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SWEEPING BY A TAME PROCESS

by Aris DANIILIDIS & Dmitriy DRUSVYATSKIY (*)

Abstract. — We show that any semi-algebraic sweeping process admits piece-
wise absolutely continuous solutions (trajectories), and any such bounded trajec-
tory must have finite length. Analogous results hold more generally for sweep-
ing processes definable in o-minimal structures. This extends previous work on
(sub)gradient dynamical systems beyond monotone sweeping sets.

Résumé. — Nous montrons l’existence des solutions (orbites) absolument conti-
nues par morceaux pour le processus de rafle défini par un opérateur multivoque
semi-algébrique (ou plus généralement, o-minimal). Nous établissons que de telles
orbites bornées sont de longueur finie. Cette contribution, dans le cas particulier
où le processus de rafle correspond aux sous-niveaux d’une fonction (non néces-
sairement régulière), généralise les résultats connus pour les orbites des systèmes
dynamiques de type sous-gradient.

1. Introduction

A classical result of Łojasiewicz shows that any bounded trajectory of

the gradient system

ẋ = −∇f(x) ,

with a real-analytic potential function f on R
n, necessarily has finite length

and hence converges to a critical point of f . This conclusion can fail if

the analyticity is weakened to infinite differentiability; see [30] for exam-

ple. The main ingredient of the argument in the analytic case is the cel-

ebrated Łojasiewicz inequality, which has been subsequently generalized

by Kurdyka [24] to smooth functions definable in an o-minimal structure;
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see [14] for the relevant definitions. The authors of [2, 19] further elim-

inated the smoothness assumptions, showing that any bounded solution

x : [0, η) → R
n of the subgradient system

ẋ ∈ −∂f(x) a.e. on [0, η)

induced by a semi-algebraic function f (or more generally, by a definable

function in an o-minimal structure) has finite length and converges to a

generalized critical point of f . Here the subdifferential ∂f is meant in any

reasonable sense, such as the limiting subdifferential or the generalized

gradient; see e.g. [31]. With the publications of [4, 20], the close relationship

between such results and the so-called desingularizing function (traced back

to [24] for the C1 case) became clear.

A salient point is that in the subgradient dynamical system, the function

f decreases along the trajectory x. In particular, after a reparametrization,

the trajectory x : [a, b) → R
n satisfies the inclusion

ẋ(r) ∈ −N[f6r](x(r)) for a.e. r ∈ [a, b) .

HereN[f6r] denotes the normal cone to the sublevel set [f 6 r] := {x ∈ R
n :

f(x) 6 r}. See for example [10, 11, 12, 25, 26] for this point of view. Thus

the subgradient system is inherently related to a “monotonically evolving

sweeping set” r 7→ [f 6 r]. This observation then naturally motivates

investigation of trajectory length of the more general system

(1.1) ẋ(r) ∈ −NS(r)(x(r)) for a.e. r ∈ [a, b) ,

where S(r) is a subset of R
n varying in time. This dynamical system is

precisely the sweeping process of Moreau, well-known in mathematical me-

chanics (see e.g. [23, 28]), and which has recently received much atten-

tion [7, 8, 9, 29, 32]. In this paper, much akin to the results of Kurdyka

and Łojasiewicz, we prove that bounded absolutely continuous trajecto-

ries of the sweeping process, with a semi-algebraic set-valued mapping

S : R ⇒ R
n, have finite length and therefore must converge to an equilib-

rium point. We discuss extensions to the degenerate sweeping process [22],

and limitations when the sweeping process is state-dependent in the sense

of [21].

As a byproduct, we prove a convenient set-valued extension of the pro-

jection formula [3, Prop. 4], and establish a “desingularization” result for

semi-algebraic set-valued mappings S : R ⇒ R
n, generalizing the Kurdyka-

Łojasiewicz inequality for the sublevel set mapping r 7→ [f 6 r] of a semi-

algebraic function f . The desingularization philosophy, combined with [1,

6], allows us to quickly prove that any locally bounded, semi-algebraic
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sweeping process always admits piecewise absolutely continuous solutions.

The overall trend of the arguments follows along the lines of [2, 24], with

some important deviations. Nevertheless, we believe that the striking con-

nection of semi-algebraic and o-minimal geometry to the sweeping process,

and in particular to nonmonotone evolution equations, outlined in this pa-

per, will pave the way for new applications and settings to be explored.

The outline of the manuscript is as follows. In Section 2, we record some

notation and preliminary results of variational analysis needed in the rest of

the paper. In Section 3, we discuss basic elements of semi-algebraic geome-

try and their interactions with variational constructions. Section 4 contains

our main results on the lengths of trajectories generated by the sweeping

process. Section 5 discusses the role of desingularization, while Section 6

applies desingularization ideas to deduce existence of piecewise absolutely

continuous solutions of the sweeping process.

2. Notation

In this section, we summarize some basic tools we will use. We follow

closely the terminology and notation of [31]. Throughout, we consider a

Euclidean space which we denote by R
n, along with an inner product 〈 · , · 〉

and the induced norm ‖ · ‖. The closed unit ball will be denoted by B. For

any set Q in R
n, we let clQ and intQ denote the closure and the interior

of Q respectively. The symbol convQ will stand for the convex hull of Q,

while parQ will denote the smallest affine space containing Q, translated

to the origin, that is, the linear span of the set Q − Q. Given two sets Q

and L, we say that the orthogonality relation Q ⊥ L holds, if any pair of

points x ∈ Q and y ∈ L are orthogonal. The distance of a point x to a set

Q is defined by

dist (x;Q) := inf
y∈Q

‖x− y‖ .

