), End(9), End(12), End(13),

End(14), and End(15).

cycles are desired, then the work bound of our method becomes O (n log n + b (k)), where

b(m) is the work for performing stable bucket sorting of m elements. 6 Our procedure,

which we describe below, follows the general framework of Wood [58]. We determine

all the vertical line segments of the contour, and then repeat our procedure, exchanging

the roles of the x- and y-axes, to obtain the horizontal segments.

Step 1. In this step we build the segment tree on the set of vertical segments obtained

from the rectangle vertical boundaries, complete with all the Cover(v) and End(v) lists

constructed for each node, such that each leaf contains one such segment, and the seg-

ments are assigned to the leaves in order sorted by the x-coordinates (so the leftmost

Fig. 8. The contour of a set of isothetic rectangles.

6 Matias and Vishkin [36] give a randomized method running in O(logm loglogm) expected time with

O (m log log m) work on an arbitrary-CRCW PRAM.

144 M.T. Goodrich, M. R. Ghouse, and J. Bright

.

' I 1 t

i

X i X r . 1

Fig. 9. The values of hi, top, and bottom on an interval (xl, Xi+l).

leaf has the lowest x-value and the rightmost has the highest.) We view each Cover(v)

as an event list where x-coordinates act as the "time" field. Using the method of Atallah,

et al. [4], we can implement this step in O (log n) time with O (n) processors.

Step 2. For each node v, we construct an event list, C(v), such that, for each entry

Ol i = (X i , Ci) in C(v), ci is the number of segments that cover v during the interval

[xi, Xi+l). The x-values (X;, xi+l) in this case are the x-coordinates of the segments in

Cover(v). Given the Cover(v) lists, this construction is essentially just a collection of

parallel prefix computations. We then construct the fractional cascading auxiliary lists

for these C(v) lists, using the method of Atallah et al. [4], which runs in O (log n) time

with O (n) processors (since the total size is O (n log n)).

Step 3. For each node v, we construct an event list, H(v), such that, for each entry/3i =

(Xi, hi), hi is the number of (maximal) rectangular regions in FI ~ that extend horizontally

from xi to Xi+l and do not intersect the interior of any rectangle in Cover(v) t_J End(v).

Intuitively, hi is the number of "holes" from x; to Xi+l when we restrict our attention to

the rectangles in Cover(v) U End(v). (See Figure 9.) In the terminology of Section 2,

the x-coordinates that correspond to the x-coordinates of the vertical boundaries of the

rectangles in Cover(v) U End(v) determine the "times" in H(v). We also define a flag

top (resp. bottom), for each entry in an H list, such that H[i].top (resp. H[i].bottom)

is true if and only if the topmost (resp. bottommost) maximal rectangle from xi to xi+l

does not extend into the slab adjacent to FIo.

Implementation. We can construct the H(v) lists at the leaves immediately from the

entries in C(v). Specifically, if (xi, ci) is the ith value in C(v), then (xi, hi) is the ith

value in H(v), where hi = 1 ifci = 0, and hi = 0 otherwise. We construct the other I-I(v)

lists by a bottom-up procedure. Assume, for some node v, we have already constructed

the respective H lists for v 's children, u and w (with rlu being above l-Iw), and we have

a list of sorted x-coordinates, each of which is determined by the vertical boundary of

a rectangle in Cover(v) U End(v). Also assume (by the fractional cascading auxiliary

pointers) that, for each element s in this list, we have a pointer to the elements, ~,/3,

and y, in C(v), H(u), and H(w), respectively, that have the largest x-coordinate less

than or equal to s 's x-coordinate. We define the (xi, hi) pair in H(v) for s so that xi

is the x-coordinate of s, and hi is defined as follows: Let o~ = (x, c). If c > 1, then

Sweep Methods for Parallel Computational Geometry 145

hi = 0. I f c = 0, then we set hi equal to the sum ofhu and hw, where/3 = (xu, hu) and

y ----- (xw, hw). This is not quite right, of course, since we have not taken the influence of

the top and bottom flags into account. We can easily update h; to reflect their influence,

however, by decrementing hi by one if neither ~.bottom nor),.top is true. This can

easily be implemented (for all v in parallel) in O (log n) time with O (n) processors.

