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Abstract

Data corruption is one of the key problems that is on
top of the radar screen of most CIOs. Continuous Data
Protection (CDP) technologies help enterprises deal with
data corruption by maintaining multiple versions of data
and facilitating recovery by allowing an administrator re-
store to an earlier clean version of data. The aim of the
recovery process after data corruption is to quickly tra-
verse through the backup copies (old versions), and re-
trieve a clean copy of data. Currently, data recovery is
an ad-hoc, time consuming and frustrating process with
sequential brute force approaches, where recovery time
is proportional to the number of backup copies examined
and the time to check a backup copy for data corruption.

In this paper, we present the design and implementa-
tion of SWEEPER architecture and backup copy se-
lection algorithms that specifically tackle the problem
of quickly and systematically identifying a good recov-
ery point. We monitor various system events and gener-
ate checkpoint records that help in quickly identifying a
clean backup copy. The SWEEPER methodology dy-
namically determines the selection algorithm based on
user specified recovery time and recovery point objec-
tives, and thus, allows system administrators to perform
trade-offs between recovery time and data currentness.
We have implemented our solution as part of a pop-
ular Storage Resource Manager product and evaluated
SWEEPER under many diverse settings. Our study
clearly establishes the effectiveness of SWEEPER as
a robust strategy to significantly reduce recovery time.

1 Introduction

Data Resiliency is a very important concern for most or-
ganizations to ensure business continuity in the face of
different types of failures and disasters, such as virus at-
tacks, site failures, machine/firmware malfunction, acci-
dental and malicious human/application errors [17, 2].

Resiliency is not only about being able to resurrect data
after failures, but also about how quickly the data can be
resurrected so that the business can be operational again.
While in the case of total data loss failures, the recovery
time is largely dominated by Restoration Cost, i.e., time
to restore the data from backup systems at local or remote
locations; in the case of data corruption failures, the time
to identify a clean previous copy of data to revert to can
be much larger. Often, data corruption is detected after
the incidence of corruption itself. As a result, the admin-
istrator has a large number of candidate backup copies to
select the recovery point from. The key to fast recovery
in such cases is reducing the time required in the identifi-
cation step. Much research and industrial attention have
been devoted to protecting data from disasters. However,
relatively little work has been done in the area of how to
quickly retrieve the latest clean copy of uncorrupted data.
The focus of this paper is on how to efficiently identify
clean data.

Data resiliency is based on Data Protection: taking
either continuous or periodic snapshots of the data as it
is being updated. Block level [7] [15], file level [10],
logical volume level [27] and database level [5] data
replication/recovery mechanisms are the most prominent
data protection mechanisms. The mechanisms vary with
respect to their support for different data granularities,
transactional support, replication site distance, backup
latencies, recovery point and recovery time objectives
[11]. Continuous data protection (CDP) [24] is a form
of continuous data protection that allows one to go back
in time after a failure and recover earlier versions of an
object at the granularity of a single update.

The recovery process is preceded by Error Detection.
Errors are usually found either by application users or
by automated data integrity tools. Tools such as disk
scrubbers and S.M.A.R.T. tools [23] can detect corrup-
tions caused by hardware errors. Virus scanners, appli-
cation specific data integrity checkers such as fsck for
filesystem integrity, and storage level intrusion detection
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tools [19, 3] can detect logical data corruptions caused
by malicious software, improper system shutdown, and
erroneous administrator actions. For complex Storage
Area Network (SAN) environments, configuration vali-
dation tools [1] have been proposed that can be used in
both proactive and reactive mode to identify configura-
tion settings that could potentially lead to logical data
corruptions.

Once system administrators are notified of a corrup-
tion, they need to solve the Recovery Point Identification
problem, i.e., determine a recovery point that will pro-
vide a clean copy of their data. Typically, system admin-
istrators choose a recovery point by trading-off recovery
speed (the number of versions that need to be checked
to find a clean copy) versus data currentness (one might
not want to lose valid data updates for the sake of fast
recovery). Recovery point identification is currently a
manual, error-prone and frustrating process for system
administrators, due to the pressure to quickly bring orga-
nization’s applications back on-line. Even though CDP
technologies provide users with the ability to rollback ev-
ery data update, they do not address the problem of iden-
tifying a clean copy of data. It is only after a good re-
covery point has been identified, that Data Recovery can
begin by replacing the corrupt copy by the clean copy of
data. The efficacy of a recovery process is characterized
by a Recovery Time Objective (RTO) and a Recovery
Point objective (RPO). RTO measures the downtime af-
ter detection of corruption, whereas RPO indicates the
loss in data currency in terms of seconds of updates that
are lost.

This paper describes and evaluates methods for effi-
cient recovery point identification in CDP logs which re-
duce RTO, while not compromising on RPO. The ba-
sic idea behind our approach is to evaluate the events
generated by various components such as applications,
file systems, databases and other hardware/software re-
sources and generate checkpoint records. Subsequently
upon the detection of failure, we efficiently process these
checkpoint records to start the recovery process from an
appropriate CDP record. Since CDP mechanisms are
typically used along with point-in-time snapshot (PIT)
technologies, it is possible to create data copies selec-
tively. Further, since the time it takes to test a copy of
data for corruption dominates overall recovery time, se-
lective testing of copies can drastically reduce recovery
time. This selective identification of copies that one can
target for quick recovery is the focus of this work.

Some existing CDP solutions [16, 21, 30] are based
on the similar idea of checkpointing interesting events in
CDP logs. While event checkpointing mechanisms help
in narrowing down the search space, they do not guaran-
tee that the most appropriate checkpoint record will be
identified. Thus, the CDP log evaluation techniques pre-

sented in this paper compliment these checkpoint record
generation mechanisms in quickly identifying the most
suitable CDP record. The key contributions of this paper
are:

• SWEEPER Recovery Point Identification Ar-
chitecture: We present the architecture of an ex-
tensible recovery point identification tool that con-
sists of event monitoring, checkpoint generation,
clean copy detection and CDP log processing com-
ponents. The architectural framework is indepen-
dent of specific applications and can easily be used
with other application specific CDP solutions such
as [16, 21].

• Novel Event Checkpointing Mechanism: Data
corruptions are usually not silent but are accompa-
nied by alerts and warning messages from appli-
cations, file systems, operating systems, SAN ele-
ments (e.g., switches, virtualization engines), stor-
age controllers and disks. Table 2 lists some events
that usually accompany data corruption caused by
various components. We define a mechanism that
identifies events from various application and sys-
tem activities and uses a combination of a) expert
provided knowledge base, b) resource dependency
analysis, and c) a event correlation technique to cor-
relate them with various types of corruption.