A set-valued mapping F from R
n to R

m, denoted F : Rn ⇒ R
m, is a

mapping from R
n to the powerset of Rm. The domain and graph of such a

mapping F are defined by

domF := {x ∈ R
n : F (x) 6= ∅} ,

gphF := {(x, y) ∈ R
n × R

m : y ∈ F (x)} ,

respectively. The inverse of a set-valued mapping F is another set-valued

mapping defined by F−1(y) := {x ∈ R
n : y ∈ F (x)}. A set-valued map-

ping L : Rn ⇒ R
m is positively homogeneous whenever gphL is a cone, or

TOME 67 (2017), FASCICULE 5
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equivalently whenever we have

0 ∈ L(0) and L(λx) = λL(x) for all λ > 0 and x ∈ R
n .

In this case, the outer norm of L is defined by

|L|+ := sup
x∈B

sup
y∈L(x)

‖y‖ .

Due to positive homogeneity of L, the outer norm coincides with

inf{κ > 0 : ‖y‖ 6 κ‖x‖ whenever y ∈ L(x)}.

One can now easily deduce that the norm of the inverse admits the repre-

sentation

(2.1) |L−1|+ =
1

inf‖x‖=1 dist (0;L(x))
.

Next we pass to certain geometric constructions associated to sets in R
n. In

what follows, the symbol “o(‖x− x̄‖) for x ∈ Q” will stand for any function

satisfying o(‖x−x̄‖)
‖x−x̄‖ → 0 as x tends to x̄ in Q.

Definition 2.1 (Normal cones). — Consider a set Q ⊂ R
n and a point

x̄ ∈ Q. Then the Fréchet normal cone to Q at x̄, denoted N̂Q(x̄), consists

of all vectors v ∈ R
n satisfying

〈v, x− x̄〉 6 o(‖x− x̄‖) for x ∈ Q.

The limiting normal cone to Q at x̄, denoted by NQ(x̄), consists of all

vectors v ∈ R
n such that there exist sequences xi in Q and vi ∈ N̂Q(xi)

satisfying xi → x̄ and vi → v. The Clarke normal cone to Q at x̄ is simply

the set N c
Q(x̄) := cl convNQ(x̄).

By convention, for any point x̄ 6∈Q, we set N̂Q(x̄) =NQ(x̄) =N c
Q(x̄) = ∅.

When Q is a closed convex set, the three normal cones all coincide with

the usual convex normal cone of convex analysis, while for a C1-smooth

manifold Q the normal cones coincide with normal spaces in the sense of

differential geometry.

Normal cones to graphs of set-valued mappings F : Rn ⇒ R
m are natu-

rally associated with generalized differentiation. Here, we should note that

in general the limiting normal cone NgphF provides much finer information

about the local behavior of F as opposed to the convexified construction

N c
gphF . On the other hand, the results in this paper are strong enough to

pertain to the latter, and hence that’s the one we mostly focus on. Analo-

gous results for limiting constructions are direct consequences.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.2 (Coderivatives). — Consider a mapping F : Rn ⇒ R
m

and a pair (x̄, ȳ) ∈ gphF . The Clarke coderivative of F at x̄ for ȳ is the

set-valued map D∗
cF (x̄|ȳ) : Rm ⇒ R

n defined by

D∗
cF (x̄|ȳ)(u) := {v ∈ R

n : (v,−u) ∈ N c
gphF (x̄, ȳ)}.

The limiting coderivative D∗F (x̄|ȳ) is defined analogously.

When F : Rn → R
m is C1-smooth, then in terms of ȳ := F (x̄), the

coderivative mapping D∗F (x̄|ȳ) is single-valued and linear, and coincides

with the adjoint of the Jacobian ∇F (x̄)∗. Analogously to the smooth case,

we use the following notation.

Definition 2.3 (Criticality). — Given a set-valued mapping

F : Rn ⇒ R
m, we say that a pair (x̄, ȳ) in the graph gphF is a Clarke

critical pair whenever

0 ∈ D∗
cF (x̄|ȳ)(u) for some u 6= 0 .

A vector ȳ ∈ R
m is a Clarke critical value of F if there exists a point x̄ ∈ R

n

so that the pair (x̄, ȳ) is Clarke critical.

The coderivatives D∗F (x̄|ȳ) and D∗
cF (x̄|ȳ) are positively homogeneous

set-valued mappings, hence in particular they admit an outer norm. Un-

wrapping the notation for ease of reference, we have

|D∗
cF (x̄|ȳ)|+ = sup

‖u‖61

{‖v‖ : v ∈ D∗
cF (x̄|ȳ)(u)} ,

and

|D∗
cF

−1(ȳ|x̄)|+ =
1

inf‖u‖=1{‖v‖ : v ∈ D∗
cF (x̄|ȳ)(u)}

.

In particular (x̄, ȳ) is Clarke critical if and only if |D∗
cF

−1(ȳ|x̄)|+ = ∞.

The norms |D∗F (x̄|ȳ)|+ and |D∗F−1(ȳ|x̄)|+ admit analogous descriptions.

Definition 2.4 (Asymptotic critical values). — Given a set-valued map

F : Rn ⇒ R
m, we say that a vector ȳ is an asymptotic Clarke critical value

of F on a set U ⊂ R
n if there exists a sequence (xi, yi) ∈ gphF with xi ∈ U ,

such that yi converges to ȳ and |D∗
cF

−1(yi|xi)|
+ tends to infinity.

It is important to note that the outer norm of the limiting coderivative is

very closely related to a pseudo-Lipschitz modulus of the mapping, which

will play an important role in Section 6.

Definition 2.5 (Aubin Property). — A set-valued mapping

F : R
n ⇒ R

m has the Aubin property at x̄ for ȳ ∈ F (x̄) if the graph

TOME 67 (2017), FASCICULE 5
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gphF is locally closed around (x̄, ȳ), and there are neighborhoods X of x̄

and Y of ȳ, along with a constant κ > 0 such that

F (x′) ∩ Y ⊂ F (x) + κ‖x′ − x‖B , for all x, x′ ∈ X.

The infimum of κ over all combinations κ, X, and Y so that the condition

above holds is the Lipschitz modulus of F at x̄ for ȳ, and is denoted by

lipF (x̄|ȳ).