Step 4. In this step we construct the pruned array-of-trees. Given an entry oti = (xi, hi)
in H(u), the pruning function zr (oti, u), which determines whether a pointer to oti occurs

in B(v), where v is the parent of u, is equal to one if and only if both of the following

hold:

(i) The record in C(v) with the largest x-value less than or equal to xi has a c-value

equal to zero.

(ii) hi > O.

We calculate this, and, in so doing, construct the pruned array-of-trees, level-by-level,

starting at the leaves, as in Section 2.2. This step runs in O(logn) time using O(n)

processors.

Comment. The intuition behind this definition ofzr is that it "jumps over" linear chains

of pointers within the tree, and so makes possible an optimal search of the tree in Step

5 below. These linear chains are caused by the pruning process, which may prune one

child of a node and not the other.

Step 5. In this step we determine, for each vertical line segment L in S, all the subseg-

ments of L that are part of the contour. Starting*at the root, we search down the tree for

the subsegments of L, checking the H list at each node, searching with the x-coordinate

of L for uncovered intervals through which L might be seen. If the active h-value in the

H list is zero, then we stop searching down this branch as no output can result. Once

each node, v, covered by L is located, for each such v, we determine the total number

ko of uncovered subsegments of L in the subtree rooted at v, by examining the H lists

at v's children. Then we request [ko/log n] new processors, which start at the children

of v, and search the compressed trees rooted there (in the pruned array-of-trees) for all

pieces of the output that are on L in fro. This completes the algorithm, and gives us the

following theorem.

THEOREM 4.3. Given a collection of n isothetic rectangles in the plane, the edges of

their contour can be determined in O(logn) time using O(n + k/logn) processors in

the CREW PRAM model, which is optimal.

In the next subsection we give another application of our coordinated parallel sweep-

ing approach.

4.4. Hidden-Surface Removal for Rectangles. Given a set of n opaque iso-oriented

rectangles parallel to the xy-plane, we wish to determine all of the portions of each

rectangle that are visible from viewing at (0, 0, +o0). Sequentially, this problem was

first studied by Gtiting and Ottmann [28], with more efficient algorithms being recently

reported by Goodrich et al. [25], Bern [9], Mehlhorn et al. [37], and Preparata et al. [43].

The best sequential bound (optimizing for the term involving only n) is O ((n + k) log n),

146 M.T. Goodrich, M. R. Ghouse, and J. Bright

where k is the size of the output [25], [9], [37]. We show how to solve this problem in

O (log 2 n) time using O ((n + k) log n) work. Our algorithm description assumes a local-

allocation scheme and runs in O(logn) time using O(n + k) processors; we apply

Lemma 4.2 to derive the claimed bounds. Our method is based on the approach of Bern

[9] but avoids an inherently sequential step in his algorithm (which uses the union-find

structure of Hopcroft and Ullman [29]) by use of the array-of-trees.

As in the previous algorithm, we use a segment tree to store the vertical edges of the

rectangles. For each node v in this tree, we define the restricted subscene for v to consist

of all vertical edges e such that e belongs to a rectangle in Cover(v) tO End(v), but the

intersection of the projection of e, onto the xy-plane, with IIv is more than a single point.

Our method uses three event lists built for each node v: Top(v), High(v), and Low(v),

where there is an entry in Top(v) for each vertical segment in Cover(v), and an entry

in High(v) and Low(v) for each vertical edge of the restricted subscene for v. Their

meanings are as follows: If (xi, topi) is an element in Top(v), then topi is the maximum

z-coordinate of the rectangles in Cover(v) that intersect the plane x = xi. If (xi, high i)

is an element in High(v), then high i is the maximum z-coordinate of the rectangles in

the restricted subscene for v that intersect the plane x = xi. If (xi, lowi) is an element

in Low(v), then lowi is the minimum z-coordinate of the rectangles in the restricted

subscene for v that intersect the plane x = xi and are visible from (0, 0, +o~). Since

the "times" in each of these event lists are determined by x-coordinates, given some

x-coordinate, x, we define the entry of one of these lists that has a largest x-coordinate

less than or equal to x to be the entry active at x.

Our method for finding the vertical edges in the visibility map is as follows:

Step 1. We construct the segment tree, together with all the Cover(v) and End(v) lists,

sorted by x-coordinates of the vertical segments.

Step 2. We construct Top(v) for all nodes v, in O(logn) time with O(n) processors

by a parallelization of the sequential method of Goodrich et al. [25] via the cascading

divide-and-conquer paradigm of Atallah et al. [4]. We give the details in Section 5.