• CDP Record Scanning Algorithms: We present
three different CDP record scanning algorithms that
efficiently process the event checkpoints for iden-
tifying the appropriate CDP log record for data re-
covery. The scanning mechanisms isolate a recov-
ery point quickly by using the observations that (a)
pruning the space of timestamps into equal sized
partitions reduces the search space exponentially
and (b) checkpoint records that have high correla-
tion with corruptions are more likely to be indica-
tive of corruption. One of the novel features of
the checkpoint record selection process is the ac-
ceptance of recovery time objective (RTO) and re-
covery point objective (RPO) as input parameters.
Thus, the algorithms have the desirable property
of providing a tradeoff between the total execution
time and the data currency at the recovery point.
The expected execution time of the algorithms is
logarithmic in the number of checkpoint records ex-
amined and linear in the number of data versions
tested for integrity. The proposed algorithms are
robust with noise in the checkpoint record genera-
tion process, and can deal with errors in correlation
probability estimation. Further, even though they
are not designed to deal with silent errors, they still
find a recovery point in logarithmic time for silent
errors.
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• Performance Evaluation: We present an imple-
mentation of the SWEEPER architecture and al-
gorithms in context of a popular Storage Resource
Manager product (IBM Total Storage Productivity
Center), and demonstrate the scalability of our de-
sign. We also present a comparative analysis of the
various Record Scanning algorithms proposed by
us under different operational parameters, which in-
clude failure correlation probability distribution for
events, number of checkpoint records, and rate of
false negatives. We identify the different scenarios
for which each algorithm is most suited and con-
clusively establish the efficacy of the SWEEPER
methodology.

The rest of this paper is organized as follows. We
formally define the Recovery Point Identification prob-
lem and model in Sec. 2.1 and 2.2. The SWEEPER
architecture is presented in Sec. 2.3. The CDP record
scanning algorithms are described in Sec.3, and our im-
plementation in Sec. 4. Sec. 5 describes our experimen-
tal evaluation. Sec. 6 discusses the strengths and weak-
nesses of SWEEPER in the context of related work
followed by a conclusion in Sec. 7.

2 Recovery-point Identification: Model
and Architecture

We now provide a formal definition of the Recovery Point
Identification problem and model parameters.

2.1 Problem Formulation

We investigate the problem of data recovery after a fail-
ure has resulted in data corruption. Data corruption is de-
tected by an integrity checker (possibly with application
support). The second step in this process is to identify
the nature of corruption (e.g., virus corruption, hardware
error). For isolating the problem, the components (e.g,
controllers, disks, switches, applications) that may be the
cause of error are identified by constructing a mapping
from the corrupted data to the applications. Once the
affected components are identified, the recovery module
finds a time instance to go back to when the data was
uncorrupted. Once the time instance is identified, CDP
logs and point-in-time images are used to construct the
uncorrupted data.

We now formally describe the Recovery Point Identi-
fication problem. The notations used in this paper are
tabulated in Table. 1. The Recovery Point Identification
problem is to minimize the total time taken to recover
the data in order to get the most current uncorrupted data
(i.e., find a timestamp Ti such that Ti = Te while mini-
mizing Drec ). A constrained version of the problem is
to minimize Te − Ti subject to a bound on Drec. The

T0 Time at which data was last known to be
clean

Td Time at which corruption was detected
Ti Timestamp i
Te Error Timestamp
Tp Number of CDP logs after which a PIT copy

is taken
N Number of CDP logs between T0 and Td

Nc Number of checkpoints between T0 and Td

Drec Time taken for recovery
Cp Cost of getting a PIT copy online and ready

to read/write
Cl Average Cost of applying one CDP log entry
Ct Cost of testing one data image for corruption
pi,j probability that checkpoint j is correlated

with corruption i

Table 1: Notations
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Figure 1: Timeline for testing the snapshot at time Ti:
1 Getting a full backup online. 2 Applying incremen-
tal backups over it. 3 Applying CDP logs to create the
snapshot at time Ti. 4 Testing the data for integrity.

identification of Ti proceeds by finding an ordered set
S of timestamps, which is a subset of the set of all the
timestamps (T0, ..., TN ) such that Sm (m = |S|), the
last element of the set S, is the same as the error point
Te. Further, the total cost of creating and testing the data
images corresponding to the m timestamps in S, which
equals Drec, should be minimized. The cost of check-
ing a data image at timestamp Ti for corruption is the
sum of (a) the cost of making the first PIT image preced-
ing the timestamp available for read/write (Cp) (b) the
cost of applying the Ti%Tp (Ti modulo Tp) CDP logs
(Cl(Ti%Tp)) and (c) the cost of testing the copy (Ct).
Hence, the total time spent in isolating the uncorrupted
copy is the sum of the costs of all the timestamps checked
in the sequence S.
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2.2 Recovery Point Parameters and Esti-
mating Sequential Checking Time

We now elaborate on the recovery parameters like Cp, Ct

etc and their typical values. For a typical example, con-
sider Fig. 1, where a Recovery Point Identification strat-
egy decided to check data image at Ti for corruption. The
data protection (continuous and point-in-time) solution
employed in the setting takes a total backup of the data
at regular intervals. In between total backups, incremen-
tal backups are taken after every Tp writes (CDP logs).
The number of incremental backups taken between two
consecutive total backups is denoted by fI . Hence, in
order to construct the point-in-time snapshot of data at
time Ti, we make the first total backup copy preceding
Ti (labeled as Tb in the example) online. Then, we ap-
ply incremental backups over this data till we reach the
timestamp TI of the last incremental backup point before
Ti. The total time taken in getting the PIT copy at TI on-
line is denoted by Cp. On this PIT copy, we now apply
the CDP logs that capture all the data changes made be-
tween TI and Ti, and incur a cost of Cl for each log.
Finally, an integrity check is applied over this data, and
the running time of the integrity checker is denoted by
Ct.

For average metadata and data write sizes of E(Sm)
and E(Sw) respectively, write coalescing factor Wcf , av-
erage filesize E(Sf ), read and write bandwidth of Br

and Bw respectively, a file corpus of Nf files, and a unit
integrity test time It, the expected time taken for each
of these three activities are given by the following equa-
tions. (Cp calculation is based on the assumption that
constructing the PIT copy only requires metadata up-
dates.)

Cp =
(fI/2)(Tp/Wcf )E(Sm)

Bw

,

Cl(Ti%Tp) =
(Tp/2)E(Sw)

Bw

(1)

Ct =
NfE(Sf )

Br

+ NfE(Sf )It (2)

In a typical setup with 1000 files being are modified
every second, update sizes of 4KB, file sizes of 100KB,
metadata size of 64Bytes, total backups every 12 hours,
incremental backups every 1hr, and disk transfer rate of
100Mbps, the time taken to get a PIT image online Cp

is approximately 50 seconds. The time taken to apply
the CDP logs is of the order of 10 minutes, whereas the
I/O time taken (not including any computations) by the
integrity checker Ct comes to about 4 hours assuming
that the integrity checker only needs to check the modi-
fied files. In a deployment with a CDP log window of 24
hrs, if one sequentially checks every 1000th record, the
expected time to find the point of corruption would be
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Figure 2: SWEEPER Recovery Point Indentification Ar-
chitecture

of the order of 100 days. Hence, sequential checking is
infeasible and minimizing the time taken by the recovery
process essentially boils down to minimizing the number
of data images that are checked by recovery process.

2.3 SWEEPER Recovery Point Identifica-
tion Architecture

The central idea of SWEEPER is to automati-
cally checkpoint important system events from various
application-independent monitoring sources as indica-
tors of corruption failures. In contrast to earlier work
[16] that requires an administrator to manually define the
events for each application that are correlated with vari-
ous corruption types, we automate the process of creat-
ing these checkpoints and indexing them with the type
and scope of corruption along with a number that indi-
cates the probability of the event being correlated with
the specific corruption type. We then use these check-
points as hints to quickly pinpoint the most recent clean
copy of data. The overall architecture of SWEEPER
is described in Fig. 2

The key design question while architecting a recovery
mechanism like SWEEPER is whether to build it a)
as part of a CDP system, or b) as part of a Storage Re-
source Manager product like EMC Control Center, HP
OpenView or IBM TotalStorage Productivity Centre, or
c) as a standalone component. We have separated the
design of algorithms and the architecture so that the al-
gorithms can work with any architecture and vice versa.
Implementing SWEEPER outside the CDP system al-
lows it to be leveraged by many different types of CDP
systems. The disadvantage of this implementation is that
some CDP systems might not completely expose all of
the internal system state changes via an event mecha-
nism. Most of this information is available from Stor-
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age Resource Managers. Furthermore, most Storage Re-
source Managers have a comprehensive monitoring and
resource discovery mechanism that can be leveraged by
the Recovery module. Hence, we recommend the design
choice (b) for SWEEPER (Fig. 2), with the following
key components.