Provided that the graph of F is closed around (x̄, ȳ), the following rela-

tionships hold:

lipF (x̄|ȳ) =
∣∣D∗F (x̄|ȳ)

∣∣+
6

∣∣D∗
cF (x̄|ȳ)

∣∣+
.

The first equality is a celebrated characterization of the Aubin property

(see [18], [27] or [31, Thm. 9.40], for example), while the last inequality is

immediate from coderivative definitions.

3. Semi-algebraic and o-minimal geometry

A semi-algebraic set Q ⊂ R
n is a finite union of sets of the form

{x ∈ R
n : f1(x), . . . , fk(x) = 0, g1(x) < 0, . . . , gl(x) < 0},

where f1, . . . , fk and g1, . . . , gl are real polynomials in n variables. It follows

immediately that the class of semi-algebraic sets is closed under the stan-

dard Boolean operations (finite unions/intersections and complementary),

while the famous Tarski–Seidenberg principle — also known as quantifier

elimination — shows that semi-algebraicity is preserved under projections.

Semi-algebraic subsets of the real line R are exactly the finite unions of

intervals. This property, known as the o-minimal (order-minimal) property,

is the basis for an elegant axiomatization of various favorable properties of

semi-algebraic sets, culminating with a notion of definable sets, or more

formally, sets definable in an o-minimal structure [14]. This theory allows

consideration of much more general sets such as those that are globally

subanalytic, or sets belonging to the log-exp structure. A slightly more

general notion is that of a tame set – a set whose intersection with any

ball is definable in an o-minimal structure. Typical examples of tame sets

which are not definable, are graphs of real-analytic functions. Tame sets are

the context of the current paper. We do not however formally state what

definable and tame sets are here since it would take us far off-field. Indeed,

the reader can safely replace the word tame (or definable) by semi-algebraic,

ANNALES DE L’INSTITUT FOURIER
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throughout. We point the interested reader to the manuscript [14] or to the

short discussion in [24, p. 771].

A key property of definable sets is that they can always be decomposed

into a disjoint finite union of smooth (to an arbitrary order) manifolds that

fit together in a regular pattern. In what follows p will always denote a

finite integer no smaller than one.

Definition 3.1 (Whitney (a)-regular Cp-stratification). — A Whitney

(a)-regular Cp-stratification of a set Q ⊂ R
n is a partition of Q into finitely

many Cp manifolds (called strata) satisfying the following compatibility

conditions:

Frontier condition: For any two strata L and M , the implication

L ∩ clM 6= ∅ =⇒ L ⊂ (clM) \M holds.

Whitney condition (a): For any sequence of points {xi}i in a

stratum M converging to a point x̄ in a stratum L, if some corre-

sponding normal vectors vi ∈ NM (xi) converge to a vector v, then

the inclusion v ∈ NL(x̄) holds.

Definable sets always admit Whitney (a)-regular Cp-stratifications for

any finite p. The importance of such a result for variational analysts can

already be appreciated by observing that the normal cone N c
Q(x) must be

contained in the normal space NM (x), where M is a stratum containing

x in any Whitney (a)-regular C1-stratifications of Q. We refer the reader

to [3, 15, 19] for applications of this fact, and of stratifications more broadly,

in Variational Analysis. The forthcoming Theorems 3.2 and 3.3 are in the

same spirit.

A set-valued mapping F : R
n ⇒ R

m (respectively, a function

f : Rn → R
m) is called definable if its graph gphF is definable. For in-

stance, the functions |x− y| and
√
x2 + y4 are semi-algebraic, the function

x (sin x)−1, for x ∈ (0, π), is globally subanalytic, while the function

x 7→ exp(
√

|x|) log(|x| + 1)

is definable in the log-exp structure.

The following is a convenient generalization of the “projection formula”

(from [3, Prop. 4]) to the coderivative setting. Henceforth, we use the sym-

bol πx to denote the coordinate projection (x, y) 7→ x, and the symbol

TM(x) to denote the tangent space to a Cp-manifold M at x.

Theorem 3.2 (Extended projection formula). — Consider a set-valued

mapping F : Rn ⇒ R
m and a Whitney (a)-regular C1-stratification {Mi}

TOME 67 (2017), FASCICULE 5
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of the graph gphF ⊂ R
n × R

m. Then for any pair (x̄, ȳ) ∈ gphF in a

stratum Mi, the orthogonality relation holds:

parD∗
cF (x̄|ȳ)(u) ⊥ πx

(
TMi

(x̄, ȳ)
)

for all u ∈ R
m.

Proof. — We can suppose without loss of generality that D∗
cF (x̄|ȳ)(u)

is nonempty. Then by definition of the coderivative we have the chain of

implications

v ∈ D∗
cF (x̄|ȳ)(u) ⇐⇒ (v,−u) ∈ N c

gphF (x̄, ȳ) =⇒ (v,−u) ∈ NMi
(x̄, ȳ) .

Hence for any tangent vector (a, b) ∈ TMi
(x̄, ȳ) ⊂ R

n × R
m, we deduce

〈D∗
cF (x̄|ȳ)(u), a〉 = 〈u, b〉 ,

and consequently 〈D∗
cF (x̄|ȳ)(u) −D∗

cF (x̄|ȳ)(u), a〉 = 0, as claimed. �

The dimension of a definable set Q is the maximal dimension of any

stratum in any Whitney (a)-regular C1-stratification of Q. It is well-known

that this definition is independent of the choice of the stratification. In

particular, a definable subset of Rm has measure zero if and only if it has

dimension at most m − 1. The following is analogous to the main result

of [19].

Theorem 3.3 (Sard). — Consider a definable set-valued map

F : Rn ⇒ R
m with a closed graph. Then the set of Clarke critical val-

ues of F is a definable set of dimension at most m − 1. Moreover, the set

of asymptotic Clarke critical values of F on any bounded definable set U

is also a definable set of dimension at most m− 1.