Step 3. From the Cover(v) and End(v) lists, we construct the lists of x-coordinates

for the High and Low arrays, and apply fractional cascading to these arrays and the

Top arrays constructed in the previous step. Also, given the Top(v) values previously

constructed, we can construct the event lists for Low and High by a simple bottom-up

procedure. Constructing these lists for the leaves is straightforward, so suppose we have

already computed the High and Low lists for the children u and w of v. Consider an

x-coordinate, x, for which we wish to compute its corresponding high and low values.

Let high, and high w be the elements of High(u) and High(w) that are active at "time" x.

Similarly, define lowu and low~. Also, let top be the element of Top(v) active at x. Then

high v = max{highu, high~, top} and lowv = max{min{lowu, loww}, top} [9]. Thus, we

can compute high and low in O (1) time given these other values (which we can maintain

during our bottom-up procedure). Therefore, this construction takes O (log n) time using

O (n) processors.

Step 4. In this step we determine all the visible vertical edges. We assign a processor

P to every vertical edge e of an input rectangle. P visits every node in the segment tree

which e covers, searching down from the root of the segment tree, and, for each such

Sweep Methods for Parallel Computational Geometry 147

node v, P determines if e is completely visible in Hv, completely invisible in Fly, or

partially visible in Fly. To help P make these determinations, as P traverses the tree

it maintains a value maxtop, which is the largest top value active at x(e) from all the

Top(v ') lists such that v' is an ancestor of v, where v is the current node in the traversal.

Let low and high be the values in Low(v) and High(v) , respectively, active at x(e) . The

test for each of these possibilities is as follows:

I f z(e) < maxtop or z(e) < low, then e is completely invisible in l-Iv.

I f z(e) > maxtop and z(e) > high, then e is completely visible in I-Iv.

Otherwise, if z(e) > maxtop and low <_ z(e) <_ high, then e is partially visible in l-Iv.

Comment. Having marked e relative to each slab l/o that e covers as being completely

visible, completely invisible, or partially visible, we must now determine the segments

of e that are visible in each slab for which e is marked partially visible (we are done with

e in the other slabs). Our method, which we describe in the next step, involves having

the processor assigned to enumerating the visible segments of e in Fly perform a search

in the subtree T~, rooted at v, spawning enough new processors to enumerate all these

segments. The difficulty in this step comes from the need to output only O(1) pieces of

each visible segment even though each such segment can cover up to O (log n) nodes

(in the segment tree sense of"cover") in T~. Not fulfilling this requirement would mean

that we would use more than O (n + k) processors overall.

Step 5. We assign a processor P for e to each slab 1-Iv such that e is partially visible,

and use this processor to enumerate all the visible segments of e in Fly. In P ' s search

down To we assume, inductively, that e is partially visible on l/v and that P has already

determined two segments, et and eb, on e that are visible outside l-Iv, with et being

adjacent to the top boundary of l-Iv and eb being adjacent to the bottom boundary of Flu

(in the y-direction). (Initially, et and e b are nil.) P uses the fractional cascading pointers

from v to test in O(1) time if e is completely visible, completely invisible, or partially

visible in Flu and Flw, where u and w are the children of v, with l/u being above Flw (in

the y-direction). There are several cases:

1. e is completely visible in Flu and completely invisible in Flw (e cannot be completely

invisible or completely visible in both, by induction). Then P "grows" et to include

e n I-Iu, i.e., assigns et := et U (e N Flu), and outputs et and eb (ifeb is not nil). P is

done.

2. e is completely visible on rlu and partially visible in Flw. Then P grows et to include

e n Flu (i.e., assigns et := el U (e n Ilw)) and continues its search in l-lw.

3. e is completely invisible in Flu and completely visible in FIw. Then P "grows" eb to

include e O Flw, i.e., assigns eb :----- eb U (e n l/w), and outputs eb and et (if et is not

nil). P is done.

4. e is completely invisible in Flu and partially visible in l/w. Then P outputs et (if it is

not nil) and continues its search in I-Iw (with et = nil).

5. e is partially visible on Flu and completely visible in I-lw. Then P grows eb to include

e N Flw (i.e., assigns eb := eb U (e n Flw)) and continues its search in Flu.

6. e is partially visible in l/u and completely invisible in Flw. Then P outputs eb (if it is

not nil) and continues its search in Flw (with e b ~ nil).