• CDP System: CDP system is essentially a data ver-
sioning system that can generate either log records
or snapshots during data updates. The Users can
retrieve snapshots using temporal queries based on
timestamps, or they can simply traverse the snap-
shots using a cursor returned by query. The CDP
system also allows for restoring the data in a previ-
ous copy and make it the latest copy.

• Storage Infra-Structure: The storage infra-
structure consists of servers (hosts), switches,
storage controllers (contain disks), file systems,
database systems, virtualization boxes, and security
boxes. A CDP system is also part of the storage
infra-structure but we are showing it separately in
Fig. 2.

• Storage Resource Manager: Storage resource
managers contain a discovery/monitoring engine
for monitoring storage infra-structure using a com-
bination of SNMP protocol, CIM/SMI-S proto-
col, proprietary agents, in-band protocol discov-
ery/monitoring agents, operating system event reg-
istries, proc file systems and application gener-
ated events. Event bus is the module in the re-
source manager product that subscribes to all the
events and it presents them in a consolidated man-
ner to other event analyzer modules. The configu-
ration database persistently stores the storage infra-
structure configuration data, performance data, his-
torical trends and also event data. The configuration
database purges historical and event data based on
user specified deletion policies.

• SWEEPER Event Analyzer and Checkpoint
Record Generator: This module looks at the in-
coming stream of event data and filters out irrele-
vant events. For the relevant events, it determines
the probability that the corruption may be correlated
with this event and the scope (affected components)
of the event. After the event analysis, this mod-
ule generates a checkpoint record. The SWEEPER
checkpoint record store is structured into two tiers
of checkpoints. All checkpoint records generated
by Event Analyzer are included in the lower tier and
the records that have a high correlation probability
with any type of corruption are promoted to the up-
per tier. The tier-ing notion can be extended from 2

tiers to n tiers. However, we observed in our exper-
imental study that 2 tiers are usually sufficient for
reducing recovery time.

• SWEEPER Knowledgebase: The knowledgebase
consists of records with the following fields: a) List
of event identifiers b) type or reason for data corrup-
tion c) probability of seeing an event (or a set of cor-
related events) in the case of data corruption. Cor-
ruption probability is represented as low, medium
or high values because, in many cases, it is difficult
for experts to specify exact probability values.

• Problem Determination Scanners: Failure detec-
tion can be done either manually or using an auto-
mated checking tool, SWEEPER leverages exist-
ing failure detection systems towards this purpose.
Failure detectors also help in determining the type
of failure (e.g., virus corruption) without pinpoint-
ing the system events that caused it.

• SWEEPER Checkpoint Record Locator: The
Checkpoint Record Locator module orchestrates the
overall recovery point identification process using
one of the algorithms implemented by the CDP
Record Scanner. The first task of the Checkpoint
Record Locator module is to identify a subset of
the checkpoint records that pertain to the current
data corruption it is investigating. Towards this pur-
pose, it queries the Problem Determination Scan-
ner for the type and scope of the current corruption,
and identifies the components that may be the cause
of corruption. It uses the information to query the
checkpoint database (indexed by type and scope) for
checkpoint records that relate to the type of corrup-
tion and pertain to the affected components and cre-
ates a Checkpoint Record Cache for use by the CDP
Record Scanner. The Checkpoint Record Locator
allows the user to specify Recovery Time Objec-
tive or RTO (how long the user is willing to wait
for the recovery process to complete) and Recov-
ery Point Objective or RPO ( how stale the data can
be, and this is measure as a unit of time) and uses
them along with the properties of the Checkpoint
Cache to select one of the scanning algorithms im-
plemented by the CDP Record Scanner. It queries
the CDP Record Scanner with the Cache and scan-
ning algorithm as input and receives a timestamp as
the answer. It then uses the CDP Recovery Mod-
ule and the Problem Determination Scanner to cre-
ate and test the data according to the timestamp and
returns the answer (corrupt/clean) of the Problem
Determination Scanner to the CDP Record Scanner
and receives a new timestamp. In each iteration of
the procedure, it computes the total time taken by
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the Recovery Flow and if it exceeds the RTO objec-
tive, it terminates with the most recent clean copy of
the data as the recovered data. Also, for each times-
tamp that is checked, it computes the RPO (distance
between the most recent clean copy and the most
stale corrupt copy) and terminates if the RPO ob-
jective is met with the most recent clean copy of the
data.

• SWEEPER CDP Record Scanner: The CDP
Record Scanner implements an interface that takes
as input a scanning strategy, a Checkpoint record,
cache, a cursor (timestamp), and the integrity (cor-
rupt or clean) of the cursor and returns a new cursor
(timestamp) to check for data integrity. The separa-
tion of the recovery point identification algorithms
from the checkpoint database allows SWEEPER to
be flexible enough to include new search strategies
in future. Also, since the search strategies are inde-
pendent of SWEEPER, they can be implemented in
other recovery point identification architectures as
well.

2.4 Overall System Flow
We now describe the Checkpoint generation flow and
Fault-isolation or Recovery flow that capture the essence
of the SWEEPER architecture. The Checkpoint
Generation flow captures the generation of checkpoint
records during normal CDP system operation. The
recovery process is initiated by system administrators
when they determine that data corruption has occured
and this is captured by the Fault-Isolation flow.

Checkpoint Generation Flow:

• The CDP system generates CDP records (either logs
or data copies) based on user defined policies.

• The Storage Resource Manager product monitors
and aggregates various types of system events
(hardware and software failure triggers, user action
triggers etc).

• In parallel with the CDP record generation process,
the SWEEPER event analyzer module analyzes
the system events and generates a checkpoint record
for each relevant event. The checkpoint records are
logically co-related with the CDP records via times-
tamps.

• The checkpoint record generator a) leverages the in-
formation in the expert knowledge base b) corre-
lates the information in the event stream and c) tra-
verses the configuration resource graph, to index the
checkpoint record with the scope of the event and its
correlation probability with each type of corruption.

Fault-Isolation Flow:

• The Problem Determination Scanner or a human de-
tects that data corruption has occured and identifies
its scope and type (e.g., virus, hardware).

• A query is posed to the SWEEPER Checkpoint
Record Locator module by the system administra-
tor with RTO and RPO as input. The reason or type
of the data corruption and its scope is also an input
to the Checkpoint Record Locator. The input infor-
mation is used by the Checkpoint Record Locator to
create a list of checkpoint records that should be ex-
amined, and the scanning algorithm to be employed.

• The SWEEPER CDP Record Scanner is invoked
with the list of checkpoint records and the scan-
ning strategy as input. It determines the checkpoint
record that should be examined next and returns the
CDP record corresponding to it to the user.