Proof. — The fact that the set of Clarke critical values is definable fol-

lows by standard quantifier elimination. Consider now any Whitney (a)-

regular Cp-stratification of gphF . Suppose the equality |D∗
cF

−1(ȳ|x̄)|+ = ∞

holds, or equivalently we have (0, u) ∈ N c
gphF (x̄, ȳ) for some vector u 6= 0.

Letting L be the manifold (stratum) containing (x̄, ȳ), we deduce

(0, u) ∈ NL(x̄, ȳ). Let πL : L → R
m be the restriction to L of the canonical

projection π : Rn × R
m → R

m. It follows that ȳ is a critical value in the

classical sense of πL. Applying the standard smooth Sard’s theorem with

p sufficiently large, and recalling that the number of strata is finite, we

deduce that such critical values ȳ have measure zero, as claimed.

Fix now a bounded definable set U and suppose that there exists a se-

quence (xi, yi) ∈ gphF with xi ∈ U , such that yi converges to ȳ and

|D∗
cF

−1(yi|xi)|
+ tends to infinity. Hence inclusions (wi, ui) ∈ N c

gphF (xi, yi)

hold for some vectors wi, ui satisfying ‖ui‖ = 1 and wi → 0. Since U is

bounded and gphF is closed, we may suppose xi → x̄ for some point x̄

ANNALES DE L’INSTITUT FOURIER
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satisfying (x̄, ȳ) ∈ gphF . Let L be a stratum containing (x̄, ȳ). We may

assume, passing to a subsequence, that either {(xi, yi)}i is contained in

L or it is contained in a stratum M with L ⊂ (cl M) \ M. Passing to

the limit (and evoking the Whitney-(a) condition in the second case) we

deduce (0, u) ∈ NL(x̄, ȳ) for some u 6= 0, that is, ȳ is a critical value of

πL. Again applying the standard smooth Sard’s theorem with p sufficiently

large, we deduce that such values ȳ have measure zero, thereby completing

the proof. �

Remark 3.4. — Boundedness of the set U is necessary for the the-

orem above to hold. This can be immediately seen even in the single-

valued setting. Indeed, following [24, p. 776], define F (x, y) = x
y

and U =

{(x, y) ∈ R
2 : y > 0}. It follows easily that every r > 0 is an asymptotic

Clarke critical value of F .

We also note in passing that it is clear from the above proof that instead

of assuming that gphF is closed, we could have assumed that gphF is

only locally closed. The latter means that for every (x, y) ∈ R
n×R

m, there

exists a neighborhood V such that V ∩ gph F is closed.

4. Finite length of bounded trajectories

Our focus is on the trajectory length of the classical sweeping process,

introduced by Moreau [28]. Given a set-valued mapping S : R ⇒ R
n, called

the sweeping set, we consider absolutely continuous curves γ : (a, b) → R
n

satisfying the inclusion

(4.1) γ̇(r) ∈ −N c
S(r)

(
γ(r)

)
for a.e. r ∈ (a, b) .

See Figure 4.1 below for an illustration.

Notice that provided that gphS is closed, continuity of γ along with

condition (4.1) implies that the points γ(r) lie in S(r) for all r.

Moreau’s original construction assumed convexity of the sets S(r), in

which case the normal cone N c
S(r) becomes the usual normal cone of convex

analysis. Convexity will not play a role in our work, however. We first

establish the following bound on the speed of the sweeping process.

Theorem 4.1 (Speed of the generalized sweeping process). — Let

S : R ⇒ R
n be a definable mapping with a closed graph and assume

that γ : (a, b) → R is a.e differentiable and satisfies the “sweeping inclu-

sion” (4.1). Then the following estimate on speed holds:

(4.2) ‖γ̇(r)‖ 6
∣∣D∗

cS
(
r|γ(r)

)∣∣+
, for a.e. r ∈ (a, b) .

TOME 67 (2017), FASCICULE 5
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Figure 4.1. Sweeping process, with S : R ⇒ R
n

and γ̇(t) ∈ −N c
S(t)(γ(t))

Proof. — Notice that (4.2) is vacuously satisfied when |D∗S(r|γ(r))|+ =

+∞, since in this case |D∗
cS(r|γ(r))|+ > |D∗S(r|γ(r))|+ = +∞. Thus we

may limit our attention to parameters r with |D∗S(r|γ(r))|+ < +∞ (that

is, S has the Aubin property at r for γ(r)). Consider the a.e differentiable

curve

r 7→ ζ(r) := (r, γ(r)) r ∈ (a, b) ,

and observe that (4.1) implies ζ(r) ∈ gphS for a.e. r ∈ (a, b).

Claim. — For a.e. r ∈ (a, b) it holds:

(4.3) 〈N c
gphS(ζ(r)), ζ̇(r)〉 = 0 .

Proof of Claim. — Let {Mi} be a Whitney (a)-regular C1-stratification

of gphS. Fix r ∈ (a, b) at which ζ is differentiable and let Mi be the stratum

containing ζ(r). Then either ζ̇(r) lies in the tangent space TMi
(ζ(r)) or

there exists an open interval I around r, such that the image ζ(I \{r}) does

not intersect Mi. It follows quickly that for a.e. r ∈ (a, b) the implication

ζ(r) ∈ Mi =⇒ ζ̇(r) ∈ TMi
(ζ(r)) holds.

ANNALES DE L’INSTITUT FOURIER
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On the other hand, for such r, the Whitney–(a) condition implies that

N c
gphS(ζ(r)) is contained in the normal space NMi

(ζ(r)). Equation (4.3)

follows. �

Fix any r ∈ (a, b) satisfying (4.3). Setting H := {r} × R
n we have

{r} × S(r) = H ∩ gphS .

Combining this equation with (4.1) we have

(1,−γ̇(r)) ∈ N c
{r}×S(r)(ζ(r)) = N c

H∩gphS(ζ(r)) .

