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Sweep Methods for Parallel Computational Geometry 1 

M. T. Goodrich, 2 M. R. Ghouse, 2 and J. Bright 2 

Abstract. In this paper we give efficient parallel algorithms for a number of problems from computa- 
tional geometry by using versions of parallel plane sweeping. We illustrate our approach with a number of 
applications, which include: 

�9 General hidden-surface elimination (even if the overlap relation contains cycles). 
�9 CSG boundary evaluation. 

�9 Computing the contour of a collection of rectangles. 
�9 Hidden-surface elimination for rectangles. 

There are interesting subproblems that we solve as a part of each parallelization. For example, we give an 
optimal parallel method for building a data structure for line-stabbing queries (which, incidentally, improves 
the sequential complexity of this problem). Our algorithms are for the CREW PRAM, unless otherwise noted. 

Key Words, Parallel algorithms, Computational geometry, Constructive solid geometry, Hidden-line elimi- 
nation, Plane sweeping. 

I .  In t roduct ion.  There are a number of  algorithms in computational geometry that 

rely on the "sweeping" paradigm (e.g., see [20], [34], and [42]). The generic framework 

in this paradigm is for one to traverse a collection of  geometric objects in some uniform 

way while maintaining a number of  data structures for the objects that belong to a 

"current" set. For example, the current set of  objects could be defined by all those that 

intersect a given vertical line as it sweeps across the plane, those that intersect a line 

through a point p as the line rotates around p, or those that intersect a point p as it moves 

through the plane. The problem is solved by updating and querying the data structures 

at certain stopping points, which are usually called "events." We are interested in the 

problem of parallelizing sweeping algorithms. 

Most previous approaches to parallelizing sweeping algorithms have been to abandon 

the sweeping approach altogether and to solve the problem using a completely differ- 

ent paradigm. Examples include the line-segment intersection methods of  RUb [46] and 

Goodrich [23], the trapezoidal decomposition algorithm of  Atallah et aL [4], the method 

of  Aggarwal et al. [2] for constructing Voronoi diagrams, and the method of Chow [16] 

for computing rectangle intersections. A notable exception, which kept with the plane 

sweeping approach, were the methods of  Atallah et al. [4] for two-set dominance count- 

ing, visibility from a point, and computing three-dimensional maxima points. In each of  

these algorithms, Atallah et al. adapted the cascading technique used in Cole's merge 
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sort [17], to achieve a full parallelization of the sequential fractional cascading method 

of Chazelle and Guibas [15]. This allowed them to parallelize sweeping methods that 

sweep the objects with a vertical line, maintaining the set of objects cut by the line, and 

computing an associative function (such as "plus" or "rain") on the current set of objects 

for each event. 

In this paper we give methods for parallelizing other types of sweeping algorithms. 

Specifically, we address problems where the sweep can either be described as a single 

sequence of data operations or a related collection of operation sequences. The techniques 

do not depend on the sweep being defined by moving a vertical line across the plane, 

nor any other specific geometric object for that matter. We study cases where the sweep 

involves moving a point around a planar subdivision and cases where the sweep can be 

viewed as involving a number of coordinated line sweeps. We motivate our approach by 

giving efficient parallel algorithms for a number of computational geometry problems. 

In these cases the approach of Atallah et al. is not in itself sufficient. In particular, we 

derive the following results: 

�9 Hidden-surface elimination. One is given a collection of opaque polygons in ~3 

and asked to determine the portion of each polygon that is visible from (0, O, +~x~) 

[22], [47], [50]. We show that this problem can be solved in O(logn) time using 

O(n logn + I) processors) in the CREW PRAM model, where n is the number of 

edges and I is the number of edge intersections in the projections of the polygons to 

the xy-plane. 

�9 CSG evaluation. One is given a collection of primitive objects, which are either poly- 

gons (in the two-dimensional case) or polytopes (in the three-dimensional case), and a 

tree T such that each leaf of T has an object associated with it and each internal node 

of T is labeled with a boolean operation (such as union, intersection, exclusive-union, 

or subtraction) [45], [52], [53]. The problem is to construct a boundary representation 

for the object described by the root of T. We show that the two-dimensional version 

of this problem can be solved in O (log n) time using O (n log n + I) processors, and 

we also show how to extend this method to three-dimensional CSG evaluation. 

�9 Constructing rectangle contours. One is given a collection of iso-oriented rectangles 

in the plane and asked to determine the edges of the contour of their union [12], 

[35], [57], [58]. We show that this problem can be solved in O(logn) time using 

O (n log n + k) work (which is optimal), where k is the size of the output. 

�9 Rectilinear hidden-surface elimination. One is given a collection of opaque iso- 

oriented rectangles in ~3 and asked to determine the portion of each rectangle that is 

visible from (0, 0, +cx~) [9], [22], [25], [28], [37], [43]. We show that this problem 

can be solved in O(log 2 n) time using O((n + k) logn) work, where k is the size of 

the output. 

One of the main ingredients in each of our solutions is the use of a parallel data structure 

of Atallah et al. [6] called the array-of-trees. We apply this data structure in a variety of 

ways in order to solve each of the above problems. Interestingly, for each problem, there 

is some additional difficulty to be overcome in order to apply our general framework, 

which was not an issue in the original sequential algorithm. In the case of hidden-surface 

elimination the difficulty is the definition of a comparison rule for polygons that is 

consistent even if the overlap relation contains cycles. For CSG evaluation the difficulty 
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involves solving an off-line expression evaluation problem (which is of independent 

interest). Also, in the three-dimensional case, our method uses a parallel construction of 

a line-stabbing data structure of Chazelle and Guibas [ 15], which, incidentally, improves 

the sequential preprocessing time for constructing this structure. In the case of rectangle 

contour construction the difficulty is to construct a version of the array-of-trees that allows 

for optimally reporting all pieces of the output (this modification, which is perhaps the 

most significant contribution of this paper, involves an interesting "pruning" technique 

applied to the array of trees). In the rectilinear hidden-surface elimination problem the 

difficulty involves describing a search procedure so that it only reports one copy of each 

piece of the output, even though a single piece may be stored in the array-of-trees as 

O (log n) separate subpieces. 

The computational model we use for our algorithms is the CREW PRAM. Recall that 

processors in this model act in a synchronous fashion and use a shared memory space, 

where many processors may simultaneously access the same memory location only if 

they are all reading that location. Many of our results use the paradigm that the pool 

of virtual processors can grow as the computation progresses, provided the allocation 

occurs globally [23], [46]. In this scheme r new processors are allowed to be allocated 

in time t only if an r-element array that stores pointers to the r tasks these processors are 

to begin performing in step t + 1 has already been constructed. This is essentially the 

same as the traditional CREW PRAM model, except that in the traditional model only 

one request is preformed, at the beginning of the computation (to allocate a number of 

processors that usually depends on the input size, e.g., n or n2). Many of our results can 

be viewed as showing that when it is wished to run a parallel algorithm on a machine 

with a fixed number of processors, by simulating an algorithm that uses a dynamically 

expandable pool of virtual processors, we are able to achieve superior speedups over 

simulations using processor-static algorithms. 

2. Parallel Persistence, We begin our discussion by reviewing a parallel data struc- 

ture called the array-of-trees. We then present two extensions to this structure. All of 

the structures we describe here can be viewed as parallel examples of the persistence 

paradigm of Driscoll et al. [ 19]. In our framework a linked data structure D [ 19], an initial 

assignment of values to the nodes of D, and a sequence cr of m update operations that 

operate on the nodes of D, but do not add new links 3 to D, are given. The interpretation 

of the sequence ~r is that operation i updates the structure resulting from performing 

operations 1, 2 . . . . .  i - 1. The problem is to produce an auxiliary structure, A, such that 

A allows a single processor to perform a "query in the past" on D, i.e., a query on the 

instance of D as it appeared after some update operation i. 

As a simple example of this approach, consider the parallel prefix problem [32], [33], 

where a sequence of numbers (al, a2 . . . . .  an) is given for which one wishes to compute 
k 

all the prefix sums s~ = ~i=1 ai. This can be viewed as a sequence cr of n operations 

of the form tri -- "s := s + ai," and the computational problem that of building a data 

structure (i.e., an array) so that the value of s can be quickly determined after executing 

3 In the sequential setting one is also allowed to change links [19]. 
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the sequence al~rz. �9 �9 ai (assuming s is initially 0). We refer to the resulting array of  

values for such a variable s as the event list for s, and we refer to the ith entry in this 

array as the value s had at time i. Of course, such an array can be constructed in O (log n) 

time using O (n/log n) processors in the EREW PRAM model [32], [33], so that a query 

"in the past" can be answered in O(1) time. 

In the above example the underlying "skeleton" structure was a single variable, s. We 

show in the following subsections that, for a variety of  other skeleton structures, D, if the 

entire sequence tr is given in advance, then an efficient data structure can be constructed 

in parallel to allow a single processor to answer queries in the past for D. 