• The user retrieves the CDP record from the CDP
system and then either runs the appropriate diagnos-
tics or manually examines the checkpoint record to
see whether it is corrupted. This process is repeated
by the user until a clean data copy is retrieved.

3 SWEEPER Checkpoint Log Processing
Algorithms

The checkpoint log processing algorithms are imple-
mented in the Checkpoint Record Locator and the CDP
Record Scanner modules. The Checkpoint Record Lo-
cator iteratively queries the CDP Record Scanner for
the next checkpoint that it should verify for correctness,
whereas the CDP Record Scanner has the core intelli-
gence for identifying the next eligible checkpoint. The
iterative flow of Checkpoint Record Locator is presented
in Fig. 3.

function locateCheckPoints
start = 0, end = currT ime
while (timeSpent < RTO) AND (RPO not met)

currCopy = scanRecordsAlgoType(start, end)
if currCopy is clean

start = timestamp of currCopy
else

end = timestamp of currCopy
end while

end locateCheckPoints

Figure 3: Checkpoint Record Locator Flow

3.1 CDP Record Scanning Algorithms
We now present the scanning algorithms that contain the
core intelligence of SWEEPER. As in Sec. 2.1, N
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denotes the number of CDP logs, Ct is the cost of testing
a data image for corruption, Cp is the cost of getting a
PIT copy online, Cl is the cost of applying one CDP log
on a data image and Tp is the number of CDP logs after
which a PIT image is taken. Further, we use Nc to denote
the number of checkpoint records in the relevant history.

3.1.1 Sequential Checkpoint Strategy

The Sequential Checkpoint Strategy starts from the first
clean copy of data (Fig. 4) and applies the CDP logs
in a sequential manner. However, it creates data im-
ages only for timestamps corresponding to some check-
point record. The implementation of the scanRecords
algorithm returns the first checkpoint record after the
given start time. Hence, the number of integrity tests
that Checkpoint Record Locator needs to perform using
the scanRecordsSequential method is proportional to the
number of checkpoint records Nc and not on the num-
ber of CDP logs N . The worst-case cost of creating the
most current clean data image by the Sequential Scan-
ning Strategy is NcCt + Cp + NCL.

BALANCED

��
�
��
�

��
�
��
�

��
�
��
�

��
��
��
��

SEQUENTIAL

BINARY
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Figure 4: Search Strategies: Sequential follows a straight
path. Binary Search reduces space by half in each
step, Informed follows a strict order between probabil-
ities, Balanced behaves in a probability-weighted Binary
Search fashion.

3.1.2 Binary Search Strategy

We use the observation that corruption errors are not
transient in nature and hence, if data is found to be cor-
rupt at any time Ti, the data would remain corrupt for
all timestamp Tj > Ti. This order preservation in cor-
ruption testing allows us to partition the search space
quickly. We use the intuition of binary-search algorithms
that partitioning a search space into two equal sized
partitions leads one to converge to the required point
in logarithmic time steps instead of linear number of
steps. Hence, for a search space with Nc(t) checkpoints
at any given time t, scanRecordsBinary returns the
timestamp corresponding to the (Nc(t)/2)th checkpoint
record for inspection. If the data corresponding to the
timestamp is corrupt, we recursively search for corrup-
tion in the timestamps between the 0th and (Nc(t)/2)th

checkpoints. On the other hand, if the data is clean, our
inspection window is now the timestamps between the
(Nc(t)/2)th and the Nc(t)

th checkpoint records. It is
easy to see that since the inspection window reduces by
a factor of 2 after every check, we would complete the
search in log Nc steps and the total time (expected as
well as worst case) spent in recovery point identification
is given by log Nc(Ct + Cp + ClTp/2).

3.1.3 Informed Search Strategy

While identifying the next timestamp to test for corrup-
tion, the Binary Search strategy selects the next check-
point without taking into account the probability that
the particular checkpoint was correlated with corruption.
Our next strategy, called the Informed strategy, uses the
probabilities associated with the checkpoint records to
decide the next timestamp to examine. At any given time,
it figures out the checkpoint j that has the highest like-
lihood (pi,j) of being correlated with the corruption ci.
Hence, for cases where data corruption is associated with
a rare event, the search may terminate in a constant num-
ber of steps (constant number of timestamps are exam-
ined) or take upto Nc steps in the adversarial worst case.
However, as long as the probability pi,j of a particular
checkpoint being the cause of corruption is uncorrelated
with the time of its occurrence, the search would still re-
duce the space exponentially and is expected to terminate
in logarithmic steps. Formally, we have the following re-
sult for the expected running time of Informed Search.

Theorem 1 The Informed Search Strategy identifies the
most recent uncorrupted data in O(log Nc(Ct + Cp +
CLTp/2)).

Proof : To prove the result, it is sufficient to prove that
the search is expected to examine only O(log Nc) times-
tamps before it finds the most recent uncorrupted entry.
It is easy to see that the average cost of testing a given
timestamp is given by Ct + Cp + CLTp/2.

Observe that as the highest probability checkpoint is
uncorrelated with its timestamp, each of the Nc check-
point records are equally likely to be examined next.
Further, if the ith checkpoint is examined, it divides the
search space into two partitions, and we need to examine
only one of them after the check. Hence, the recurrence
relation for the search algorithm is given by

T (Nc) ≤ 1
Nc

(T (Nc − 1) + T (1) + ... + T (i)+

T (Nc − i) + ... + T (1) + T (Nc − 1)) (3)
One may observe that T (Nc) = log Nc satisfies the re-
currence relation. To verify, note that the right hand side
of the equation reduces to 1/Nc log Nc!

2 , if T (Nc) is
replaced by log Nc. Hence, we only need to show that
T (Nc) < c log Nc for some constant c
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i.e., log(Nc!)
2

Nc

< c log Nc

i.e., log(Nc!)
2 < cNc log Nc

i.e., log(Nc!)
2 < c log NNc

c

which holds for c = 2 by using the fact that Nc!
2 >

NNc

c > Nc!. This completes the proof.

3.1.4 Balanced Search Strategy

The Informed Search strategy attempts to find the corrup-
tion point quickly by giving greater weightage to check-
points that have a higher correlation probability with
the corruption. On the other hand, Binary Search strat-
egy prunes the space quickly oblivious to the probabil-
ities associated with the checkpoint records. We com-
bine the key idea of both these heuristics to design the
scanRecordBalanced algorithm (Fig. 5). The algo-
rithm computes the total search time in an inductive man-
ner and selects the checkpoint record that minimizes the
expected running time.

algorithm scanRecordsBalanced
P (L) = 0; P (R) = 1; currMin = ∞
for i in start to end
T (i) = P (L) log(i-start) + Pi,j + P (R) log(end-i)
P (L) = P (L) + Pi,j ; P (R) = P (R) − Pi,j

if T (i) < currMin
currMin = T (i)

end for
return checkpoint of currMin

end scanRecordsBalanced

Figure 5: Balanced Scanning Algorithm

Intuitively speaking, the Balanced strategy picks the
checkpoint records that (a) are likely to have caused the
corruption and (b) partition the space into two roughly
equal-sized partitions. The algorithm strikes the right
balanced between partitioning the space quickly and se-
lecting checkpoints that are correlated with the current
corruption cj . We have the following optimality result
for the balanced strategy.

Theorem 2 The balanced strategy miminizes the total
expected search time required for recovery.