Since S has the Aubin property at r for γ(r), the qualification condition

(t, 0) ∈ NgphS(ζ(r)) =⇒ t = 0 holds.

Hence applying the calculus rule [31, Thm. 6.42], we deduce

N c
H∩gphS(ζ(r)) ⊂ N c

H(ζ(r)) +N c
gphS(ζ(r))

= (R × {0}) +N c
gphS(ζ(r)) .

We conclude that the inclusion

(4.4) (λ,−γ̇(r)) ∈ N c
gphS(ζ(r))

holds for some λ ∈ R. Appealing then to equation (4.3), we obtain the

equality

〈(λ,−γ̇(r)), (1, γ̇(r))〉 = 0 , for a.e. r ∈ (a, b) ,

and hence

λ = ||γ̇(r)||2 .

Plugging this expression back into (4.4) we obtain
(

||γ̇(r)||2,−γ̇(r)
)

∈ N c
gphS(ζ(r)) .

Observe that in the case γ̇(r) = 0, the claimed inequality (4.2) is trivial.

Hence we may suppose that this is not the case and deduce that

(
||γ̇(r)||,

−γ̇(r)

||γ̇(r)||

)
∈ N c

gphS(ζ(r)) ,

which readily yields
∣∣D∗

cS
(
r|γ(r)

)∣∣+
> ‖γ̇(r)‖ ,

as claimed. �
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Following the notation of Theorem 4.1, an identical proof shows that if

the stronger inclusion

γ̇(r) ∈ −NS(r)(γ(r)) holds for a.e. r ∈ (a, b) .

then the stronger relation

‖γ̇(r)‖ 6 lipS
(
r|γ(r)

)

holds for almost every r. We note that if S is a Lipschitz continuous map-

ping, then the authors of [6, 1] show that the “catching up algorithm”

produces curves satisfying the above estimate. In contrast, the speed es-

timate we have just established applies to all solutions of the sweeping

process in the definable setting.

In light of Theorem 4.1, to understand the length of the solutions of the

sweeping process it is essential to consider integrability of the coderiva-

tive outer norms
∣∣D∗

cS
(
r|γ(r)

)∣∣+
. To this end, we introduce the following

definition, much akin to the one considered in [4, §3.3] in the context of

subgradient dynamical systems.

Definition 4.2 (Talweg function). — Consider a set-valued mapping

S : (a, b) ⇒ R
n and let U be a subset of Rn. Then the talweg function of

S on U is the function ϕ : (a, b) → R defined by

(4.5) ϕ(r) := sup
x∈S(r)∩U

{∣∣D∗
cS

(
r|x

)∣∣+
}
.

The talweg function of S is rarely infinite.

Lemma 4.3 (Finiteness of the talweg function). — Consider a definable

set-valued mapping S : (a, b) ⇒ R
n, with closed values, and let U be

a bounded subset of R
n. Then there exists ǫ > 0 such that the talweg

function of S on U is not equal to +∞ on (a, a+ ǫ).

Proof. — Define S : [a, b] ⇒ R
n to be the set-valued map whose graph

is cl gphS. Since S has closed values, equality S(t) = S(t) holds for all t

with an exception of at most finitely many points; see e.g. [15, Prop. 2.30]

or [13, Thm. 32]. The result now follows from Theorem 3.3 applied to

F := S
−1

. �

Next we show that the talweg function of S on a bounded set U is indeed

integrable. The argument is an application of the curve selection lemma on

the talweg in the spirit of [4, 20, 24].
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Theorem 4.4 (Integrability of the talweg function). — For any defin-

able, nonempty-valued, closed-valued mapping S : (a, b) ⇒ R
n and the

talweg function ϕ of S on a bounded definable set U , the integral
∫ b

a

ϕ(r) dr is finite.

Proof. — For any r ∈ (a, b), define the set (talweg)

V(r) :=

{
x ∈ S(r) ∩ U :

∣∣D∗
cS

(
r|x

)∣∣+
>

1

2
ϕ(r)

}
.

Notice that ϕ and V are definable, and moreover by Lemma 4.3 each set

V(r) is nonempty except for finitely many numbers r ∈ (a, b). Without

loss of generality, assume that the interval (a, b) does not contain such

exceptional points. Using the curve selection lemma (e.g. [14, Thm. 1.17]),

we obtain a definable curve r 7→ θ(r) satisfying θ(r) ∈ V(r) for all r ∈ (a, b).

Since θ is differentiable except for finitely many points, we can assume

without loss of generality that θ is differentiable on (a, b).

We claim that the equality

(4.6) t =
〈
θ̇(r), D∗

cS
−1(θ(r)|r)(t)

〉
holds for a.e. r ∈ (a, b),

for which the Clarke coderivative on the right-hand-side is nonempty. To see

this, fix a Whitney (a)-regular C1-stratification of gphS. Then for almost

every r, there exists ε > 0 so that the assignment τ 7→ (τ, θ(τ)) maps the

interval (r − ε, r + ε) into a single stratum. For such r, fix a stratum M

containing (r, θ(r)). Then clearly the vector (1, θ̇(r)) is tangent to M at

(r, θ(r)). Therefore by the Whitney condition (a), the Clarke normal cone

N c
gphS(r, θ(r)) is contained in the orthogonal complement to (1, θ̇(r)). From

the definition of the coderivative, we immediately deduce equality (4.6),

whenever the Clarke coderivative on the right-hand-side is nonempty.

On the other hand, from (2.1) we have unconditionally

(4.7) inf
t=±1

dist (0;D∗
cS

−1(θ(r)|r)(t)) =
1

|D∗
cS(r|θ(r))|+

.