2.1. The Array-of-Trees. The array-of-trees data structure, which we define below, 

was developed by Atallah et al. [6], who were the first to address this problem in a 

parallel setting. They gave a solution for the case where the underlying data structure 

is a complete n-node binary tree T and each operation in a is either an enable(v), 

which "turns on" the leaf v and updates the nodes from v to the root to reflect this, or a 

disable(v), which turns off the leaf v and updates the nodes from v to the root to reflect 

this. The updating action here is allowed to include, for each node v involved in the 

update, the computation of  a constant number of  labeling functions on the children of  v. 

Their method runs in O (log n) time and O (m log n) space, 4 using O (n + m) processors 

in the CREW PRAM model, where m = Itr I. 

DEFINITION. The array-of-trees, which we denote by B(r),  is a directed acyclic graph 

built on an underlying tree T, where T has a list a(v)  at each node v. a (v )  is the 

subsequence of  a consisting of  all operations whose argument u occurs in the subtree 

rooted at v (the operations in ~r(v) occur in the order that they appear in a).  For each 

operation at in a(v)  there is a record (t, val, left, right), where t is the position of  this 

operation in a (i.e., its "time of  execution"), val is a value for v, and left and right are 

pointers (which are null if v is a leaf.) The values stored in the val field are the results of  

the operation a~ performed "bottom-up" on the values stored in the subtree rooted at v. 

For example, if one is interested in counting the number of active leaves, then, for 

every leaf x, val could store "count = 0" if o~t = disable(x) and "count = 1" if 

at = enable(x). Also, we include a record in B(x)  for the initial assignment of  x, giving 

it a time-value t --- 0. Intuitively, B(x)  represents the history of  tr when one restricts 

attention to the operations in a(x) .  That is, if we let (tl,'t2 . . . . .  tlB(x)l ) denote the list 

of  t-values in B(x),  then each record (ti, vals, null, null) in B(x)  can be thought of  as 

representing a (trivial) binary tree representing the portion of  T related to x from time ti 

to time ti+1 - 1. 

For each internal node v, B(v) is defined in terms of  B(u) and B(w),  where u and w 

are the children of  v. There is a record in B(v) for each record in B(u) U B(w),  and these 

are sorted by t-values (i.e., a sorted merging of  B(u) and B(w)),  removing the duplicate 

for t = 0. For a record ot = (t, vals, left, right) in B(v),  the pointers left and right point 

to the records at and ol r in B(u) and B(w),  respectively, with the largest t-value less 

than or equal to t (one of  these records will have the same t-value as or). The values in 

4 If all future queries need go no deeper than the root of T, then the space can be reduced to O(m) [6]. 
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Fig. 1. An array-of-trees. 

the vals list for ~ is defined by a combination rule (specified by the application) applied 

to oft and Otr. For example, if one is interested in counting active leaves, then there could 

be a count field in vals that is computed by taking the sum of count fields in ~ and ~ .  

By a simple inductive argument, if we let (tb t2 . . . . .  tlB(v)l ) denote the list oft-values in 

B(v),  then each record in B(v)  represents the root of the subtree of T rooted at v from 

time ti to time ti+ 1 - -  1. (See Figure 1.) 

Implicit in the definition of a combining rule is that, for each node v, the rule must 

specify a combined value for all values that might be stored in at and Otr. If each combining 

rule is defined over all values in the underlying universe, then this requirement presents 

no problems. However, if it is wished to apply this theorem to solve the hidden-surface 

elimination problem (as we do), where the natural elements at the leaves of T are 

the names of polygons in ~t 3 and the natural function is "highest polygon," then care 

must be taken to satisfy this implicit requirement. The main difficulties are that the 

overlap relation may contain many cycles [41] and some pairs of polygons do not overlap 

(hence, are incomparable by the "highest polygon" relation). We address these concerns 

in Section 3.1, where we show how to apply the array-of-trees to the hidden-surface 

elimination problem. 

As a simple example of a use of the array-of-trees, consider the problem of counting 

the number of intersections between a set of vertical line segments and a set of horizontal 

line segments. In this case the skeleton tree T is a complete binary tree built on top of the 

y-coordinates of the horizontal segments, and the x-coordinates of the segment endpoints 

define the actions, left endpoints corresponding to enable operations and right endpoints 

corresponding to disable operations. The only information that needs to be stored in vals 

list for a node v is the count of the number of active leaf descendants of v. Given this 

data structure, the problem is solved by assigning a processor to each vertical segment 

and using that processor to search in the "copy" of T for the x-coordinate of s. The 
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search for s is a simple one-dimensional range-query based on the y-coordinates of the 

endpoints of s. 

More complicated types of combining rules can also be used. For example, Goodrich 

[23] employs a compressed version of the array-of-trees where the combining rule affects 

both the values stored in the vals list and the left and right pointers. In particular, if two 

records or/and otr are combined to define a new record ~ (where ot is for a node v and or1 

and otr are for v's left and right children, respectively), then, in addition to computing a 

count label of the number of active leaf descendants for v, the following test is added: 

If  at. count = 0, then ot. left = otr. left and ot. right = otr. right, else, if otr. count = 

0, then ot. left =ott. left and ot. right =otl. right. Also, if or. count = 0, then or. left = 

or. right = null. 

Note that by adding this simple rule, each record ot in a B(v)  list represents the root of 

a tree with or. count leaves, i.e., a compressed binary tree built upon the active leaves 

that are descendants of v in T. Goodrich uses this approach to derive an optimal parallel 

algorithm for enumerating all intersections between a set of vertical segments and a set 

of horizontal segments. 

2.2. Extending the Array-of-Trees. In this paper we make applications of a number 

of further extensions of the array-of-trees data structure. Here we present an overview 

of these extensions, which are described in detail, together with their applications, in 

Section 3. The first extension we add is that we allow each internal node v in the skeleton 

tree, T, to store data elements as well as the values of combining rules applied to v's 

children. Thus, we allow the operations in ~r to enable and disable internal nodes of 

T as well as leaves. Using a modified version of the method of Atallah et al. [6] this 

version of the array-of-trees can be constructed with the same performance as before, 

i.e., O (log n) time and O (n log n) space using O (n) processors. In particular, since their 

method is based upon merging lists in a binary tree, we can easily transform our extension 

to their framework by viewing the merge at each internal node as a three-way merge and 

transforming this back to the binary tree framework of Atallah et al. For each node v of 

T, construct the subsequence ~ (v) of cr consisting of those operations affecting v (as 

we did previously just for the leaves of T), and construct a simple array-of-leaves list 

B'(v)  for cr (v). Then the merge defined for v is that of first merging B(u) and B(w),  as 

before, where u and w are the children of v, followed by the merge of this list and B'(v),  

to form B(v).  Since this modification at most doubles the depth of the tree T, and does 

not increase its size by more than a constant factor, the running time of this method is 

still O (log n) and the number of processors needed is still O (n). 

Allowing for internal nodes of T to be enabled and disabled is not the only exten- 

sion we make, however. We also allow a "pruned" version of the compressed array- 

of-trees [23]. In particular, we assume the existence of a 0/1-valued prune function, 

~r (or, v), and modify Goodrich's combining rule so that we use rc(Otl, u) �9 ul .count  and 

Jr(otr, w) * Otr.COUnt instead of otl.count and otr.count, respectively. Intuitively, if, say, 

Jr(ott, u) = 0, then we are "pruning" away the subtree rooted at o#, and not passing it 

up to be a part of the subtree rooted at ot. Note, however, that we do not destroy the 

tree rooted at at; it is still accessible from B(u).  (See Figure 2.) Thus, in this case, 

each record a in B(v)  corresponds to the root of a binary tree containing the number of 
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Fig. 2. A "pruned" binary tree. Broken lines indicate the skeletar tree and solid lines indicate the pruned 
(compressed) tree. 
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active descendent nodes of v in T that "survived" the pruning function at least as far up 

T a s v .  

The final extension we make to the array-of-trees is to develop the skeleton data 

structure upon which it is defined, so as to be something other than a complete binary 

tree. In particular, we allow the skeleton structure to be an order-k pseudotree, for fixed 

k. A pseudotree is a directed acyclic graph G = (V, E) such that the nodes in V have 

been partitioned into V1, V2 . . . . .  Vm with the V/'s forming the nodes of a binary tree T. 

For each edge (v, w) ~ E, either v, w ~ Vi for some i or (Vi, Vj) is an edge in T and 

v ~ Vi and w 6 Vj. A pseudotree is of order k if [Vii < k for each i 6 {1, 2 . . . . .  m}. 