7. e is partially visible on'Flu and I-Iv. Then P spawns a new processor P ' to search in

148 M.T. Goodrich, M. R. Ghouse, and J. Bright

I and r ' = nil and ' = eb (P ' runs the same program as P but uses e t e b I-lw with e t e b

instead of et and eb). P then sets eb := nil and continues its search in FI,.

This completes the algorithm.

The above procedure determines all the vertical segments in the visibility map. By

running the algorithm once more, with the roles of the x-axis and y-axis reversed, we

can find the visible horizontal edges. If we also wish to output the visible surfaces,

then for every visible line segment we need to determine the visible rectangles that are

immediately to the left and right of the segment. This can be easily be accomplished

during the previous step, however, by noting the active values of maxtop, low, and high

during the downward searches in the segment tree, labeling each visible segment s with

the polygons visible on each side of s as soon as we have determined that J is visible.

We leave the details to the interested reader. As we show in the following theorem,

this algorithm runs in O (log n) time using O (n + k) processors in the CREW PRAM

with spawning processor allocation, hence, in O (log 2 n) time using O ((n + k)/log n)

processors in the CREW PRAM (with global processor allocation).

THEOREM 4.4. Given n iso-oriented rectangles in ~3, the hidden-surface elimination

problem for these rectangles can be solved in O(log 2 n) time using 0 ((n + k)/ log n)

processors in the CREW PRAM model, where k is the size. of the output.

PROOF. By Lemma 4.2, it is sufficient to show that the algorithm runs in O (log n) time

using O (n + k) processors in the CREW PRAM with spawning processor allocation.

Each step in our method can be implemented in O(log n) time, since the height of the

segment tree is O (log n). Thus, we must show that the total number of processors is

O (n + k). Of course, Step 5 is the only step for which we spawn new processors, and

every other step can be implemented with O(n) processors. We concentrate, then, on

Step 5. To show that the number of processors spawned in this step is O (n + k), it suffices

to show that O (1) processors are spawned for each vertical segment in the visibility map.

So, let s be a vertical segment in the visibility map and let e be the input edge containing

s. Since the endpoints of s are determined by two y-coordinates from input rectangles,

the endpoints of s fall on slab boundaries in the segment tree. Let v be the least-common

ancestor of the nodes in the segment tree that s covers. Since s is visible, v must have

been visited by a (single) processor P in Step 5. The only case for which a processor P

spawns a new processor P ' is for a node such that e is partially visible in the two slabs

associated with that node's children. However, the only place where s forces a processor

possibly to spawn a new processor to output eventually a piece of s is at v. In all other

searches down the subtree rooted at v some piece of s will be stored in eb (for the subtree

of v's left child) or et (for the subtree of v's right child). Thus, we spawn at most two

processors to output s. This completes the proof. []

5. Computing the Top Event Lists. In this section we show how to compute the

visibility of the rectangles that cover v for each v in the segment tree of Section 4.4.

Note that this was the operation that we had to perform in Step 2 of the algorithm in

Sweep Methods for Parallel Computational Geometry 149

that section. It is also the crucial difference between our approach and the sequential

approach of Bern [9]. Our method is a nontrivial parallel implementation of the sequential

algorithm of Goodrich et al. [25] for the same problem. We include our description here

for completeness. Our method runs in O (log n) time using O (n) processors.

5.1. A Simple, but Inefficient, Method. We begin by describing a simple method that

takes O (log n) time using O (n log n) processors. The idea is to assign ICover(v) l pro-

cessors to each node v in the segment tree T. These processors then perform a parallel

mergesort procedure to sort the vertical boundaries of the rectangles in Cover(v) by

x-coordinates. In addition, with each merge of two lists A and B of rectangles we also

compute the topmost rectangle, top(x), between each x-coordinate in Atd B. This extra

computation can easily be implemented in O(1) time by taking the max of the top values

of the two overlapping intervals in A and B that determine each interval in A U B. Using

Cole's parallel mergesort procedure [17] to implement each such procedure requires

O (log n) time using O (n log n) processors (for all v in T).

5.2. A Modest Improvement. We can improve this approach by examining how various

Cover(v) lists in T relate to one another. In particular, we label each rectangle R with the

depth d of the node in T that is the least-common ancestor of all the nodes that R covers.