Hence if neither −1 or +1 are in the domain of D∗
cS

−1(θ(r)|r), then we

have 0 = |D∗
cS(r|θ(r))|+ > 1

2ϕ(r). On the other hand, for those r satisfying

|D∗
cS(r|θ(r))|+ 6= 0, equations (4.6) and (4.7) immediately imply

1 6 inf
t=±1

[
dist (0;D∗

cS
−1(θ(r)|r)(t))

] ∥∥θ̇(r)
∥∥

=

∥∥θ̇(r)
∥∥

|D∗
cS(r|θ(r))|+

6
2

ϕ(r)

∥∥θ̇(r)
∥∥.
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Since the curve θ is definable and bounded, it has finite length on (a, b),

and consequently the integral
∫ b
a
ϕ(r) dr is finite, as claimed. �

The main result of the paper is now straightforward.

Corollary 4.5 (Bounded length of orbits). — Let S : R ⇒ R
n be

a definable set-valued mapping having a closed graph and let (a, b) be a

possibly unbounded interval of R. Then any absolutely continuous curve

γ : (a, b) → R
n satisfying the sweeping inclusion

γ̇(r) ∈ −N c
S(r)

(
γ(r)

)
for a.e. r ∈ (a, b),

has finite length.

Proof. — First, we may assume that the interval (a, b) is bounded. In-

deed, given a trajectory γ : (a, b) → R
n as above, we consider the semi-

algebraic diffeomorphism ψ : R → (−1, 1) by setting ψ(t) = t√
1+t2

. Then

the curve γ ◦ ψ−1 is an orbit of the sweeping process S ◦ ψ−1, defined on

(−1, 1), and it has the same length as γ.

Without loss of generality, we may also assume that the inclusion

(a, b) ⊂ domS holds. Since γ is bounded, there exists a bounded set U

containing the image of γ. Let ϕ be the talweg of S on U . Then by Theo-

rem 4.1, for a.e. r ∈ (a, b) we have

(4.8) ‖γ̇(r)‖ 6
∣∣D∗

cS
(
r|γ(r)

)∣∣+
6 ϕ(r) .

Lemma 4.4 immediately implies the result. �

Remark 4.6 (local monotonicity). — Theorem 4.1 and Corollary 4.5

can be formulated in a slightly more general setting, to incorporate certain

strongly monotone perturbations of the trajectory, as considered in [22].

To this end, recall that a mapping F : Rn → R
n islocally α-monotone,

whenever we have

limsup
‖x−y‖→0

〈F (x) − F (y), x− y〉

‖x− y‖2
> α > 0 .

Let γ : (a, b) → R
n be an absolutely continuous curve and set γF := F ◦ γ,

where either F or −F is locally α-monotone. Assume that S : R ⇒ R
n is

definable with a closed graph, γF is absolutely continuous and the sweeping

inclusion holds:

γ̇(r) ∈ −N c
S(r)

(
γF (r)

)
for a.e. r ∈ (a, b).

Then analogously to Theorem 4.1, for almost all r ∈ (a, b) we have

(4.9) ‖γ̇(r)‖ 6
1

α
·
∣∣D∗

cS
(
r|γF (r)

)∣∣+
6

1

α
ϕ(r) ,
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where ϕ is the talweg given by (4.5) for any subset U of Rn containing the

image of γF . The proof of (4.9) follows the lines of the proof of Theorem 4.1.

Indeed, one considers the curve r 7→ ζF (r) := (r, γF (r)) and eventually

deduces (〈
γ̇(r), γ̇F (r)

〉
,−γ̇(r)

)
∈ N c

gphS(ζF (r)) .

Considering again the case γ̇(r) 6= 0 (else the claimed inequality is trivial),

we get

∣∣D∗
cS

(
r|γF (r)

)∣∣+
>

∣∣∣
〈 γ̇(r)

‖γ̇(r)‖
, γ̇F (r)

〉∣∣∣

= lim
ǫ↓0

∣∣∣
〈 γ(r + ǫ) − γ(r)

‖γ(r + ǫ) − γ(r)‖
,

(F ◦ γ)(r + ǫ) − (F ◦ γ)(r)

ǫ

〉∣∣∣

> α · ‖γ̇(r)‖ ,

and the assertion follows.

Remark 4.7 (State-dependent process and ODE). — It is interesting to

note that the analogue of Corollary 4.5 easily fails when the sweeping set

is state-dependent. Consider any autonomous system of ODEs

ẋ = F (x) ,

where F is a semi-algebraic, Lipschitz continuous mapping. Define the semi-

algebraic set-valued mapping S(x) := x+F (x)⊥. Then every orbit γ of the

ODE is a solution of the state-dependent sweeping process

γ̇(t) ∈ −NS(γ(t))(γ(t)).

Consequently, limit cycles and hence bounded orbits of infinite length can

easily appear.

5. Desingularization of the coderivative

In this section we record a “desingularization” result for general definable

set-valued mappings S : R ⇒ R
n in the spirit of [24]. Roughly speaking, any

such mapping after a “localization” and a reparametrization of its domain

can be made to have bounded coderivative norms outside of the critical

values of S−1. At the end of the section, we show how our result recovers

the desingularization result of Kurdyka [24]. We use this technique then to

investigate solvability of the definable sweeping process in the next section.

Here’s the main desingularization result.
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Theorem 5.1 (Desingularization of the Clarke coderivative). — Con-

sider a definable set-valued mapping S : R ⇒ R
n having a closed graph,

and let U be a bounded subset of Rn. Then for any real a ∈ R there exists a

number b > a and a strictly increasing, continuous function Ψ: [a, b) → R

that is C1-smooth on (a, b), satisfies Ψ(a) = a, and such that:

|D∗
c (S ◦ Ψ)(r|x)|+ 6 1 for all r ∈ (a, b) and all x ∈ S(Ψ(r)) ∩ U .

Proof. — If there exists b > a such that the interval (a, b) does not

intersect domS, then there is nothing to prove. Consequently, since S is

definable, we may suppose that there exists b > a satisfying the inclusion

(a, b) ⊂ domS. Let ϕ : (a, b) → R be the talweg of the restriction S|(a,b)
on U . Clearly we may assume that ϕ is continuous on (a, b). If there exists

ε > 0 such that ϕ equals zero on (a, a + ǫ), then the theorem is trivial

yet again. Hence we may suppose that ϕ is nonzero on the interval (a, b).