Thus, if G is a tree, it is an order-1 pseudotree. For our applications, we assume that 

the underlying tree, T, is a binary tree with height O(logn),  and that G is an order-k 

pseudotree with k being O (1). Our approach to constructing B (r), where r is the "root" 

of G, is as above, except that now the merge at each node is possibly a (2k + 1)-way 

merge and the underlying graph is now a pseudotree, not a tree. Still, using the cascade 

merging scheme of Goodrich and Kosaraju [26], which is based on linked lists instead of 

arrays, this "array-of-pseudotrees" data structure can be easily constructed in O (log n) 

time and O (n log n) space using O (n) processors. Note: the method of Atallah et al. [6] 

cannot be applied here, because their method is based on a cascade merging with arrays 

that would introduce a potentially large number of duplicate entries. 

2.3. Off-Line Expression Evaluation. As an application of our extensions to the array- 

of-trees data structure, consider the following problem. Suppose one is given an n-node 

binary tree T such that each leaf represents a value taken from some universe L/and 

each internal node v is labeled with a binary function f~: U •  ~ b/taken from a 

family of functions 5 c. The height of T is allowed to be as large as O(n). The expression 

evaluation problem is to determine the value represented by the root of T based on a 

bottom-up evaluation. To make the problem tractable in a parallel setting, we assume 

the functions in F and the universe b / form a eontractable algebraic structure, that is, 

an algebraic structure that satisfies the composition, closure, and combination properties 

of Miller and Teng [39]. Intuitively, an algebraic structure (/J, ~') is contractable if the 

parallel tree-contraction schemes of Brent [11] or Miller and Reif [38] can be applied 
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to evaluate T in O(logn) time using O(n) processors (which can in fact be reduced 

to O (n/log n) [ 1 ], [30]). For example, any semiring is contractable [ 11 ], [38], as is the 

algebraic structure defined by the boolean operations used in CSG evaluation (on the 

universe {0, 1}) [24]. 

Suppose that, in addition to the expression tree T, a sequence ~r of m update operations 

defined on the leaves of T are given. That is, each tth operation, ~ ,  in cr is an assignment 

of the form xj := u, where xj is a leaf of T and u is value taken from L/. The off- 

line expression-evaluation problem is to determine for each t ~ {1, 2 . . . . .  m} the value 

that would be defined by the root of T after sequentially performing the assignments 

or1, o'2 . . . . .  ~ ,  given the initial values assigned to the leaves of T. (See Figure 3.) 

Using the methods of Abrahamson et al. [1] or Kosaraju and Delcher [30] T can be 

converted into an equivalent circuit C, where C has O (log n) depth and is an order-4 

pseudotree. The time needed for this conversion is O (log n) using O (n/log n) proces- 

sors [1], [30] (see also [11] and [24]). Given this circuit, and the initial values associated 

with its "leaves," we then apply the array-of-pseudotrees construction described above. 

This requires an additional O (log n) time using O (n/log n + m) processors, and gives 

us a solution to the off-line expression evaluation problem (by simply reading off the 

values stored at the "root" of C for each time instance in ~r). Moreover, since we are 

only interested in the value of the "root" of C, we need not store all portions of the 

array-of-pseudotrees, and can implement the construction using only O (n + m) space 

[26]. Thus, we have the following lemma: 

LEMMA 2.1. Given an n-node binary expression tree T whose operations are taken 

from a contractable algebraic structure, and an m-operation sequence cr of leaf-update 

operations, the value associated with the root of T can be determined after performing 

each operation in ~r (as in a sequential evaluation) in 0 (log n) time using 0 (n/ log n +m) 

processors. 

In the next two sections we address a number of applications of our extensions to the 

array-of-trees. 
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3. Sweeping Arrangements. Given a collection C of line segments ~2, the arrange- 

ment of C is defined to be the embedded planar graph G whose vertices correspond to 

the intersection points determined by pairs of segments in C, and such that (v, w) is an 

edge if there is a segment s in C containing v and w (and there is no other vertex in 

G between v and w on s). It is also common to add an edge to G from each segment 

endpoint v to the first vertex hit by a vertical ray emanating upward (resp. downward) 

from v. Such a graph is a special case of a larger class of graphs, planar subdivisions, 

defined by a subdivision of the plane into a collection of simple polygons (see [42] and 

[20]). There are a number of sequential algorithms that follow an approach of construct- 

ing an arrangement [20] and traversing that arrangement to solve the problem at hand. 

We address this approach from a parallel perspective. 

One of the main subproblems that we must solve in each application is the construc- 

tion of a spanning tree in a connected planar subdivision, which the following lemma 

addresses: 

LEMMA 3.1. Given a connected planar subdivision R, a spanning tree for R can be 

constructed in 0 (log n) time using 0 (n/log n) processors in the CREW PRAM model. 

PROOF. The method is quite simple: for each face f in R (other than the external face), 

remove the edge preceding the leftmost vertex of f in a counterclockwise traversal of f 

(see Figure 4). This is easily accomplished in O (log n) time using O (n/log n) processors 

via list ranking [3], [18] and parallel prefix computations [32], [33]. We have yet to show 

that this produces a spanning tree for R, of course. Let T denote the subgraph resulting 

from this computation. 

Fig. 4. The spanning tree for a connected planar subdivision. Light lines indicate the subdivision, heavy lines 
indicate the spanning tree. 
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CLAIM 1. T is acyclic. 

PROOF OF THE CLAIM. Suppose, for the sake of contradiction, that there is a cycle 

C = (v0, Vl . . . . .  vk, v0) in T. Without loss of generality, C is a simple cycle. Let vi be 

the leftmost vertex in C. Since C is a simple cycle in a planar subdivision, vi must also 

be the leftmost vertex on a face of  R other than the external face. However, this implies 

that (Ui_I, Pi) is not an edge in T; hence, C cannot be a cycle. Thus, T is acyclic. [] 

CLAIM 2. T is connected. 

PROOF OF THE CLAIM. Suppose, for the sake of contradiction, that T is not connected. 

Let C1 and C2 be two connected components of T such that there is a vertex v E C1 

and a vertex w 6 C2 with v and w being adjacent in R. Note that C1 and (72 must exist, 

since R is connected. Since (v, w) is not an edge of T, it must be an edge of a face f of 

T other than the external face of T. Thus, there must be another edge (v', w t) on f with 

v' ~ C1 and w' ~ (72. Since (v', w') is not an edge of T, this in turn implies that there is 

a face f '  ~ f containing (v', w I) such that f '  is not the external face. We can continue 

this argument, defining a sequence of faces f l ,  f~_ . . . .  that are adjacent in the planar dual 

of R. Since R is finite, these faces must form a cycle in the planar dual of R. However, 

we only remove an edge if it precedes the leftmost vertex on a face. Thus, the leftmost 

vertices on each of these faces must all have the same x-coordinate (for, otherwise, we 

have removed an edge preceding a vertex that is not leftmost in some face in this cycle). 

Moreover, there can be no edge on any face j~ that is incident to a vertex with smaller 

x-coordinate than this. However, this contradicts the observation that each j~ is not the 

external face. Therefore, T must be connected. [] 

Since T is by definition a spanning subgraph of R, these two claims immediately imply 

that T is a spanning tree for R. [] 

This lemma can be easily extended to construct a spanning forest of a disconnected 

subdivision, We leave the details to the interested reader. Having presented this lemma, 

we now turn to some applications of our parallel plane-sweeping approach. 

3.1. Hidden-Surface Elimination. The first application we address is the hidden-surface 

elimination problem. Suppose a collection of polygonal faces in ~t 3 that do not intersect 

(except possibly at boundaries) is given. The problem is to determine the portions of 

each polygon that are visible from (0, 0, +cx~) assuming each polygonal face is opaque. 

(See Figure 5.) For simplicity of expression we assume that no two polygon edges (resp. 

vertices) project to the same edge (resp. vertex) in the projection plane (the xy-plane). 

Our method can be easily modified for the more general case by using parallel prefix 

computations where appropriate. 

Our method for solving this problem follows the general approach of Goodrich [22] 

and Schmitt [47]. This approach is based on the construction of the arrangement of 

polygons determined by projecting the polygons in S to the xy-plane and then traversing 

this arrangement to solve the hidden-surface elimination problem. This arrangement is 
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Fig. 5. The hidden-surface elimination problem. 

the connected graph whose nodes are the polygon vertices and the intersection points 

between pairs of (projected) polygonal edges. In addition, for each edge e in the projection 

plane, we store the name of the polygon P that has an edge projecting to e, and to which 

side of e the interior of P projects. We say such an arrangement is polygon-connected 

provided two polygons P and Q intersect if and only if the vertices of P and Q are in the 

same connected component of the arrangement. Of course, this will always be true if the 

boundaries of P and Q intersect, but may not be the case if, say, Q is properly contained 

in the interior of P. We can easily force a polygon arrangement to be polygon-connected, 

however, by drawing an edge from each vertex v to the first point(s) in the arrangement 

that are hit by vertical rays emanating upward and downward (in the y-direction).from 

v. Of course, some vertices will have edges to shadows "at infinity," but this presents no 

difficulties. Our method, then, consists of the following six steps: 

Step 1. In this step we construct the polygon arrangement R of S projected to the xy- 

plane. Using the parallel segment-intersection algorithm of Goodrich [23], along with 

the shadow-finding algorithm of Atallah et al. [4], this arrangement can be constructed 

in O (log n) time using O (n log n + I) processors in the CREW PRAM model. 