For each node v let Na (v) (resp. Sd (v)) denote the vertical boundaries of the rectangles

in End(v) that intersect the northern (resp. southern) boundary of Fly and have depth

label d, sorted by their x-coordinates. Atallah et al. observe the following [4]:

OBSERVATION 5.1. Let v be a node in T at depth d, and let z denote v's sibling in T.

Then Cover(v) = St(z) U S2(z) U . . . tA Sd-I(Z) if v is a right child, and Cover(v) =

Nt(z) U N2(z) U. . - U Nd-l(z) if v is a lefl child.

Also note that Nd(v) = Nd(u) U Na(w) and Sd(v) = Sa(u) U Sd(w), where u and

w are the children of v (provided v is at depth at least d). Thus, we can create [logn7

copies, T~, T2 T[lognl, of the tree T, and construct Nd(v) and Sd(v) for each v in

Td using the cascading divide-and-conquer technique of Atallah et al. [4]. This takes

O(logn) time using O(n) processors. 7 In addition, we can be computing the topmost

rectangle on each x-interval in each Nd(v) list (resp. Sd(V) list) in these same bounds,

as in the previous method.

Now to compute the visibility of the x-intervals determined by the rectangles in

any Cover(v), where, say, v is a right child at depth d, we simply need to merge

Sl(z), S2(z) Sd-I(V), applying the approach of the previous method during the

merges. We can perform all of these merges in a bottom-up fashion in O (log d log log n)

time using O ([Cover(v)/flog log n) processors [10], [31], [54]. By Brent's theorem [11],

this immediately implies that the visibility of the x-intervals determined by the

7 This implies that some of the merges in a Td may be vacuous, but this is easy to implement: simply have

a processor assigned to the left (resp. right) child write a 1 to a left (resp. right) field at the parent to see if

there needs to be a merge at this node. Thus, even though there are O(n log n) nodes overall, O(n) processors

suffice for all the merges.

150 M.T. Goodrich, M. R. Ghouse, and J. Bright

rectangles in any Cover(v) can be constructed in O(logn) time using

0 (ICover(v)l log log n~ log n) processors (i.e., O (I Cover(v) l log log n) work).

5.3. A Coordinated Attack. Our approach to achieving O (log n) time using only O (n)

processors for the entire computation is to coordinate the construction of all the visibility

lists using a "stratification" paradigm [13]. Let V/s~ denote the visibility list for the x-

intervals of the rectangles in Cover(v) (i.e., the upper envelope of these rectangles

listed by increasing x-coordinates). Also, let Af(FI~) (resp. S(FIv)) denote the plane

perpendicular to the xy-plane and containing the northern (resp. southern) horizontal

boundary of FI~. Our method for computing Vis~ for all v in T is as follows:

0. We begin by computing the trees T1, T2, .. ~., Trlogn 1 and the visibility of the x-intervals

determined by the La(v) and Ra(v) in each Ta, as in the previous method. This takes

O (log n) time using O (n) processors.

1. We mark each node that is at a depth of T that is a multiple of Flog log n7 as a

supernode. For each supernode v, at depth d, we let T(v) denote the subtree of T

rooted at v and having the supernodes at depth d + [log log nl as its leaves.

2. For each supernode v, let z be the nearest supernode ancestor of v (so v is a leaf

in T (z)). We construct Vis_ Northern_ Long(v) and Vis_ Southern_ Long(v), where

Vis _Northern_ Long(v) is a representation of the upper envelope in the A/'(FIz) plane

of the segments formed by intersecting .Af(Flz) with the rectangles in End(v), ig-

noring the rectangles in End(v) that do not intersect Af(Flz). Intuitively, Vis_North-

ern_Long(v) is the upper envelope of the "long" rectangles in End(v). Vis_ South-

ern_Long(v) is defined similarly. These can be computed in O(logn) time using

O (n) processors by the method described in the previous subsection.

3. For each node v that is not a supernode we let z be the nearest supernode ances-

tor of v (so v is an internal node in T(z)). We construct Vis_Northern _Long(v) and

Vis_ Southern _ Long(v), as defined in the previous step. We perform this computation

for each z by applying the mergesort-like procedure of Section 5.1 to the solutions al-

ready at the leaves of T (z) (combining solutions up the tree using a bottom-up merge).