Define now the function

Φ(r) := a+

∫ r

a

ϕ(τ) dτ for r ∈ [a, b) .

By Theorem 4.4, the function Φ: [a, b) → [a,Φ(b)) above is well defined.

Moreover Φ is clearly strictly increasing, and C1-smooth on (a, b) with a

nonvanishing derivative.

Consider now the inverse Ψ := Φ−1. Then Ψ: [a,Φ(b)) → [a, b) is

strictly increasing, continuous, and C1-smooth on (a,Ψ(b)). Appealing

to [31, Ex. 10.39], for any τ ∈ (a,Φ(b)) and any x ∈ S(Ψ(τ)) ∩ U we

obtain

|D∗
c (S ◦ Ψ)(τ |x)|+ =

|D∗
cS(Ψ(τ)|x)|+

ϕ(Ψ(τ))
6 1,

as claimed. �

Remark 5.2 (Absolute continuity of Ψ−1). — It is immediate from the

proof of Theorem 5.1, that the inverse of the desingularizing function,

namely Ψ−1, is guaranteed to be absolutely continuous.

5.1. Sweeping by sublevel sets and gradient descent

We now show how Theorem 5.1 subsumes Kurdyka’s seminal desingular-

ization result [24] for C1 definable functions (see also [3] for a nonsmooth

extension). To this end, let f : Rn → R be a C1 definable function and

consider the sweeping process associated to sublevel sets

(5.1)

{
S : R ⇒ R

n

S(r) := [f 6 r] .
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Let t 7→ x(t), for t ∈ [0,+∞), be a bounded gradient orbit for f , that is,

ẋ = −∇f(x) with an asymptotic critical value a := limt→+∞ f(x(t)), and

set b = f(x(0)). It follows easily that the mapping

t 7→ q(t) = b− f(x(t))

is a diffeomorphism between (0,∞) and (a, b). Setting h = q−1 and u = x◦h

we obtain a curve u : (a, b] → R
n with the same image as x and satisfying

u̇(r) = −
∇f(u(r))

||∇f(u(r))||2
, for r ∈ (a, b] .

Since equalities f(u(r)) = r and NS(r)(u(r)) = R+∇f(u(r)) hold, we im-

mediately obtain

u̇(r) ∈ −NS(r)(u(r)) .

That is, the gradient curve t 7→ x(t), upon reparametrization, is a solution

of the sweeping process (5.1). Moreover, an easy computation shows

|D∗
cS(f(x)|x)|+ =

1

||∇f(x)||
.

Thus the talweg mapping of Definition 4.2 reads

ϕ(r) = (inf { ||∇f(x)|| : f(x) = r, x ∈ U})
−1

and Theorem 4.4, Corollary 4.5, and Theorem 5.1 recover the results of

Kurdyka in [24].

6. Existence of solutions

In this section we will be interested in the existence of trajectories gener-

ated by the sweeping process. More specifically, given a set-valued mapping

S : [0, η) ⇒ R
n and a point x0 ∈ S(0), we would like to know when there

exists a curve γ : [0, η) → R
n (appropriately regular) satisfying

(6.1)





−γ̇(t) ∈ N c
S(t)(γ(t)) a.e. on [0, η)

γ(t) ∈ S(t) for all t ∈ [0, η)

γ(0) = x0




.

In the case that S is Lipschitz continuous with respect to the Pompeiu–

Hausdorff distance, a complete answer was provided in [6, Thm. 4.2] and [1,

Thm. 3.1]. Here we mean that a mapping S : [0, η) ⇒ R
n is L-Lipschitz

continuous if

S(t′) ⊂ S(t) + L|t− t′|B for all t, t′ ∈ [0, η) .

We record below this existence result.
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Theorem 6.1 (Existence of Lipschitz trajectories). — Let S : [0,η)⇒R
n

be a L-Lipschitz mapping with nonempty, closed values. Then for any

x0 ∈ S(0), there exists a L-Lipschitz curve γ : [0, η) → R
n satisfying (6.1).

Remark 6.2 (Extensions to the limiting normal cone). — In a very re-

cent paper [17], it was shown that the analogue of Theorem 6.1 holds for

definable L-Lipschitz mappings with the limiting normal cone NS(t) replac-

ing the Clarke normal cone N c
S(t). For simplicity, we will state all of our

results in the narrower Clarke situation, but an entirely analogous existence

theory holds for the limiting case with an identical proof. The only differ-

ence is that we must reference the recent manuscript [17] instead of [1, 6]

whenever appropriate.

There has been a considerable effort recently to weaken the Lipschitz

assumption in the theorem above; see for example [16, 5] and references

therein. We will now show that in the definable setting, existence of (at

least) piecewise absolutely continuous solutions of (6.1) can be established

even when S is not Lipschitz continuous. This will follow by combining The-

orem 6.1 with the desingularization techniques developed in the previous

sections.

We begin with a local existence result. To this end, note that if S is not

Lipschitz continuous, then there is an obvious obstruction to having even

a continuous local solution of (6.1) emanating from a point x0 ∈ S(0).

Indeed, when x0 lies outside of the outer limit

Limsup
tց0

S(t) :=
{

lim
i→∞

xi : xi ∈ S(ti) with ti ց 0
}
,

clearly no such solution can exist. For example, when S corresponds to a

sublevel mapping S(t) = [f 6 r0 − t] (for a function f : Rn → R), such

points x0 ∈ [f = r0] ⊂ S(0) are precisely the local minimizers of f , and no

continuous descent curve can emanate from local minimizers.