Step 2. In this step we construct a spanning forest F of R using the method of 

Lemma 3.1, which implies that this step can be implemented in O(logn) time using 

0 ((n + I)/log n) processors. 

Step 3. In this step we prepare for an application (in Step 4) of a variation on the 

Euler-tour technique of Tarjan and Vishkin [51] to operation sequences, by constructing 

an Euler tour of each tree of F. For each connected component of F we make the first 

edge in the tour of that component an edge leaving the (unique) vertex with the smallest 

x-coordinate. In addition, with each edge ei in a tour we associate a point pi on ei in 

the xy-plane (we use these points in Step 4). pi can be anywhere on the projection of 

ei onto the xy-plane. Let U denote the union of these tours. We can easily perform this 

step in O (log n) time using O ((n + I)/log n) processors. 

Step 4. In this step, from U, we construct a sequence of operations cr = (a0, trl . . . . .  a,n) 

that operate on a binary tree T such that each leaf of T is associated with a polygon 

P. For each edge ei in U we associate an operation ai, where cri is enable(P) (resp. 
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disable(P)) if in traversing the projection ofe we would enter (resp. leave) the projection 

of the interior of P. In addition to enabling the polygon P, the enable(P) operation 

assigns the name of a point p on ei to a label rep in the vats list for P (this is the 

representative for P for as long as P is active). We also maintain a max label for each 

node v in T (stored in the vals list for a record in B(v)),  which stores the polygon- 

representative pair (P, p), where P is the "highest" polygon when comparisons are 

based on the following rule ~ :  Given the query "(P,  p) > (Q, q)?", return "yes" if and 

only if the projection of point p onto the plane containing face P is above the projection 

of p onto the plane containing face Q, where P is the more recently inserted polygon 

(otherwise, we would use q in this comparison). This step can easily be implemented by 

performing a list-ranking procedure within the individual tours in U. Using the methods 

of Cole and Vishkin [18] or Anderson and Miller [3], this requires O (log n) time using 

O ((n + 1) log n) processors. 

Comment. A vertex with the smallest x-coordinate in its component is not contained 

inside the interior of any polygon projection in the xy-plane. Thus, for each (ri, the set 

of active polygons at "time" i consists of all the polygons that contain the projection of 

edge ei in the interior of their projection onto the xy-plane, since we start with 0 for each 

such tour. 

Step 5. In this step we perform an array-of-trees construction on ~r using the labels 

listed above (with comparison rule ~) .  This step requires O (log n) time and O (n + I) 

space using O(n + I)  processors. We show below that even if the overlap relationship 

contains cycles, the computation of the max labels still proceeds correctly. 

Step 6. For each edge e i in F, with associated operation ai, the max label associated 

with the record for time i stored at the root of T stores the name of the polygon visible 

along ei (i.e., the "highest" polygon). I f  el is on or above this polygon, then ei is visible; 

otherwise, ei is invisible. In this step we remove from R all the edges that are invisible, 

and indicate for each visible edge ei the polygons of S that are visible on each side of ei. 

Given the information computed in previous steps, this step can easily be implemented 

in O(log n) time using O((n + l ) / logn)processors .  

End of Algorithm. 

The correcmess of the above algorithm crucially depends on 7~ being a consistent 

relation even in the face of possible cycles and gaps in the overlap relationship. That 7~ 

is symmetric follows immediately from its definition. The next lemma establishes that 

7~ is also transitive. 

LEMMA 3.2. For any i ~ {0, 1 . . . . .  m}, i f  three polygons, P, Q, and R, are act&e at 

time i, then ( P , p) > ( Q , q) and ( Q , q) > ( R,  r) imply that ( P , p)  > ( R,  r ), where p, 

q, and r are the respective representatives for  P, Q, and R at time i. 

PROOF. Suppose not. Then P is above Q at p or q, Q is above R at q or r, but P is 

below R at p or r. Since the polygons in S do not intersect (although their intersections 

in ~2 do in this case), this implies that the path in the Euler tour that contains p, q, and r 

must leave and re-enter P, Q, or R along an edge not containing p, q, or r, respectively. 

However, this implies that one of (P, p), (Q, q), and (R, r) is not an active polygon- 
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representative pair at time i, which is a contradiction. For example, suppose the relative 

order of polygon-point pairs in the tour is . . .  (P, p ) . - -  (Q, q ) . . .  (R, r ) . . . .  That is, P 

is above Q at q, Q is above R at r, while, by assumption, P is below R at r. Then P is 

above Q at q but P is below Q at r. Thus, in going from q to r we must have left and 

re-entered P or Q; hence, (P, p) or (Q, q) cannotbe active at time i (contradiction). 

The arguments for the other cases are similar, and are left to the interested reader. [] 

Thus, the comparison procedure used in Step 5 is a consistent relation; hence, the 

max label associated with each record in the B list for the root in T stores the name 

of the polygon visible along the edge ei, where i is the time value associated with that 

record. Thus, we have the following theorem: 

THEOREM 3.3. Given a collection S of nonintersecting polygons in ~R 3, the hidden- 

surface elimination problem for S can be solved in 0 (log n) time using 0 ( (n + I) log n) 

processors in the CREW PRAM model, where n is the total number of edges and I is the 

number of edge intersections in the projection plane. 

3.2. Arrangement Queries. The arrangement sweeping technique can also be used 

to build various geometric data structures in parallel. The main idea is to build the 

arrangement, an operation sequence for that arrangement, use the array-of-trees data 

structure to evaluate the sequence, and then perform queries for this sequence to solve 

the problem. 

We illustrate this with an example. Suppose one is given a collection of line segments 

in the plane and it is wished to construct a data structure that allows the segments 

that are intersected by a query line I to be quickly counted or reported, or to return a 

line that intersects the most number of line segments. Using a well-known point-line 

duality [21], [40], the set of all lines intersecting a line segment dualizes to the set of 

all points lying in a certain double-wedge (a region defined by all points between two 

intersecting lines). In particular, using a duality that preserves "above" relations (so a 

point p above a line I dualizes to a line 79p above the point ~l), all the lines intersecting 

a line segment s dualize to all the points contained between the duals of s 's  endpoints. 

Thus, answering segment-intersection queries is equivalent to the problem where one is 

given a collection of double-wedges and asked to build a data structure that counts or 

reports all double-wedges containing a query point I. 

We can solve this problem as follows. First, we can construct the arrangement formed 

by all the double-wedges using the line-arrangement algorithm of Goodrich [24], com- 

pute a spanning tree of this arrangement (as above), and build an Euler tour of this 

tree. This can all be done in O(logn) time using O(n2/logn) processors. We can then 

construct a skeleton binary tree T, whose leaves correspond to double-wedges, and an 

operation sequence cr for the Euler tour, where the operations are enable(s), which corre- 

sponds to entering the double-wedge for s, and disable(s), which corresponds to leaving 

the double-wedge for s. Building the compressed array-of-trees data structure for this T 

and a allows us to label each face f with the number of double-wedges containing it, or, 

alternately, with a pointer to the root of the array-of-trees corresponding to the position 

in the tour where we entered f .  If  we are only interested in counting queries, then we 

can evaluate ~r by a simple parallel prefix computation, as described in Section 2, which 
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requires O (log n) time using O (n2/log n) processors, and allows counting queries to be 

answered in O (1) time given the position of f ' s  visitation in the tour. This immediately 

implies that we can find a maximum stabbing line in O (log n) time using O (nZl log n) 

processors. If we wish to answer reporting queries, then we can construct an array- 

of-trees data structure for a ,  which requires O (log n) time using O (n 2) processors. A 

reporting query can then be answered in O(logn) time, where we first determine the 

number, k, of answers, with a single processor, and then allocate [k/log n] processors 

to the task of enumeration. 

In the next subsection we give an application of arrangement sweeping via off-line 

expression evaluation. 

3.3. CSG Boundary Evaluation. Suppose a collection of"primitive" polygonal shapes 

and an expression tree T are given such that each leaf of T has a primitive object 

associated with it and each internal node of T is labeled with a boolean operation, such 

as union, intersection, exclusive-union, or subtraction (a CSG representation [45]). Note 

that while T is defined in terms of primitive shapes, the definition is such that T defines 

the boundary of the overall object when considered as a boolean expression. The problem 

we address in this subsection is that of constructing a boundary representation for the 

object defined by the root of T. (See Figure 6.) 