Since the height of each T (z) is O (log log n), this step takes O ((log log n) 2) time using

0 (nz/log log n) processors [10], [31], [54], where nz is the number of rectangles which

are stored in the leaves of Tz (in Vis _ Northern _ Long(v) and Vis_ Southern _ Long(v)

lists) at the beginning of this step. Since a rectangle R can be contained in at most

log n/[log log n] of these (leaf) supernode lists, ~ z nz = n log n/Flog log nq ; hence,

the total work needed for this step is O (n log n).

4. For each node v that is not a supernode (hence, has a nearest supernode ancestor z),

we construct Vis_ Cover_ Short(v), where Vis_ Cover_ Short(v) is a representation

of the upper envelope (in the Af(FI~) plane) of the segments formed by intersecting

Af(FIv) with the rectangles in Cover(v) that have both of their horizontal boundaries

properly contained in FI z. This can be done in O (log n) time using O (m ~ log log n)

work by the method given above (in Section 5.2), where rn~ is the number of rectangles

involved for v. In particular, Vis_Cover_Short(v) can be constructed by merging

Sa-l(W), Sa-2(w) Sdz (w), if, say, v is a right child (otherwise the N lists would

be used for w), where w is v's sibling, d is the depth of v, and dz is the depth of z.

Sweep Methods for Parallel Computational Geometry 151

Since any rectangle can cover at most O (log log n) nodes in this way, this step can be

implemented in O (log n) time using O (n (log log n) 2) work.

5. For each node v we compute Visv, the upper envelope (in the N0-Iv) plane) of the

segments formed by intersecting 2V'(I-lv) with the rectangles in Cover(v). We do this

by merging Vis_ Cover_ Short(v) with Vis _ Northern _ Long(w) (resp. Vis _ South-

ern_Long(w)) such that w is a sibling of v and w is to the right (resp. left) of v. Since

any rectangle that covers v either has both its horizontal boundaries in Flz or has one

in a 1-Iw (where w is a sibling of v) and the other outside of l-Iz, this gives us V/s, for

each v in T. Since we need perform only a single merge for each node v, this step

can be implemented in O (log log n) time using O (n log n) work [10], [31], [54]. This

completes the construction.

Therefore, we have the following lemma:

LEMMA 5.2. Given a collection of iso-oriented rectangles in ~3, and a segment tree T

built upon their horizontal boundaries, the upper envelope of the rectangles in Cover(v)

for each v in T (Step 2 in our algorithm for hidden-surface elimination for rectangles)

can be constructed in 0 (log n) time using 0 (n) processors in the CREW PRAM model.

6. Conclusion. We have shown how to design efficient parallel algorithms for a num-

ber of problems whose efficient sequential algorithms use various versions of the plane-

sweeping paradigm. These problems included general hidden-surface elimination, CSG

boundary-evaluation, rectangle contour computation, and hidden-surface elimination for

rectangles. An interesting open problem that remains is to determine if a priori knowl-

edge of all the "events" in a plane sweep is required in order to derive an optimal parallel

algorithm for a problem solved sequentially by that plane sweep. Perhaps the most chal-

lenging such problem at the present time is to determine if the segment arrangement ofn

line segments in the plane can be computed in O (log n) time using 0 (n + I/ log n) pro-

cessors, where I is the number of intersections (recall that this was the bottle-neck com-

putation in our hidden-surface elimination and CSG boundary evaluation algorithms).

This problem can be solved sequentially in O (n log n + I) time using the beautiful, but

rather involved, plane-sweeping algorithm of Chazelle and Edelsbrunner [14].

References

[1] K. Abrahamson, N. Dadoun, D. A. Kirpatrick, and T. Przytycka, A Simple Parallel Tree Contraction

Algorithm, TR 87-30, Department of Computer Science, University of British Columbia, 1987.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. 0'Dtinlaing, and C. Yap, Parallel computational geometry,

Algorithmica, 3(3) (1988), 293-328.

[3] R.J. Anderson and G. L. Miller, Deterministic parallel list ranking, AWOC 88, Lecture Notes in

Computer Science, Vol. 319, Springer-Vedag, Berlin, 1988, pp. 81-90.

[4] M.J. Atallah, R. Cole, and M. T. Goodrich, Cascading divide-and-conquer: a technique for designing

parallel algorithms, S1AMJ. Comput., 18(3) (1989), 499-532.

152 M.T. Goodrich, M. R. Ghouse, and J. Bright

[5] M.J. Atallah and M. T. Goodrich, Efficient parallel solutions to some geometric problems, J. Parallel

Distrib. Comput., 3(4), 1986, 492-507.