Theorem 6.3 (Local existence for the definable sweeping process). —

Consider a definable mapping S : R+ ⇒ R
n with a closed graph. Then for

any x0 ∈ Limsuptց0 S(t), there exists ǫ > 0 and an absolutely continuous

curve γ : [0, ǫ) → R
n satisfying





−γ̇(t) ∈ N c
S(t)(γ(t)) a.e. on [0, ǫ)

γ(t) ∈ S(t) for all t ∈ [0, ǫ)

γ(0) = x0




.
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Proof. — Fix a closed ball U in R
n containing x0 in its interior, and

define the truncation Ŝ(t) := S(t) ∩ U . Notice, by the assumption x0 ∈

Limsuptց0 S(t) that we have the analogous inclusion x0 ∈ Limsuptց0 Ŝ(t).

Appealing to definability, we deduce (0, ǫ) ⊂ dom Ŝ for some ǫ > 0. By

Theorem 5.1, there exists a real number η and a strictly increasing, con-

tinuous function Ψ: [0, η) → R+ that is C1-smooth on (0, η), satisfies

Ψ(0) = x0, and such that:

lip(Ŝ ◦ Ψ)(r|x) 6 1 for all r ∈ (0, η) and all x ∈ S(Ψ(r)) ∩ U .

Shrinking η, we may assume that the inclusion (0, η) ⊂ dom(Ŝ ◦ Ψ) holds.

Appealing to the definition of the Aubin property and the compactness of

U , it is easy to see that the mapping Ŝ ◦ Ψ is locally 1-Lipschitz continuous

around any r ∈ (0, η). Hence Ŝ ◦ Ψ is 1-Lipschitz continuous on the entire

interval (0, η). Define now the mapping F : [0, η) → R
n given by

F (t) :=

{
Ŝ ◦ Ψ(t) if t ∈ (0, η)

Limsuprց0 Ŝ(r) if t = 0

Notice that F is 1-Lipschitz continuous, has a closed graph, and satis-

fies x0 ∈ F (0). By Theorem 6.1, then there exist a 1-Lipschitz curve

x : [0, η) → R
n satisfying




−ẋ(t) ∈ N c
F (t)(x(t)) a.e. on [0, η)

x(t) ∈ F (t) for all t ∈ [0, η)

x(0) = x0




.

Since the curve x is 1-Lipschitz, shrinking η > 0, we may assume that

the image of x is contained in the interior of U . Set ǫ := limtրη Ψ(t),

and define the curve γ : [0, ǫ) → R
n by setting γ(r) := x(Ψ−1(r)). No-

tice by Remark 5.2 that the inverse Ψ−1 is absolutely continuous. Hence

γ is absolutely continuous as well, being a composition of a Lipschitz

function and an absolutely continuous function. Finally observe that γ

satisfies γ(r) = x(Ψ−1(r)) ∈ F (Ψ−1(r)) ⊂ S(r) for all r ∈ [0, ǫ) and

−γ̇(r) = −1
ψ′(ψ−1(r)) ẋ(Ψ−1(r)) ∈ N c

F (Ψ−1(r))(x(Ψ−1(r))) = N c
S(r)(γ(r)) for

a.e. r ∈ [0, ǫ). This concludes the proof. �

Next, we will try to maximally extend local solutions of the sweeping

process, aiming for a global solution. To this end, we first observe the

following.

Corollary 6.4 (Convergence to extrema). — Consider a definable map

S : R+ ⇒ R
n with a closed graph and a point x0 ∈ S(t0). Then any ab-

solutely continuous curve γ : [0, ǫ) → R
n, having a maximal domain of
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definition, such that




−γ̇(t) ∈ N c
S(t)(γ(t)) a.e. on [0, ǫ)

γ(t) ∈ S(t) for all t ∈ [0, ǫ)

γ(0) = x0




,

is either unbounded, or has finite length and converges to some point

x∞ /∈ Limsuptցǫ S(t).

Proof. — This follows immediately from Theorems 4.5 and 6.3. �

Let us recall that S : [0, η) ⇒ R
n is locally bounded at t if there exists

an open interval I around t such that the image S(I) is a bounded set.

We say that S is inner-semicontinuous at t if for any x ∈ S(t) and any

sequence ti ∈ [0, η) converging to t, there exists a sequence xi ∈ S(ti)

converging to x. In particular, in the notation of the above theorem, S is

not inner-semicontinuous at ǫ, as certified by x∞.

The following is the main result of the section.

Corollary 6.5 (Global existence). — Consider a locally bounded, de-

finable mapping S : [0, η) ⇒ R
n with a closed graph and nonempty values.

Then for any x0 ∈ Limsuptց0 S(t) there exists a curve γ : [0, η) → R
n

satisfying:

(1) There is a partition t0 = 0 < t1 < . . . < tk = η of the interval [0, η)

such that γ is absolutely continuous on each segment [ti, ti+1); and

(2) The curve γ satisfies:




−γ̇(t) ∈ N c
S(t)(γ(t)) a.e. on [0, η)

γ(t) ∈ S(t) for all t ∈ [0, η)

γ(0) = x0




.

When S is inner-semicontinuous on the entire interval [0, η), then no par-

tition is needed and we can assure that γ is absolutely continuous on the

entire interval [0, η).

Proof. — Since the Aubin property implies inner-semicontinuity, by The-

orem 3.3 (see also [13]) the mapping S is inner-semicontinuous at every

point t ∈ [0, η) outside of some finite set N . By Theorem 6.3, there exists

ǫ > 0 and an absolutely continuous curve γ : [0, ǫ) → R
n satisfying the

conditions (6.1). By Zorn’s lemma we may maximally extend the domain

of γ subject to the system (6.1). Denote the resulting domain by [0, a). By

Corollary 6.4 and local boundedness of S, the curve γ converges to some

point x∞ /∈ Limsuptցa S(t). In particular, S is not inner-semicontinuous
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at a and therefore we deduce that a ∈ N . We can now repeat the ar-

gument with x0 being a point in Limsuptցa S(t). Notice that the latter

set is nonempty since S is locally bounded. The process can restart at

most finitely many times since N has finite cardinality. Concatenating the

(finitely many) curves obtained in this way yields the result. �
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