We first address the two-dimensional version of the problem, where the primitive 

objects are simple polygons. Using the approach of Goodrich [23], we can solve this 

problem in parallel as follows. We construct the arrangement of the polygons that define 

the primitives (including the vertical shadows of each vertex), find a spanning forest for 

this arrangement, and build an Euler tour of each tree in this forest (similar to the first 

three steps in our hidden-surface elimination algorithm). This takes O (log n) time using 

O (n log n + I) processors, where I is the number of pairwise edge intersections. 

We then build an instance of the off-line expression-evaluation problem, which will 

allow us to label each vertex, edge, and face of the arrangement as being either "inside" or 

"outside" of the region defined by T. In particular, we construct an operation sequence 

for each Euler tour just constructed. We begin each such a with a vertex in the 

tour with a vertical shadow extending to - oo .  Each operation in a is an assignment 

of the form xi = b, where x/ is some leaf in T and b is a boolean constant with the 

m 

Fig. 6. The CSG boundary-evaluation problem. 

m 

m 
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following interpretation: a "0" represents the proposition "outside of primitive i" and a 

"1" represents "inside primitive i." We assume that each leaf of T begins with a value 

of "0," since we begin a with a vertex with a vertical shadow extending to - e ~ .  Note 

that while T is defined in terms of regions, its definition is such that, given any point p 

in the plane, we can evaluate T as a boolean expression, where each leaf value contains 

the appropriate value relative to p, and this evaluation will tell us whether or not p is 

inside ("1") or outside ("0") the object described by T. Thus, a solution to the off-line 

expression-evaluation problem for a will allow us to label each vertex, edge, and face 

of the arrangement as either being inside or outside the object defined by T. Therefore, 

by applying the off-line expression-evaluation theorem of the previous section, we can 

evaluate T for each cell of the polygon arrangement in O(log n) time using O(n + I) 

processors. Constructing a boundary representation of the defined region is then a simple 

matter of removing edges and vertices that are not on the boundary (which can now be 

determined by a simple local test). This gives us the following theorem: 

THEOREM 3.4. Two-dimensional CSG evaluation can be performed in 0 (log n) time 

using 0 (n log n + I) processors, where n is the total number of primitive edges and I 

is the number of edge intersections in the polygon arrangement (which is 0 (n 2) in the 

worst case). 

4. Sweeping Through a Set of Rectangles. In this section we address the situation 

when it is desired to perform a number of coordinated sweeps in parallel, which together 

define a sweep through a set of rectangles. We motivate our approach with two important 

applications: computing the contour of a collection of rectangles in the plane [35], [58], 

[57], [12], and performing hidden-surface elimination on a collection of rectangles in 

~3 [28], [25], [9], [37], [43]. 

In keeping with our notion of parallel persistence, one of the paradigms we use in 

our algorithms is that of an event list. Recall that an event list E is an array representing 

the history of some variable e. Each record in an event list E corresponds to a change 

in the value of e, and stores both the new value of e and the "time" at which the change 

occurred (where, in the context of this section, we let the time be a real number that 

corresponds to the position in the operation sequence of the operation that caused the 

change to e). Both of our methods also depend on the use of a number of additional 

parallel techniques, which we discuss in the following two subsections. 

4.1. Some Algorithmic Tools. The first algorithmic tool we review is the fractional 

cascading of Chazelle and Guibas [15], and how it can be implemented in parallel [4]. 

The general framework is one in which we are given a directed bounded-degree graph 

G = (V, E), where each node v in G contains a sorted list C(v). The problem is to 

construct a data structure so that given a walk (Vl, v2 . . . . .  Urn ) and an arbitrary element 

x, one processor can locate x in all of the C(vi) 's  quickly. An efficient solution involves 

constructing an "auxiliary" list A(v) for each C(v) list, such that 

(i) C(v) c_ A(v), 

(ii) ~ v  IA(v)I is O ( ~ c  v IC(v)[), and 
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(iii) given the position of x in A(v) one can locate x in C(v) and in A(w),  for each 

neighbor w of v, in O(1) time. 

Atallah et al. [4] derive the following lemma for this problem: 

LEMMA 4.l. Given a directed bounded-degree graph G = (V, E), a fractional cas- 

cading data structure for G, including all the auxiliary lists A(v) for each v ~ V, can 

be built in 0 (log N) time using 0 (N) space with 0 (N/log N)  processors on a CREW 

PRAM, where N is IVl + IEI + ~v~v IC(v)l. 

As observed by previous researchers [15], [4], this technique is quite useful for re- 

ducing the time complexity for performing a sequence of similar searches, provided the 

sequence forms a single path in the graph G. In some instances, however, it is conve- 

nient to allow the collection of similar searches to grow as a tree, rather than a single 

path. Specifically, one can imagine such a collection of searches being implemented by 

a group of processors, where, in any step t, one may wish to allow for various proces- 

sors to each "spawn" another processor, and have the new processor begin executing 

in step t + 1 [44]. The next lemma shows that the only real cost of allowing for this 

extension is in the parallel time. In terms of work, it is essentially free, in that it only 

requires an increase of at most a constant factor in the work needed to simulate it for 

our problems. 

LEMMA 4.2 [23]. Given an algorithm A designed for a PRAM model that uses a spawn- 

ing processor allocation scheme and requires O (w) work in t time, A can be simulated 

on an analogous PRAM with global allocation with O(w) work and time O(t log p), 

where p is the final number of  processors. 

For an example of an application that uses both of the above lemmas, consider the 

following problem. Suppose an n-node simple polygon P is given, and it is Wished to 

build a data structure for P that allows the determination of all the intersections of a 

query line L with P efficiently in parallel. One possible solution is to build a parallel 

version of the data structure of Chazelle and Guibas [15], for performing such queries 

sequentially in O (k log n) time. The method is as follows: 

1. Build a complete binary tree B on the edges of P, in the order that they appear in a 

clockwise traversal. So each node v in B corresponds to a chain, Pv, of P, consisting 

of all edges stored in descendants of v. 

2. For each v in B construct the convex hull, Hv, of Pv. This can be done in O(logn) 

time using O(n/log n)processors [55], [56]. 

3. Construct a fractional cascading data structure on the upper and lower chains of 

the Ho's (which form lists at each node in B) using edge slopes as keys for the 

fractional cascading. The underlying graph is the tree B. This can also be done 

in O(logn) time using O(n/logn)  processors, by Lemma 4.1, and completes the 

construction. 
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Thus, the entire construction can be implemented in O(log n) time using O(n/ log  n) 

processors. 5 Given the position of the slope of L in the upper and lower hulls of By (based 

on slope), it can be determined if L intersects Bo (and hence Po) in constant time [15] 

(by a few simple calculations). Therefore, given a line L, by a top-down search (using 

the fractional cascading auxiliary lists) all the places L intersects P can be determined in 

O (log n) time using O (1 + k) processors, assuming a local processor allocation scheme, 

where k is the number of answers. By applying Lemma 4.2, this immediately implies 

that such a query can be performed in O (log 2 n) time using O (1 + k/ log n) processors 

in the CREW PRAM model. 

Returning to the problem of sweeping through a set of rectangles, in the follow- 

ing subsection we review an important data structure, which our algorithms use as ~the 

skeleton structure for an array-of-trees construction. 

4.2. The Segment Tree. Let S = {S1 ,  S 2 . . . . .  Sn} be a set of vertical line segments 

in the plane, and let Y = (Yl, Yz . . . . .  Yzn) be the (nondecreasing) sorted list of the 

y-coordinates of the endpoints of the segments in S. To simplify the exposition we 

assume that no two endpoints in S have the same x-coordinate, i.e., xi < xi+l. (It is 

straightforward to modify our algorithm for the general case.) Let T be the complete 

binary tree whose 2n + 1 leaves, in left to right order, correspond to the intervals (-~x~, Yl], 

[Yl, Y2], [y2, Y3] . . . . .  [Ym-1, Ym], [Ym, +C~), respectively. Associated with each internal 

node v ~ T is a closed interval Iv = [Yi, yj] which is the union of the intervals associated 

with the descendants of v. (Of course, the leftmost and rightmost nodes at each level 

will have intervals Io = (-cx~, Yi] and Iv = [yj, +e~).) Let rio denote the horizontal 

slab Io x ( - ~ c ,  +ec) .  We say a segment si covers a node v ~ T if it spans rio but not 

I'Iparent(o ) . Clearly, no segment covers more than two nodes of any level of T; hence, 

every segment covers at most O (log m) nodes of T. For each node v E T we define two 

sets, Cover(v),  End(v): 

�9 Cover(v) is the set of segments in S that cover v. 

�9 End(v)  is the set of all segments that do not span l-Iv but have an endpoint in rio. 