[6] M.J. Atallah, M. I". Goodrich, and S. R. Kosaraju, Parallel algorithms for evaluating sequences of set-

manipulation operations, AWOC 88, Lecture Notes in Computer Science, Vol. 319, Springer-Verlag,

Berlin, 1988, pp. 1-10.

[7] B. G. Baumgart, A polyhedron representation for computer vision, Proc. 197 5 AFIPS National Computer

Conf., AFIPS Press, 1975, pp. 589-596.

[8] J.L. Bentley and D. Wood, An optimal worst case algorithm for reporting intersections of rectangles,

IEEE Trans. Comput., 29(7) (1980), 571-576.

[9] M. Bern, Hidden surface removal for rectangles, Proc. 4th ACM Symp. on Computational Geometry,

1988, pp. 183-192.

[10] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel models of computation,

J. Comput. System Sci., 30(1) (1985), 130-145.

[11] R. E Brant, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21(2)

(1974), 201-206.

[12] S. Chandran and D. Mount, Shared memory algorithms and the medial axis transform, Proc. 1987 IEEE

Workshop on Computer Architecture for PAMI, 1987.

[13] B. Chazelle, Intersecting is easier than sorting, Proc. 16th ACM Symp. on Theory of Computing, 1984,

pp. 125-134.

[14] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane,

Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988, 590-600.

[15] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica, 1(2),

133-162.

[16] A. Chow, Parallel algorithms for geometric problems, Ph.D. thesis, Department of Computer Science,

University of Illinois, 1980.

[17] R. Cole, Parallel merge sort, SIAMJ. Comput., 17(4) (1988), 770-785.

[18] R. Cole and U. Vishkin, Approximate scheduling, exact scheduling, and applications to parallel algo-

rithms, Proc. 27th 1EEE Syrup. on Foundations of Computing, 1986, pp. 478-491.

[19] J.R. Driscoll, N. Samak, D. D. Sleator, and R. E. Tarjan, Making data structures persistent, Proc. 18th

ACM Syrup. on Theory of Computing, 1986, pp. 109-121.

[20] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.

[21] H. Edelsbrunner, H. A. Maurer, E P. Preparata, A. L. Rosenberg, E. Welzl, and D. Wood, Stabbing line

segments, BIT, 22 (1982), 274-281.

(22] M.T. Goodrich, A polygonal approach to hidden-line elimination, Proc. 25th Allerton Conf. on Com-

munication, Control, and Computing, 1987, pp. 849-858.

[23] M.T. Goodrich, Intersecting line segments in parallel with an output-sensitive number of processors,

Proc. 1989 ACM Symp. on Parallel Algorithms and Architectures, 1989, pp. 127-137.

[24] M.T. Goodrich, Applying parallel processing techniques to classification problems in constructive solid

geometry, Proc. lst ACM-SIAM Symp. on Discrete Algebra, 1990, pp. 118-128.

[25] M.T. Goodrich, M. J. Atallah, and M. Overmars, An input-size/output-size trade-off in the time-

complexity of rectilinear hidden surface removal, ICALP '90, to appear.

[26] M.T. Goodrich and S. R. Kosaraju, Sorting on a parallel pointer machine with applications to set

expression evaluation, Proc. 29th IEEE Symp. on Foundations of Computing, 1989, pp. 190-195.

[27] G.H. Gtiting, An optimal contour algorithm for iso-oriented rectangles, J. Algorithms, 5 (1984), 303-

326.
[28] R.H. Giiting and T. Ottmann, New algorithms for special cases of the hidden line elimination problem,

Proc. Syrup. on TheoreticaI Aspects of Computer Science, 1985, pp. 161-171.

[29] J.E. Hoperoft, and J. D. Ullman, Set merging algorithms, SIAM J. Comput., 2(4) (1973), 294-303.

[30] S.R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured computations by raking,

AWOC 88, Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988, pp. 101-110.

[31] C.P. Kruskal, Searching, merging, and sorting in parallel computation, IEEE Trans. Comput., 32(10)

(1983), 942-946.
[32] C.P. Kruskal, L. Rudolph, and M. Snir, The power of parallel prefix, Proc. 1985 lnternat. Conf. on

Particle Processing, 1985, pp. 180-185.
[33] R.E. Ladner and M. J. Fischer, Parallel prefix computation, J. Assoc. Comput. Mach., (1980), 831-838.