Proof : In order to prove the result, we formulate pre-
cisely the expected running time of a strategy that picks
a checkpoint record i for failure j. The expected running
time of the strategy is then given in terms of the size and
probabilities associated with the two partitions L and R.

T (N) = P (L)T (L) ∗ Ctot + Pi,j ∗

Ctot + P (R)T (|R|) ∗ Ctot (4)

where P (L) and P (R) are the accumulated probabilities
of the left and right partitions respectively, and Ctot is

the total cost of creating and testing data for any given
timestamp. Using the fact that T (L) can be as high as
O(log |L|) in the case where all checkpoint records have
equal probabilities, we modify Eqn. 4 by

T (N) = P (L) log |L| ∗ Ctot + Pi,j ∗

Ctot + P (R) log |R| ∗ Ctot (5)

Hence, the optimal strategy minimizes the term on the
right hand side, which is precisely what our balanced
strategy does (after taking the common term Ctot out
from the right hand side). This completes the proof.

4 Implementation

We have implemented SWEEPER as a pluggable
module in a popular SRM (Storage Resource Manager)
product, and it can use any CDP product. We use
the SRM’s Event Bus to drive the checkpoint record
generation process in SWEEPER. The output of
SWEEPER is a timestamp Te that is fed to the CDP
Recovery Module, and the CDP System rolls back all
updates till time Te. Since we can leverage many com-
ponents from the SRM, the only components we needed
to implement for SWEEPER were SWEEPER Event
Analyzer and Checkpoint Generator, SWEEPER Knowl-
edge Database, SWEEPER CDP Record Scanner, and
SWEEPER Checkpoint Record Locator. Details of the al-
gorithms implemented by SWEEPER CDP Record Scan-
ner and SWEEPER Checkpoint Record Locator have
been presented in Sec. 3 and we restrict ourselves to
describing the implementation of the remaining compo-
nents in this section. We start with the checkpoint record
structure and its implementation.

4.1 Checkpoint Record Structure and
Database

In our implementation, we use a relational database to
store the checkpoint records for each event or event-
set. Each checkpoint record consists of (i) Checkpoint
Record ID (ii) Timestamp (iii)Scope (iv) Failure Type,
and (v) Correlation Probability. Checkpoint Record Id
is an auto-generated primary key and Timestamp cor-
responds to the time the event-set occured (consists of
year, month, day, hour, minute, second), and is syn-
chronized with the CDP system clock. Scope describes
whether the event-set is relevant for a particular physical
device (e.g, switch, host, storage controller), or a soft-
ware component (e.g., file system, database system), or
a logical construct (e.g., file, table, zone, directory) and
is used for quickly scoping the checkpoint records dur-
ing recovery. Failure Type specifies the types of failure
the checkpoint is relevant for is also used to scope the
checkpoint records during recovery processing. The fail-
ure types (hardware failure, configuration error etc) are
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listed in Table 2. Correlation Probability is computed as
the probability that data corruption happened at the same
time as the occurence of the event or a set of events.

4.2 SWEEPER Knowledge Database

Event (e) Source E(e|c)
Zoning Changes Event Bus Medium
LUN Masking Event Bus Medium

Access control changes Event Bus High
De-activating service Event Bus Medium

OS Update Event Bus Medium
Application Update Event Bus Medium

Driver Update Event Bus Medium
Firmware Update Event Bus Medium

New app deployment Event Bus Medium
(a)

Event (e) Source E(e|c)
Writes in System Directory DIR High

Update of Registry startup entries regedit High
Writes to Files of specific type DIR Medium
Abnormal Network Activity Perfmon, Nmap Medium

Terminating Anti-virus Services Win Event Viewer Medium
High CPU Activity Perfmon Medium

SAN Activity Event Bus Low
Writes in registry and sysdir DIR, regedit High

(b)
Event (e) Source E(e|c)

RSE Threshold Violation SMART High
SKE Threshold Violation SMART High

Mechanical Shock SMART Low
Opening of Unit Manual Low

Temperature Increase SMART Medium
Disk Scrubbers Event Bus Medium

(c)
Event (e) Source E(e|c)

fsck SRM High
Exchange edbutil Event Bus High
Exchange eseutil Event Bus High

App Specific file updates Event Bus High
App Specific registry updates Event Bus High

(d)

Table 2: Monitored Events ei of failure types (cj): (a)
Misconfiguration (b) Virus (c) Hardware related and (d)
Application, along with their monitoring source and ex-
pert information (P (ei|cj))

The SWEEPER checkpoint record generation cen-
tres around an expert information repository that we call
the SWEEPER Knowledge Database. The Knowledge
Database is structured as a table and a row in the ta-
ble represents an event or a set of events ei, and details
the source of the event, the failure type(s) cj relevant to
the event and the correlation probability E(ei|cj) of the
event with each relevant failure type. A split-view of the
Knowledge Base is presented in Table 1. We use ex-
pert information derived from literature to generate the
Knowledge Database. We obtained common configura-
tion related probabilities from the proprietary level two
field support team problem database of a leading storage

company for storage area networks. We obtained hard-
ware failure information from proprietary storage con-
troller failure database of the same company. We ob-
tained the virus failure information by looking at virus
behavior for many common viruses at the virus encyclo-
pedia site [28]. To elucidate with an example, for the
corruption type of virus, we looked at the signature of the
last 300 discovered viruses [28] and noted common and
rare events associated with them. Based on how com-
monly an event is associated with a virus, we classified
that event as having a low, medium or high probability to
be seen in case of a virus attack. Because of the inherent
noise in this expert data, we classify P (ei|cj) only into
low, medium and high probability buckets which corre-
spond to probabilities of 0.1, 0.5 and 0.9 respectively.

The events listed in the Knowledge Base and moni-
tored by the Event Analyzer can be classified into Config-
uration Changes: addition, update (upgrade/downgrade
firmware, driver or software level) or removal of hard-
ware and software resources and changes in security ac-
cess control. These events are checkpointed as it is
common for data corruption problems to occur when
one upgrades a software level, or when one introduces
a new piece of software or hardware resource. Back-
ground Checking Processes: successful or unsuccess-
ful completion of background checking processes like
virus scan, hardware diagnostics, filesystem consistency
like fsck or application provided consistency checkers.
These checkpoints provide markers for consistency in
specific filesystems, databases or volumes. Application
Specific Changes:Applications can provide hints about
abnormal behaviour that may indicate corruption and
SWEEPER allows one to monitor such events. Hard-
ware Failures: checksum/CRC type errors, self diagnos-
tic checks like SMART, warnings generated by SMART
etc. Performance Threshold Exceeding: High port ac-
titvity, high CPU utilization etc. Performance Threshold
Exceeding events like high port utilization or high CPU
utilization is usually a symptom of either a virus attack,
or an application that has gone astray. Meta-data Up-
date Changes: Changes in system directory etc. Abnor-
mal Meta-data updates indicate application misbehavior,
which, in turn, can potentially lead to data overwrite or
corruption problems.

4.3 Event Filtering and Checkpoint
Record Creation

The SRM has client agents that subscribe to vari-
ous types of events from hosts, switches, storage con-
trollers, file systems and applications. These events
are consolidated and presented as part of an event bus.
SWEEPER is only concerned about a subset of the
events in the event bus and gets the list of relevant events
from the Knowledge Database (Table 2). Once the rel-
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Figure 6: Resource Graph

evant events are filtered, the Event Analyzer generates
a checkpoint record for the event along with its times-
tamp. Tight synchronization between the SWEEPER
event analyzer clock and the CDP system clock is not
mandatory as the RPO granularity is no finer than 1 sec-
ond. Hence, we perform hourly synchronization of the
event analyzer clock with the CDP clock to ensure that
the timestamps in the checkpoint records are reasonably
accurate.