The tree T together with the above lists constructed for each node in T constitutes 

the segment tree for S [8]. (See Figure 7.) 

4.3. Computing the Contour. Given a set of isothetic rectangles, we consider the prob- 

lem of computing and reporting the contour of the union of the rectangles. (See Figure 8.) 

Sequentially, this problem was first studied by Lipski and Preparata [35], and time opti- 

mality was achieved by Wood [58]. Time and space optimality was subsequently achieved 

by Widmayer and Wood [57]. In the parallel domain Chandran and Mount [12] produced 

a CREW PRAM algorithm that runs with 0 (n) processors in 0 (kmax) time, where kmax 

is the largest number of output subsegments associated with any one line segment (which 

can be O(n)). 

We achieve 0 (log n) time with 0 (n + k~ log n) processors (which is optimal), where 

k is the size of the output. Our method reports the edges of the contour. If the contour 

5 This method actually improves the sequential time complexity of constructing the Chazelle-Guibas data 
structure [15], as their method runs in O (n log n) time. 
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Fig. 7. A segment tree. R is in Cover(2), Cover( lO), Cover(11), End(l), End(7), End(9), End(12), End(13), 

End(14), and End(15). 

cycles are desired, then the work bound of our method becomes O (n log n + b (k)), where 

b(m) is the work for performing stable bucket sorting of m elements. 6 Our procedure, 

which we describe below, follows the general framework of Wood [58]. We determine 

all the vertical line segments of the contour, and then repeat our procedure, exchanging 

the roles of the x- and y-axes, to obtain the horizontal segments. 

Step 1. In this step we build the segment tree on the set of vertical segments obtained 

from the rectangle vertical boundaries, complete with all the Cover(v) and End(v) lists 

constructed for each node, such that each leaf contains one such segment, and the seg- 

ments are assigned to the leaves in order sorted by the x-coordinates (so the leftmost 

Fig. 8. The contour of a set of isothetic rectangles. 

6 Matias and Vishkin [36] give a randomized method running in O(logm loglogm) expected time with 

O (m log log m) work on an arbitrary-CRCW PRAM. 
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Fig. 9. The values of hi, top, and bottom on an interval (xl, Xi+l). 

leaf has the lowest x-value and the rightmost has the highest.) We view each Cover(v) 

as an event list where x-coordinates act as the "time" field. Using the method of Atallah, 

et al. [4], we can implement this step in O (log n) time with O (n) processors. 

Step 2. For each node v, we construct an event list, C(v), such that, for each entry 

Ol i = ( X i ,  Ci )  in C(v), ci is the number of segments that cover v during the interval 

[xi, Xi+l). The x-values (X;, xi+l) in this case are the x-coordinates of the segments in 

Cover(v). Given the Cover(v) lists, this construction is essentially just a collection of 

parallel prefix computations. We then construct the fractional cascading auxiliary lists 

for these C(v) lists, using the method of Atallah et al. [4], which runs in O (log n) time 

with O (n) processors (since the total size is O (n log n)). 

Step 3. For each node v, we construct an event list, H(v), such that, for each entry/3i = 

(Xi, hi), hi is the number of (maximal) rectangular regions in FI ~ that extend horizontally 

from xi to Xi+l and do not intersect the interior of any rectangle in Cover(v) t_J End(v). 

Intuitively, hi is the number of "holes" from x; to Xi+l when we restrict our attention to 

the rectangles in Cover(v) U End(v). (See Figure 9.) In the terminology of Section 2, 

the x-coordinates that correspond to the x-coordinates of the vertical boundaries of the 

rectangles in Cover(v) U End(v) determine the "times" in H(v). We also define a flag 

top (resp. bottom), for each entry in an H list, such that H[i].top (resp. H[i].bottom) 

is true if and only if the topmost (resp. bottommost) maximal rectangle from xi to xi+l 

does not extend into the slab adjacent to FIo. 

Implementation. We can construct the H(v) lists at the leaves immediately from the 

entries in C(v). Specifically, if (xi, ci) is the ith value in C(v), then (xi, hi) is the ith 

value in H(v), where hi = 1 ifci = 0, and hi = 0 otherwise. We construct the other I-I(v) 

lists by a bottom-up procedure. Assume, for some node v, we have already constructed 

the respective H lists for v 's  children, u and w (with rlu being above l-Iw), and we have 

a list of sorted x-coordinates, each of which is determined by the vertical boundary of 

a rectangle in Cover(v) U End(v). Also assume (by the fractional cascading auxiliary 

pointers) that, for each element s in this list, we have a pointer to the elements, ~,/3, 

and y, in C(v), H(u), and H(w), respectively, that have the largest x-coordinate less 

than or equal to s 's  x-coordinate. We define the (xi, hi) pair in H(v) for s so that xi 

is the x-coordinate of s, and hi is defined as follows: Let o~ = (x, c). If  c > 1, then 
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hi = 0. I f c  = 0, then we set hi equal to the sum ofhu and hw, where/3 = (xu, hu) and 

y ----- (xw, hw). This is not quite right, of course, since we have not taken the influence of 

the top and bottom flags into account. We can easily update h; to reflect their influence, 

however, by decrementing hi by one if neither ~.bottom nor ),.top is true. This can 

easily be implemented (for all v in parallel) in O (log n) time with O (n) processors. 

Step 4. In this step we construct the pruned array-of-trees. Given an entry oti = (xi, hi) 
in H(u), the pruning function zr (oti, u), which determines whether a pointer to oti occurs 

in B(v), where v is the parent of u, is equal to one if and only if both of the following 

hold: 

(i) The record in C(v) with the largest x-value less than or equal to xi has a c-value 

equal to zero. 

(ii) hi > O. 

We calculate this, and, in so doing, construct the pruned array-of-trees, level-by-level, 

starting at the leaves, as in Section 2.2. This step runs in O(logn) time using O(n) 

processors. 

Comment. The intuition behind this definition ofzr is that it "jumps over" linear chains 

of pointers within the tree, and so makes possible an optimal search of the tree in Step 

5 below. These linear chains are caused by the pruning process, which may prune one 

child of a node and not the other. 

Step 5. In this step we determine, for each vertical line segment L in S, all the subseg- 

ments of L that are part of the contour. Starting*at the root, we search down the tree for 

the subsegments of L, checking the H list at each node, searching with the x-coordinate 

of L for uncovered intervals through which L might be seen. If the active h-value in the 

H list is zero, then we stop searching down this branch as no output can result. Once 

each node, v, covered by L is located, for each such v, we determine the total number 

ko of uncovered subsegments of L in the subtree rooted at v, by examining the H lists 

at v's children. Then we request [ko/log n] new processors, which start at the children 

of v, and search the compressed trees rooted there (in the pruned array-of-trees) for all 

pieces of the output that are on L in fro. This completes the algorithm, and gives us the 

following theorem. 

THEOREM 4.3. Given a collection of n isothetic rectangles in the plane, the edges of 

their contour can be determined in O(logn) time using O(n + k/logn) processors in 

the CREW PRAM model, which is optimal. 

In the next subsection we give another application of our coordinated parallel sweep- 

ing approach. 

4.4. Hidden-Surface Removal for Rectangles. Given a set of n opaque iso-oriented 

rectangles parallel to the xy-plane, we wish to determine all of the portions of each 

rectangle that are visible from viewing at (0, 0, +o0). Sequentially, this problem was 

first studied by Gtiting and Ottmann [28], with more efficient algorithms being recently 

reported by Goodrich et al. [25], Bern [9], Mehlhorn et al. [37], and Preparata et al. [43]. 

The best sequential bound (optimizing for the term involving only n) is O ((n + k) log n), 
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where k is the size of the output [25], [9], [37]. We show how to solve this problem in 

O (log 2 n) time using O ((n + k) log n) work. Our algorithm description assumes a local- 

allocation scheme and runs in O(logn) time using O(n + k) processors; we apply 

Lemma 4.2 to derive the claimed bounds. Our method is based on the approach of Bern 

[9] but avoids an inherently sequential step in his algorithm (which uses the union-find 

structure of Hopcroft and Ullman [29]) by use of the array-of-trees. 

As in the previous algorithm, we use a segment tree to store the vertical edges of the 

rectangles. For each node v in this tree, we define the restricted subscene for v to consist 

of all vertical edges e such that e belongs to a rectangle in Cover(v) tO End(v), but the 

intersection of the projection of e, onto the xy-plane, with IIv is more than a single point. 