Sweep Methods for Parallel Computational Geometry 153

[34] D.T. Lee and E P. Preparata, Computational geometry--a survey, IEEE Trans. Comput., 33(12) (1984),

872-1101.

[35] W. Lipski, Jr., and E E Preparata, Finding the contour of a union ofiso-oriented rectangles, J.Algorithms,

1 (1980), 235-246.

[36] Y. Matias and U. Vishkin, On parallel hashing and integer sorting, Report UMIACS-TR-90-13, Institute

for Advanced Computer Studies, University of Maryland, 1990.

[37] K. Mehlhorn, S. Nailer, and C. Uhrig, Hidden line elimination for isooriented rectangles, ESPRIT

Technical Report 90-25, 1990.

[38] G.L. Miller and J. H. Reif, Parallel tree contraction and its application, Proc. 26th IEEE Syrup. on

Foundations of Computing, 1985, pp. 478-489.

[39] G.L. Miller and S, H. Teng, Dynamic parallel complexity of computational circuits, Proc. 19th ACM

Syrup. on Theory of Computing, 1987, pp. 254-263.

[40] D.E. Muller and E E Preparata, Finding the intersection of two convex polyhedra, Theoret. Comput.

Sci., 7(2) (1978), 217-236.

[41] M.S. Paterson and E F. Yao, Binary partitions with applications to hidden surface removal and solid

modeling, Proc. 5th Syrup. on Computational Geometry, 1989, pp. 23-32.

[42] E E Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New

York, 1985.

[43] E E Preparata, J. S. Vitter, and M. Yvinec, Computation of the axial view of a set of isothetic par-

aUelepipeds, Report LIENS-88-1, Drpt. de Math. et d'Info., Lab. d'Inforrnatique de L'Ecole Normal

Sup&ieure, 1988.

[44] J.H. Reif and S. Sen, An efficient output-sensitive hidden-surface removal algorithm and its paralleliza-

tion, Proc. 4th Syrup. on Computational Geometry, 1988, pp. 193-200.

[45] A . A . G . Requieha, Representations for rigid solids: theory, methods, and systems, ACM Comput.

Surveys, 12(4) (1980), 437-464.

[46] C. RUb, Computing intersections and arrangements for red-blue curve segments in parallel, Proc. 4th

Canadian Conf on Computational Geometry, (1992), pp. 115-120.

[47] A. Schmitt, On the time and space complexity of certain exact hidden line algorithms, Report 24/81,

Fakult~t fur Informatik, University of Karlsruhe, 1981.

[48] Y. Shiloach and U. Vishkin, An O (log n) parallel connectivity algorithm, J. Algorithms, 3 (1982), 57-63.

[49] E. Soisalon-Soininen and D. Wood, Optimal algorithms to compute the closure of a set of iso-rectangles,

J. Algorithms, 5 (1984), 199-214.

[50] I.E. Sutherland, R. E Sproull, and R. A. Schumacker, A characterization of ten hidden-surface algo-

rithms, Comput. Surveys, 6(1) (1974), 1-25.

[51] R.E. Tarjan and U. Vishkin, Finding biconnected components and computing tree functions in loga-

rithmic parallel time, SIAMJ. Comput., 14 (1985), 862-874.

[52] R.B. Tilove, Set membership classification: a unified approach to geometric intersection problems,

IEEE Trans. Comput., 29(10) (1980), 874-883.

[53] R.B. Tilove, A null-object detection algorithm for constructive solid geometry, Comm. ACM, 27(7)

(1984), 684-694.

[54] L.G. Valiant, Parallelism in comparison problems, SIAMJ. Comput., 4(3) (1975), 348-355.

[55] H. Wagener, Optimally parallel algorithms for convex hull determination, Manuscript, 1985.

[56] H. Wagener, Optimally parallel hull construction for simple polygons in O (log log n) time, Proc. 33rd

1EEE Symp. on Foundations of Computing, 1992, pp. 513-599.

[57] E Widmayer and D. W••d• Time and space-•ptimal e•nt•ur e•mputati•n f•r a set •f rectang•es• Inf•rm.

Process Lett., 24 (1987), 335-338.

[58] D. W••d• The ••nt•ur pr•b•em f•r recti•inear p••yg•ns• •nf•rm. Pr•cess Lett.• •9 (• 984)• 229-236.