4.4 Checkpoint Record Scope Determina-
tion

The checkpoint record scope is useful in quickly filter-
ing irrelevant checkpoint records, and thus, converge on
the relevant CDP records. After the initial event filter-
ing based on the information in the knowledgebase the
checkpoint record generator examines the event type,
and determines what data (files, DB tables or volumes)
can be potentially affected by the event. We can only
determine the scope for file/DB meta-data changes or
configuration change related events. For other types of
events the notion of scope is irrelevant. The value of
scope is determined by traversing a resource graph. The
resource graph information is stored in the systems re-
source manager configuration database. Fig. 6 shows
a portion of the resource graph that is stored in the
database. The nodes in the graph correspond to hard-
ware and software resources, and the edges correspond
to physical/logical connectivity or containment relation-
ships. The basic structure of the resource graph is the
SNIA SMI-S model. However, we have made exten-
sions to this model to facilitate the modeling of applica-
tion and database relationships. Fig. 6 illustrates how we
traverse the resource graph when a configuration chang-
ing event occurs. If the user has added a new host and
put its ports in Zone 1, then we determine all the stor-
age ports (and the corresponding storage controllers) that
are in zone 1. We then determine the storage volumes
that are in those storage controllers and store the ids
of the storage volumes in the scope field of the zon-
ing event. During recovery, once the user has either

manually or via an automated tool identified a corrupt
file/table/volume, we search the checkpoint records that
list the file/table/volume in its scope.

4.5 Checkpoint Record Probability Deter-
mination

1

Event e

1/4 1/2 3/81/2

1/2 0 3/4 1/4LP(e)

P(e)

RegionRegion
4

Figure 7: Estimating P(e) with window size (W ) of 4
using Exponential-weighted Averaging

The key feature of the SWEEPER architecture is asso-
ciating correlation probabilities with events to help any
search strategy in speeding up the recovery flow. For
every event ei and corruption cj , the correlation proba-
bility P (cj |ei) denotes the probability that the corruption
cj happened in a given time interval t given that ei has
happened at t. The correlation probability is estimated
using the Bayesian.

P (cj |ei) = (P (ei|cj).P (cj))/P (ei) (6)

In order to compute the correlation probability, one
needs to estimate P (cj), P (ei) and P (ei|cj). P (ei) is
estimated by looking at the event stream for the event ei

and using an exponential-weighted averaging to compute
the average frequency of the event ei. To elaborate fur-
ther, the time line is divided into windows of size W each
(Fig. 7), and for any window wk , the number of occur-
rences nk

i of each event ei is noted. The local probability
of event ei in the window wk (denoted by LP (ek

i )) is
calculated as nk

i /W . In order to take into account the
historical frequency of the event ei and have a more sta-
ble estimate, the probability of an event ei in the time
window rk+1 (k ≥ 0) is damped using the exponential
decay function (Eq. 7). For the first window, the proba-
bility is same as the local probability.

P (ek+1
i ) = 1/2(P (ek

i ) + LP (ek+1
i )) (7)

The P (ei|cj) estimates are obtained from the Knowledge
Database. The final parameter in Eqn. 6 is P (cj). How-
ever, note that whenever checkpoints are being exam-
ined to figure out the source of a corruption cj , all the
checkpoints would have the same common term P (cj).
Hence, P (cj |ei) is computed by ignoring the common
term P (cj) for all the N events, and then normalizing
the correlation probabilities so that

∑N

i=1 P (cj |ei) = 1.
The correlation probabilities thus computed are stored in
the checkpoint records for use in the recovery flow.
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5 Evaluation

We conducted a large number of experiments to analyze
the performance of our search algorithms and study the
salient features of our checkpoint-based SWEEPER ar-
chitecture. We now report some of the key findings of
our study.

5.1 Experimental Setup
Our experimental setup is based on the implementation
described in Sec. 4 and consists of the architectural com-
ponents in Fig 2. Since real data corruption problems are
relatively infrequent events, we simulate a Fault Injec-
tor component in the interest of time. The Fault Injec-
tor takes as input a probabilistic model of faults and its
possible signatures and generates one non-transient fault
along with the signature. Since our SWEEPER im-
plementation is not integrated with any CDP system, we
have also simulated a CDP System Modeler and Prob-
lem Determination Scanner. We have assumed that the
Problem Determination Scanner can accurately identify
if a copy of data is corrupt or not. The CDP System Mod-
eler models the underlying storage and CDP system and
provides the cost and time estimates for various storage
activities like the time of applying a CDP log, making
a PIT copy available for use or the time to test a snap-
shot for corruption. Finally, we use an Event Generator
that mimics system activity. It takes as input a set of
pre-specified events and their distribution and generates
events that are monitored by the SRM and fed to the
SWEEPER Event Analyzer via the SRM Event Bus.

The key contribution of the checkpoint-based archi-
tecture is to correlate checkpoint records with corruption
failures using the correlation probabilities pi,j . Hence,
we test our search algorithms for various distributions
of pi,j , which are listed below. We use synthetic cor-
relation probability distributions because of the lack of
authoritative traces of system and application events that
would be applicable on a wide variety of systems. We
have carefully inspected the nature of event distributions
from many sources and use the following distributions as
representative distributions of event-corruption probabil-
ity.

• Uniform Distribution: This captures the setting
where correlation information between checkpoints
and corruption is not known and all system events
are considered to be equally indicator of corruption.

• Zipf Distribution: The zipf distribution is com-
monly found in many real-life settings and capture
the adage that the probability distribution is skewed
towards a handful of events. For our experimental
setting, this captures the scenario where only a few
events are the likely causes of most of the failures.

• 2-level Uniform Distribution: A 2-level (or gener-
ally speaking a k-level) uniform distribution has 2
(or k) types of event-types where all the events be-
longing to any given type have the same probability
of having caused the corruption. However, certain
event-types are more likely to have caused the error
than other event-types and this is captured by hav-
ing more than 1 level of probabilities.

One may note that the uniform and zipf distributions
capture the two extremes in terms of skewness, that
the correlation distribution pi,j may exhibit in practice.
Hence, a study with these two extreme distributions not
only capture many real settings, but also indicate the per-
formance of the algorithms with other distributions as
well.

Our first set of experiments studied the scalability and
effectiveness of the Checkpoint Generation Flow. In the
second set of experiments, we evaluate the various search
strategies in the Recovery flow. We conducted experi-
ments for scalability (increase in number of checkpoint
records Nc) and their ability to deal with recovery time
constraint (Drec). We also study the usefulness of a 2-
tier checkpoint record structre and the robustness of the
SWEEPER framework with false negatives (probabil-
ity that the error is not captured in the event stream) and
noisy data (error in correlation probability estimation).
Since the CDP system was simulated, we had to man-
ually fix the various parameters of the CDP system to
realistic values. We kept the time taken to check the data
corresponding to any given timestamp (Ct) as 10000 sec-
onds, the time taken to get a PIT copy online (Cp) as 10
seconds, and the time taken to create the snapshot using
the CDP logs (Cl(Ti%Tp)) as 100 seconds.