Our method uses three event lists built for each node v: Top(v), High(v), and Low(v), 

where there is an entry in Top(v) for each vertical segment in Cover(v), and an entry 

in High(v) and Low(v) for each vertical edge of the restricted subscene for v. Their 

meanings are as follows: If (xi, topi) is an element in Top(v), then topi is the maximum 

z-coordinate of the rectangles in Cover(v) that intersect the plane x = xi. If (xi, high i) 

is an element in High(v), then high i is the maximum z-coordinate of the rectangles in 

the restricted subscene for v that intersect the plane x = xi. If  (xi, lowi) is an element 

in Low(v), then lowi is the minimum z-coordinate of the rectangles in the restricted 

subscene for v that intersect the plane x = xi and are visible from (0, 0, +o~). Since 

the "times" in each of these event lists are determined by x-coordinates, given some 

x-coordinate, x, we define the entry of one of these lists that has a largest x-coordinate 

less than or equal to x to be the entry active at x. 

Our method for finding the vertical edges in the visibility map is as follows: 

Step 1. We construct the segment tree, together with all the Cover(v) and End(v) lists, 

sorted by x-coordinates of the vertical segments. 

Step 2. We construct Top(v) for all nodes v, in O(logn) time with O(n) processors 

by a parallelization of the sequential method of Goodrich et al. [25] via the cascading 

divide-and-conquer paradigm of Atallah et al. [4]. We give the details in Section 5. 

Step 3. From the Cover(v) and End(v) lists, we construct the lists of x-coordinates 

for the High and Low arrays, and apply fractional cascading to these arrays and the 

Top arrays constructed in the previous step. Also, given the Top(v) values previously 

constructed, we can construct the event lists for Low and High by a simple bottom-up 

procedure. Constructing these lists for the leaves is straightforward, so suppose we have 

already computed the High and Low lists for the children u and w of v. Consider an 

x-coordinate, x, for which we wish to compute its corresponding high and low values. 

Let high, and high w be the elements of High(u) and High(w) that are active at "time" x. 

Similarly, define lowu and low~. Also, let top be the element of Top(v) active at x. Then 

high v = max{highu, high~, top} and lowv = max{min{lowu, loww}, top} [9]. Thus, we 

can compute high and low in O (1) time given these other values (which we can maintain 

during our bottom-up procedure). Therefore, this construction takes O (log n) time using 

O (n) processors. 

Step 4. In this step we determine all the visible vertical edges. We assign a processor 

P to every vertical edge e of an input rectangle. P visits every node in the segment tree 

which e covers, searching down from the root of the segment tree, and, for each such 
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node v, P determines if e is completely visible in Hv, completely invisible in Fly, or 

partially visible in Fly. To help P make these determinations, as P traverses the tree 

it maintains a value maxtop, which is the largest top value active at x(e )  from all the 

Top(v ' )  lists such that v' is an ancestor of  v, where v is the current node in the traversal. 

Let low and high be the values in Low(v)  and High(v) ,  respectively, active at x(e) .  The 

test for each of these possibilities is as follows: 

I f  z(e) < maxtop or z(e) < low, then e is completely invisible in l-Iv. 

I f  z(e) > maxtop and z(e) > high, then e is completely visible in I-Iv. 

Otherwise, if z(e) > maxtop and low <_ z(e) <_ high, then e is partially visible in l-Iv. 

Comment. Having marked e relative to each slab l/o that e covers as being completely 

visible, completely invisible, or partially visible, we must now determine the segments 

of  e that are visible in each slab for which e is marked partially visible (we are done with 

e in the other slabs). Our method, which we describe in the next step, involves having 

the processor assigned to enumerating the visible segments of  e in Fly perform a search 

in the subtree T~, rooted at v, spawning enough new processors to enumerate all these 

segments. The difficulty in this step comes from the need to output only O(1) pieces of  

each visible segment even though each such segment can cover up to O (log n) nodes 

(in the segment tree sense of"cover")  in T~. Not fulfilling this requirement would mean 

that we would use more than O (n + k) processors overall. 

Step 5. We assign a processor P for e to each slab 1-Iv such that e is partially visible, 

and use this processor to enumerate all the visible segments of  e in Fly. In P ' s  search 

down To we assume, inductively, that e is partially visible on l/v and that P has already 

determined two segments, et and eb, on e that are visible outside l-Iv, with et being 

adjacent to the top boundary of l-Iv and eb being adjacent to the bottom boundary of Flu 

(in the y-direction). (Initially, et and e b are nil.) P uses the fractional cascading pointers 

from v to test in O(1) time if e is completely visible, completely invisible, or partially 

visible in Flu and Flw, where u and w are the children of v, with l/u being above Flw (in 

the y-direction). There are several cases: 

1. e is completely visible in Flu and completely invisible in Flw (e cannot be completely 

invisible or completely visible in both, by induction). Then P "grows" et to include 

e n I-Iu, i.e., assigns et := et  U (e N Flu), and outputs et and eb (ifeb is not nil). P is 

done. 

2. e is completely visible on rlu and partially visible in Flw. Then P grows et to include 

e n Flu (i.e., assigns et := el U (e n Ilw) ) and continues its search in l-lw. 

3. e is completely invisible in Flu and completely visible in FIw. Then P "grows" eb to 

include e O Flw, i.e., assigns eb :----- eb U (e n l/w), and outputs eb and et (if et is not 

nil). P is done. 

4. e is completely invisible in Flu and partially visible in l/w. Then P outputs et (if it is 

not nil) and continues its search in I-Iw (with et = nil). 

5. e is partially visible on Flu and completely visible in I-lw. Then P grows eb to include 

e N Flw (i.e., assigns eb := eb U (e n Flw)) and continues its search in Flu. 

6. e is partially visible in l/u and completely invisible in Flw. Then P outputs eb (if it is 

not nil) and continues its search in Flw (with e b ~ nil). 

7. e is partially visible on'Flu and I-Iv. Then P spawns a new processor P '  to search in 
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I and r ' = nil and ' = eb (P '  runs the same program as P but uses e t e b I-lw with e t e b 

instead of et and eb). P then sets eb := nil and continues its search in FI,. 

This completes the algorithm. 

The above procedure determines all the vertical segments in the visibility map. By 

running the algorithm once more, with the roles of the x-axis and y-axis reversed, we 

can find the visible horizontal edges. If we also wish to output the visible surfaces, 

then for every visible line segment we need to determine the visible rectangles that are 

immediately to the left and right of the segment. This can be easily be accomplished 

during the previous step, however, by noting the active values of maxtop, low, and high 

during the downward searches in the segment tree, labeling each visible segment s with 

the polygons visible on each side of s as soon as we have determined that J is visible. 

We leave the details to the interested reader. As we show in the following theorem, 

this algorithm runs in O (log n) time using O (n + k) processors in the CREW PRAM 

with spawning processor allocation, hence, in O (log 2 n) time using O ((n + k)/log n) 

processors in the CREW PRAM (with global processor allocation). 

THEOREM 4.4. Given n iso-oriented rectangles in ~3, the hidden-surface elimination 

problem for these rectangles can be solved in O(log 2 n) time using 0 ( (n + k )/ log n) 

processors in the CREW PRAM model, where k is the size. of the output. 

PROOF. By Lemma 4.2, it is sufficient to show that the algorithm runs in O (log n) time 

using O (n + k) processors in the CREW PRAM with spawning processor allocation. 

Each step in our method can be implemented in O(log n) time, since the height of the 

segment tree is O (log n). Thus, we must show that the total number of processors is 

O (n + k). Of course, Step 5 is the only step for which we spawn new processors, and 

every other step can be implemented with O(n) processors. We concentrate, then, on 

Step 5. To show that the number of processors spawned in this step is O (n + k), it suffices 

to show that O (1) processors are spawned for each vertical segment in the visibility map. 

So, let s be a vertical segment in the visibility map and let e be the input edge containing 

s. Since the endpoints of s are determined by two y-coordinates from input rectangles, 

the endpoints of s fall on slab boundaries in the segment tree. Let v be the least-common 

ancestor of the nodes in the segment tree that s covers. Since s is visible, v must have 

been visited by a (single) processor P in Step 5. The only case for which a processor P 

spawns a new processor P '  is for a node such that e is partially visible in the two slabs 

associated with that node's children. However, the only place where s forces a processor 

possibly to spawn a new processor to output eventually a piece of s is at v. In all other 

searches down the subtree rooted at v some piece of s will be stored in eb (for the subtree 

of v's left child) or et (for the subtree of v's right child). Thus, we spawn at most two 

processors to output s. This completes the proof. [] 

5. Computing the Top Event Lists. In this section we show how to compute the 

visibility of the rectangles that cover v for each v in the segment tree of Section 4.4. 

Note that this was the operation that we had to perform in Step 2 of the algorithm in 
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that section. It is also the crucial difference between our approach and the sequential 

approach of Bern [9]. Our method is a nontrivial parallel implementation of the sequential 

algorithm of Goodrich et al. [25] for the same problem. We include our description here 

for completeness. Our method runs in O (log n) time using O (n) processors. 