5.2 Experimental Results
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Figure 8: Lag in Checkpoint Records with Increasing
Event Rate

We first investigated the scalability of our Checkpoint
Record Generation Flow implementation to keep pace
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with events as the SAN size grows. Hence, the Event
Generator increases the number of resources managed
by the Storage Resource Manager and generates more
events, that are fed to the Event Analyzer. We ob-
served that our Event Analyzer is able to efficiently deal
with increased number of events (Fig. 8) and the lag
in checkpoint record is almost independent of the event
rate. We also observe that the checkpoint records lag by
only 2mins and hence only the last 2 minutes of events
may be unavailable for recovery flow, which is insignifi-
cant compared to the typical CDP windows of weeks or
months that the recovery flow has to look into. The effi-
ciency of the checkpoint flow is because (a) the computa-
tions in Event Analyzer (e.g., exponential-decay averag-
ing) are fairly light-weight and (b) depend only on finite-
sized window (Sec. 4.5), thus scaling well with number
of events.
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Figure 9: Recovery Time for Sequential and Non-
sequential strategies under Uniform probability check-
points

We next focus on the Recovery Flow and investigate
the impact of using a non-sequential strategy as opposed
to sequential checking. Fig 9 compares the time taken
to find the most recent uncorrupted version of data by
the sequential and the binary search strategies, for a uni-
form probability distribution. Since the probability of
all checkpoints are equal, Informed as well as Balanced
strategy have similar performance to Binary Search. For
the sake of visual clarity, we only plot the performance of
Binary Search algorithm. It is clear that even for small
values of N , sequential algorithm fares poorly because
of the N/ log N running time ratio, and underlines the
need for non-sequential algorithms to speedup recovery.
For the remainder of our experiments, we only focus on
non-sequential strategies and study their performance.

5.2.1 Performance under different distributions

We next studied the relative performance and scalabil-
ity of the proposed non-sequential strategies for vari-
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Figure 10: Recovery Time for Non-sequential strategies
for (a) zipf distributed checkpoints and (b) 2-level uni-
form probability checkpoints

ous correlation probability distributions. Fig 10(a) and
Fig 10(b) studies the performance of the three non-
sequential strategies with increase in the number of
checkpoint records under Zipf and 2-level uniform prob-
ability distribution for checkpoints. We observe that the
Balanced search strategy always outperforms the Binary
search strategy. This validates our intuition that since
Balanced strategy partitions the search space by balanc-
ing the likelihood of corruption in the partitions rather
than the number of checkpoint records it converges much
faster than binary. The gap in performance is more for
the Zipf distribution than 2-level Uniform distribution,
as the more skewed Zipf distribution increases the like-
lihood of partitions with equal number of checkpoints
to have very different accumulated correlation probabil-
ities. The Informed search strategy performs well under
Zipf distribution as it has to examine very few check-
point records, before it identifies the recovery point. For
small N , Informed even outperforms the Balanced strat-
egy, which takes O(logN) time, while Informed runs in
small number of constant steps, with very high proba-
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bility. Thus, if the operator has high confidence in the
events associated with different types of corruption, In-
formed may be the strategy of choice. One may observe
for the 2-level uniform correlation probability case that,
as the number of checkpoints increase, the performance
of Informed degrades to that of Binary search. This is
because the individual probability of each checkpoint
record (even the checkpoints associated with the higher
of the 2 levels) falls linearly with the number of points
and hence, convergence in constant steps is no longer
possible and Informed search converges in log N time,
as predicted by Theorem 1. These experiments bring out
the fact that the greedy Informed strategy is not good for
large deployments or when the the number of backup im-
ages are large.

5.2.2 Data Currency and Execution Time Tradeoff
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Figure 11: Data Currency for Non-sequential strategies
with Recovery Time Constraint under (a) 2-level uniform
distribution and (b) Zipf Distribution

We next modify the objective of the search algorithms.
Instead of finding the most recent clean datapoint, the re-
covery algorithms now have a constraint on the recovery
time and need to output a datapoint, at the end of the time
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Figure 12: Recovery Time for Non-sequential strategies
with 2-tier architecture

window. Fig 11(a) and Fig 11(b) examine the tradeoff
between the recovery execution time and the data cur-
rency at the recovery point for 2-level uniform and Zipf
distributions respectively. Data currency is measured in
terms of lost write updates between the most recent un-
corrupted copy and the copy returned by the algorithms.

The largest difference in performance under the two
distribution is for the Informed strategy. It performs well
under Zipf, since it starts its search by focusing on the
few high probability checkpoints to quickly prune the
search space. Under 2-level uniform distribution, it per-
forms poorly as compared to the other strategies overall
but more so when recovery time is less. This is because
it evaluates the uniform probability events in a random
order, which on an average leads to more unbalanced
partitions, as compared to the other two strategies. In-
tuitively, both the Binary and Balanced strategies aim to
reduce the unexplored space in each iteration. Hence,
they minimize the distance of the error snapshot from
the set of snapshots checked by them. On the other hand,
Informed does not care about leaving a large space un-
explored by it, and hence before it finds the actual error
times, its best estimate of error time may be way off the
actual error time. A similar observation can be made if
the algorithms aim to achieve a certain (non-zero) data-
currency in the minimum time possible. By reversing
the axis of Fig. 11, one can observe that both Binary and
Balanced strategies achieve significant reduction in data-
currency fairly quickly, even though Informed catches up
with them in the end. Hence, when the recovery time
window is small, the use of Informed strategy is not ad-
visable.

5.2.3 Checkpoint Selection using 2-tiers

We next investigate the impact of using a 2-tiered check-
point record structure on the performance of the algo-
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rithms. In a 2-tiered record structure, the algorithms ex-
ecute on only a subset of checkpoint records consisting
of high probability checkpoint records. The idea is that
the recovery point is identified approximately by running
the algorithms on the smaller set of records and then lo-
cate the exact recovery point using the checkpoints in
the neighborhood. For the plot in Fig 12, checkpoints
are assigned probabilities according to 2-level uniform
distribution with 5% of checkpoints having 90% cumu-
lative probability. Further, only 10% of total checkpoints
are promoted to the high probability tier, and hence the
skew in the high-tier checkpoints is much lower than
a single tier checkpoint record structure. We observe
in Fig. 12 that, as compared to a single tier checkpoint
records (Fig 10(b)), the performance gap between binary
and balanced reduces significantly. This is because the
binary strategy reaps the benefit of operating only on the
high probability checkpoint subset, making it closer in
spirit to the balanced strategy. Thus, a 2-tiered check-
point architecture, makes the probability oblivious Bi-
nary Search algorithm also probability-aware, by forcing
it to operate only on checkpoints that have a high corre-
lation probability with the corruption.