5.1. A Simple, but Inefficient, Method. We begin by describing a simple method that 

takes O (log n) time using O (n log n) processors. The idea is to assign ICover(v) l pro- 

cessors to each node v in the segment tree T. These processors then perform a parallel 

mergesort procedure to sort the vertical boundaries of the rectangles in Cover(v) by 

x-coordinates. In addition, with each merge of two lists A and B of rectangles we also 

compute the topmost rectangle, top(x), between each x-coordinate in Atd B. This extra 

computation can easily be implemented in O(1) time by taking the max of the top values 

of the two overlapping intervals in A and B that determine each interval in A U B. Using 

Cole's parallel mergesort procedure [17] to implement each such procedure requires 

O (log n) time using O (n log n) processors (for all v in T). 

5.2. A Modest Improvement. We can improve this approach by examining how various 

Cover(v) lists in T relate to one another. In particular, we label each rectangle R with the 

depth d of the node in T that is the least-common ancestor of all the nodes that R covers. 

For each node v let Na (v) (resp. Sd (v)) denote the vertical boundaries of the rectangles 

in End(v) that intersect the northern (resp. southern) boundary of Fly and have depth 

label d, sorted by their x-coordinates. Atallah et al. observe the following [4]: 

OBSERVATION 5.1. Let v be a node in T at depth d, and let z denote v's sibling in T. 

Then Cover(v) = St(z) U S2(z) U . . .  tA Sd-I(Z) if v is a right child, and Cover(v) = 

Nt(z) U N2(z) U. . -  U Nd-l(z) if  v is a lefl child. 

Also note that Nd(v) = Nd(u) U Na(w) and Sd(v) = Sa(u) U Sd(w), where u and 

w are the children of v (provided v is at depth at least d). Thus, we can create [logn7 

copies, T~, T2 . . . . .  T[lognl, of the tree T, and construct Nd(v) and Sd(v) for each v in 

Td using the cascading divide-and-conquer technique of Atallah et al. [4]. This takes 

O(logn) time using O(n) processors. 7 In addition, we can be computing the topmost 

rectangle on each x-interval in each Nd(v) list (resp. Sd(V) list) in these same bounds, 

as in the previous method. 

Now to compute the visibility of the x-intervals determined by the rectangles in 

any Cover(v), where, say, v is a right child at depth d, we simply need to merge 

Sl(z), S2(z) . . . . .  Sd-I(V), applying the approach of the previous method during the 

merges. We can perform all of these merges in a bottom-up fashion in O (log d log log n) 

time using O ([ Cover(v)/flog log n) processors [ 10], [31 ], [54]. By Brent's theorem [ 11], 

this immediately implies that the visibility of the x-intervals determined by the 

7 This implies that some of the merges in a Td may be vacuous, but this is easy to implement: simply have 

a processor assigned to the left (resp. right) child write a 1 to a left (resp. right) field at the parent to see if 

there needs to be a merge at this node. Thus, even though there are O(n log n) nodes overall, O(n) processors 

suffice for all the merges. 
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rectangles in any Cover(v) can be constructed in O(logn) time using 

0 (ICover(v)l log log n~ log n) processors (i.e., O (I Cover(v) l log log n) work). 

5.3. A Coordinated Attack. Our approach to achieving O (log n) time using only O (n) 

processors for the entire computation is to coordinate the construction of all the visibility 

lists using a "stratification" paradigm [13]. Let V/s~ denote the visibility list for the x- 

intervals of the rectangles in Cover(v) (i.e., the upper envelope of these rectangles 

listed by increasing x-coordinates). Also, let Af(FI~) (resp. S(FIv)) denote the plane 

perpendicular to the xy-plane and containing the northern (resp. southern) horizontal 

boundary of FI~. Our method for computing Vis~ for all v in T is as follows: 

0. We begin by computing the trees T1, T2, .. ~., Trlogn 1 and the visibility of the x-intervals 

determined by the La(v) and Ra(v) in each Ta, as in the previous method. This takes 

O (log n) time using O (n) processors. 

1. We mark each node that is at a depth of T that is a multiple of Flog log n7 as a 

supernode. For each supernode v, at depth d, we let T(v) denote the subtree of T 

rooted at v and having the supernodes at depth d + [log log nl as its leaves. 

2. For each supernode v, let z be the nearest supernode ancestor of v (so v is a leaf 

in T (z)). We construct Vis_ Northern_ Long(v) and Vis_ Southern_ Long(v), where 

Vis _Northern_ Long(v) is a representation of the upper envelope in the A/'(FIz) plane 

of the segments formed by intersecting .Af(Flz) with the rectangles in End(v), ig- 

noring the rectangles in End(v) that do not intersect Af(Flz). Intuitively, Vis_North- 

ern_Long(v) is the upper envelope of the "long" rectangles in End(v). Vis_ South- 

ern_Long(v) is defined similarly. These can be computed in O(logn) time using 

O (n) processors by the method described in the previous subsection. 

3. For each node v that is not a supernode we let z be the nearest supernode ances- 

tor of v (so v is an internal node in T(z)). We construct Vis_Northern _Long(v) and 

Vis_ Southern _ Long(v), as defined in the previous step. We perform this computation 

for each z by applying the mergesort-like procedure of Section 5.1 to the solutions al- 

ready at the leaves of T (z) (combining solutions up the tree using a bottom-up merge). 

Since the height of each T (z) is O (log log n), this step takes O ((log log n) 2 ) time using 

0 (nz/log log n) processors [ 10], [31 ], [54], where nz is the number of rectangles which 

are stored in the leaves of Tz (in Vis _ Northern _ Long(v) and Vis_ Southern _ Long(v) 

lists) at the beginning of this step. Since a rectangle R can be contained in at most 

log n/[log log n] of these (leaf) supernode lists, ~ z  nz = n log n/Flog log nq ; hence, 

the total work needed for this step is O (n log n). 

4. For each node v that is not a supernode (hence, has a nearest supernode ancestor z), 

we construct Vis_ Cover_ Short(v), where Vis_ Cover_ Short(v) is a representation 

of the upper envelope (in the Af(FI~) plane) of the segments formed by intersecting 

Af(FIv) with the rectangles in Cover(v) that have both of their horizontal boundaries 

properly contained in FI z. This can be done in O (log n) time using O (m ~ log log n) 

work by the method given above (in Section 5.2), where rn~ is the number of rectangles 

involved for v. In particular, Vis_Cover_Short(v) can be constructed by merging 

Sa-l(W), Sa-2(w) . . . . .  Sdz (w), if, say, v is a right child (otherwise the N lists would 

be used for w), where w is v's sibling, d is the depth of v, and dz is the depth of z. 
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Since any rectangle can cover at most O (log log n) nodes in this way, this step can be 

implemented in O (log n) time using O (n (log log n) 2) work. 

5. For each node v we compute Visv, the upper envelope (in the N0-Iv) plane) of the 

segments formed by intersecting 2V'(I-lv) with the rectangles in Cover(v). We do this 

by merging Vis_ Cover_ Short(v) with Vis _ Northern _ Long(w) (resp. Vis _ South- 

ern_Long(w)) such that w is a sibling of v and w is to the right (resp. left) of v. Since 

any rectangle that covers v either has both its horizontal boundaries in Flz or has one 

in a 1-Iw (where w is a sibling of v) and the other outside of l-Iz, this gives us V/s, for 

each v in T. Since we need perform only a single merge for each node v, this step 

can be implemented in O (log log n) time using O (n log n) work [10], [31], [54]. This 

completes the construction. 

Therefore, we have the following lemma: 

LEMMA 5.2. Given a collection of  iso-oriented rectangles in ~3, and a segment tree T 

built upon their horizontal boundaries, the upper envelope of  the rectangles in Cover(v) 

for  each v in T (Step 2 in our algorithm for hidden-surface elimination for  rectangles) 

can be constructed in 0 (log n) time using 0 (n ) processors in the CREW PRAM model. 

6. Conclusion. We have shown how to design efficient parallel algorithms for a num- 

ber of problems whose efficient sequential algorithms use various versions of the plane- 

sweeping paradigm. These problems included general hidden-surface elimination, CSG 

boundary-evaluation, rectangle contour computation, and hidden-surface elimination for 

rectangles. An interesting open problem that remains is to determine if a priori knowl- 

edge of all the "events" in a plane sweep is required in order to derive an optimal parallel 

algorithm for a problem solved sequentially by that plane sweep. Perhaps the most chal- 

lenging such problem at the present time is to determine if the segment arrangement ofn 

line segments in the plane can be computed in O (log n) time using 0 (n + I/ log n) pro- 

cessors, where I is the number of intersections (recall that this was the bottle-neck com- 

putation in our hidden-surface elimination and CSG boundary evaluation algorithms). 

This problem can be solved sequentially in O (n log n + I) time using the beautiful, but 

rather involved, plane-sweeping algorithm of Chazelle and Edelsbrunner [14]. 
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