5.2.4 Robustness of the Algorithms with incomplete
information
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We next investigate the robustness of our proposed al-
gorithms to deal with silent errors; i.e. an error that does
not generate any events. We model silent errors using
false negatives (probability that the error is not captured
in the checkpoint records). Fig. 13 studies the loss in data
currency with increase in false negatives. For this ex-
periment, the average number of CDP logs between any
two events was kept at 2000, and we find that the non-
sequential strategies are able to keep the data currency
loss below or near this number even for a false negative
of 20%. Our results show the correlation probability-

aware algorithms like Balanced and Informed are no
worse than correlation proabibility-unaware algorithms
like Sequential and Binary. Hence, even though these
strategies factor the correlation probability while search-
ing, they do not face significant performance penalty,
when the error event is not captured in the checkpoints.
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In practice, the expert-given values for P (ej |ci) as
well as the computed P (ej) have estimation errors and
the algorithms should be robust enough to deal with noise
in correlation probability estimates. Fig. 14 shows the
recovery time taken by the various algorithms for the 2-
level probability distribution, as the expert data and event
stream becomes noisy. The noise is generated by adding
a zero mean uniform distribution to the correlation prob-
abilities, where the range of the noise is varied from 0 to
the probability of the highest probability event. Note that
the two vertical lines indicate the probability of the two
types (levels) of events in the 2-level distribution and as
the noise (error) approaches the right line, the standard
deviation of the noise becomes greater than the mean of
the original signal (or correlation probability). In such
a situation, the correlation probabilities lose their signif-
icance as the complete data can be thought of as noise.
The key observation in this study is the sensitivity of In-
formed strategy to the accuracy of correlation probabil-
ities and the robustness of Balanced Strategy to noise.
We observed that Balanced Strategy showed a graceful
degradation with increase in error, degenerating to Bi-
nary Strategy even when the correlation probability had
only noise, whereas Informed Strategy showed a steep
increase in recovery time. This is not surprising, given
that Informed Strategy only considers the individual cor-
relation probability and suffers with increased estimation
error. On the other hand, Balanced Strategy takes into ac-
count cumulative probabilities, which are not effected as
much by the zero mean noise until noise dominates the
original signal. Even in the case where error dominates
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the original probabilities, Balanced performs as well as
the Binary strategy underlining its usefulness as an effec-
tive, versatile and robust strategy.

6 Discussion and Related Work

We present in this paper a scalable architecture and effi-
cient algorithms that help administrators deal with data
corruption, by quickly rolling back to a an earlier clean
version of data. The related work in this area can be
broadly classified into techniques for (a) Data Resiliency
and Recovery, (b) Event Monitoring and Logging, (c) In-
dexing: Correlating events with corruption and using the
correlation values as index and (d) Searching the event
logs for quick identification of the failure point.

Continuous Data Protection (CDP) solutions deal with
data corruption by allowing an administrator to roll back
at a granularity that is much finer than what was possi-
ble with traditional continuous copy or backup solutions.
CDP solutions have been proposed at file level [26] and
at block level in the network layer [16, 21, 30, 15]. Ver-
sioning file systems [25, 20] that preserve earlier versions
of files also provide the CDP functionality. CDP logs al-
low users to revert back to earlier data versions but leaves
the onus of determining a recovery point on the admin-
istrator. A brute-force approach examining all CDP logs
could lead to unacceptably high recovery time. To alle-
viate this, some products such as [16, 21, 30] incorpo-
rate Event Monitoring and Logging with the basic Data
Resiliency mechanisms and allow applications to record
specific checkpoint records in the CDP log, which then
serve as landmarks in the log stream to narrow down the
recovery point search. However, these solutions present
no Indexing and Searching mechanism and the adminis-
trator has to devise a search strategy between the check-
points, where all checkpoints are as equally likely to be
associated with the failure. Our work builds on existing
solutions by (i) using system events along with applica-
tion events to generate checkpoints, (b) attaching correla-
tion probabilities with the checkpoints, and (c) providing
CDP log processing algorithms that use these probabili-
ties intelligently to automatically identify a good recov-
ery point quickly.

The use of Searching and Mining techniques on an
Event Log has been very popular in the area of prob-
lem [9] detection and determination in large scale sys-
tems. Numerous problem analysis tools [29], [32], [13]
have been proposed that aid in the process of automating
Searching the logs for problem analysis. A major issue
in application of these techniques in large systems is the
complexity of the event collection and subsequent anal-
ysis. Xu et al. [31] propose a flexible and modular ar-
chitecture that enables addition of new analysis engines
with relative ease. Kiciman et al. [12] use anomalies

in component interactions in an Internet service environ-
ment for problem detection. Chen et al. [4] use a de-
cision tree approach for failure diagnosis in eBay pro-
duction environment. File system problem determina-
tion tools have been proposed [32] [13] that monitor sys-
tem calls, file system operations and process operations
to dynamically create resource graphs. Once the sys-
tem administrator detects that there is a problem, these
tools help to quickly identify the scope of the problem
with respect to the affected files and processes. Simi-
larly, Chronus [29] allows users to provide customized
software probes that help in identifying faulty system
states by executing the probe on past system states that
have been persisted on disk. They select past system
states (virtual machine snapshots for a single machine)
using binary search. Hence, Chronus addresses two of
the problems, namely Event Monitoring and Searching
that SWEEPER handles. Even though it solves a com-
pletely different problem from SWEEPER, Chronus
is most similar to SWEEPER in spirit. However,
Chronus does not distinguish between different event
checkpoints, whereas we index the checkpoints based on
correlation probabilities and design a search strategy that
uses this information for fast convergence. Further, we
provide the user the flexibility to tradeoff on the data cur-
rentness/recovery time trade-off by appropriately setting
the RTO and RPO values. Finally, the focus of our paper
is on data corruption on disk in a distributed environment
whereas Chronus deals with system configuration prob-
lems for a single machine.

The novelty of SWEEPER lies in integrating Event
monitoring, Checkpoint Indexing, and new search tech-
niques that are able to make use of the index (correla-
tion) information. A possible weakness of SWEEPER
lies in its inherent design that is based on checkpoint
events: SWEEPER depends on events to provide hints
for corruption and silent errors or noise in the event-
corruption correlation may degrade SWEEPER’s per-
formance. However, the proposed search algorithms do a
balancing act between searching events with high corre-
lation probabilities and pruning the search space in log-
arithmic time. Our study suggests the use of Balanced
Search as the most robust strategy for efficient Recov-
ery Point Identification. The Balanced Search strategy
finds a good recovery time for silent errors by degener-
ating to Binary Search. The only scenario where Bal-
anced Search is (marginally) outperformed is in the case
of probability skew: a few checkpoints capture most of
the correlation probability and Informed Search is the
best performer. Our study makes a strong case of using
search algorithms that use the correlation between sys-
tem events and corruption to quickly recover from data
corruption failures.
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7 Conclusion

In this paper we presented an architecture and algo-
rithms to quickly identify clean data in CDP record
stream. The basic idea of our system is to monitor sys-
tem events and generate checkpoint records that provide
hints about potential data corruption. Upon discover-
ing data corruption, system administrators can pass RTO
and RPO requirements as input to our system, and it re-
turns the most relevant checkpoint records. These check-
point records point to locations in the CDP record stream
that potentially will provide clean data. We use ex-
pert knowledge, resource dependency analysis, and event
co-relation analysis to generate the checkpoint records.
Upon the discovery of data corruption, system adminis-
trators can use SWEEPER to quickly identify relevant
CDP records. We present different CDP record traver-
sal algorithms to help traverse the CDP record stream
to identify recovery points. Our studies suggest the use
of Balanced Search strategy as the most robust strategy
for efficient Recovery Point Identification. However, in
an environment where checkpoints with high correlation
probabilities are very few, the Informed Search strategy
seems to be a good choice. Hence, the study emphasizes
the need for either the log processing algorithms or the
checkpoint architecture to be aware of correlation prob-
abilities of various events. Furthermore, our study con-
clusively establishes the need for non-sequential search
mechanisms to quickly identify good recovery points in a
CDP environment as opposed to a linear sequential scan-
ning of checkpoints.
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