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Abstract: This paper investigated the rotation minimizing frames that are related to the space curves
and the sweeping surfaces that are traced by these frames in the three-dimensional Lie group. Then,
the sufficient and necessary conditions for the sweeping surface to be a developable ruled surface
were obtained. In particular, we mostly focused on the study of the resulting developable surface is a
cylinder, cone, or tangent surface. Meanwhile, to support the results in the paper, some illustrative
examples are presented.
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1. Introduction

The common aspects of geometry and algebra, which are two significant subjects of
mathematics, are collected Lie groups in two forms: one is that a Lie group is a group,
and the second is that it is a differentiable manifold. Thus, the geometric and algebraic
framework of Lie groups should be coherent in a specific manner. The study of Lie groups
is essential to the common new path to geometry. Therefore, there are numerous study
results on curves and surfaces in the three-dimensional Lie group [1–7].

In the Euclidean three-space E3, the sweeping surface is the surface traced by a
continuously moving 2D curve (the generatrix or profile curve) on a spine curve (trajectory)
in the space. The outcome of such growth, be it composed of movement in the space or
substantial shape distortion, is a sweep subject. The sweep subject type is specified by the
choice of the generator and the position. Sweeping surfaces are a considerable and essential
types of surfaces in geometric modeling and are universally used in industrial design, which
shows why these surfaces are one of the charming subjects of surface theory, as well as
being applied in many areas of science such as computer-aided geometric design, computer-
aided design, and so on [8–12]. One of the paramount facts about the sweeping surface is
that the sweeping surface can be a developable ruled surface [13,14]. Developable surfaces
are the distinctive ruled surfaces that are rather interesting and have many applications in
many subjects. Therefore, many geometers and engineers have investigated and obtained
many properties of the ruled and developable surfaces (see, for example, [8–16]). However,
to the authors’ knowledge, there is no work devoted to discussing the notions of sweeping
surfaces immersed in Lie groups.

In this study, we investigated how to design sweeping surfaces using the rotation-
minimizing frames in the three-dimensional Lie group. Then, we investigated the necessary
and sufficient conditions for the sweeping surface to turn into a developable ruled surface
to establish the Bishop frame along a unit speed curve and develop the local differen-
tial geometry of the sweeping surface in the three-dimensional Lie group G. Then, we
summarize some results concerning the differential geometry of the sweeping surfaces
that are generated by these frames. Consequently, we give the necessary and sufficient
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conditions for the sweeping surface to be a developable ruled surface. We also investigated
the uniqueness of such developable surfaces. In particular, we mainly focused on the study
of the resulting developable surface to be a cylinder, cone, or tangential surface. Finally,
some examples of its applications are introduced and explained in detail.

Hopefully, these results will lead to a connection with the similarities between the the-
ory of the sweeping surfaces in Euclidean three-space and with that in the three-dimensional
Lie group.

2. Preliminaries

This section gives an introduction to Lie group theory (see [1–7]). Consider G to be a
Lie group with a bi-invariant metric <, > and ∇ to be the Levi-Civita connection of G. If g
indicates the Lie algebra of G, then g is isomorphic to TeG where e is the identity (neutral)
element of G. For any three vector fields X, Y, and Z in g, we have the following:

< X, [Y, Z] >= − < Y, [X, Z] >,

and:
∇XY =

1
2
[X, Y]. (1)

Let γ : I ⊂ R → G be an arc-length smooth curve and {E1, E2, . . . , En} be an
orthonormal basis of g. In this case, any two vector fields X and Y can be written as

X =
n
∑

i=1
xiEi and Y =

n
∑

i=1
yiEi, where yi, xi :I → R are smooth functions. The Lie bracket of

X and Y is given by:

[X, Y] =
n

∑
i,i=1

xiyj[Ei, Ej],

and the directional derivative of X on the curve γ is given as follows:

∇TX = X′ +
1
2
[T, X], (2)

where T =γ′ = dfl
ds and X′ =

n
∑

i=1
x′iEi, where x′i =

dxi
ds . It is necessary to note that if X is the

left-invariant vector field to the curve, then X′ = 0 (see for details [14–18]). Here, a “dash”
denotes the derivative with respect to the parameter s.

Let α : I ⊂ R → G be a regular curve in the three-dimensional Lie group G with
the Serret–Frenet system {T, N, B, κ, τ}. Then, a smooth function τG, which is called Lie
torsion, is defined by:

τG(s) =
1
2
< T, [N, B] >, (3)

and:
τG(s) =

1
2κ2τ

< T
′′
, [T, T′] > +

1
4κ2τ

∥∥[T, T′]
∥∥2. (4)

Proposition 1. Let α be an arc-length parametrized curve in G. Then,

[T, N]=< T, [N, B] > B = 2τG(s)B,

[B, T]=< [B, T], N > B = 2τG(s)N,

[N, B]=< [N, B], T > B = 2τG(s)T.

In view of Equation (2) and Proposition 1, the Serret–Frenet formulas of α in G are
written as:

∇T

 T
N
B

 =

 0 κ 0
−κ 0 τ − τG
0 −(τ − τG) 0

 T
N
B

,
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where T = α′(s), κ(s) = ‖∇TT‖ =
∥∥∥T

′
∥∥∥ and τ(s) = ‖∇TB‖−τG.

Remark 1. Let G be a three-dimensional Lie group with a bi-invariant metric. Then:
(1) If G is the special orthogonal group SO(3), then τG = 1/2;
(2) If G is the special unitary group SU(2), then τG = 1;
(3) If G is a commutative (Abelian) group, then τG = 0.

Bishop Frame or Rotation-Minimizing Frame

From the Serret–Frenet formulas, we see that:

ω(s) = (τ − τG)T + κB, (5)

is the instantaneous dual Darboux vector along the curve α. This vector allows writing the
Serret–Frenet formulas as:

∇T

 T
N
B

 = ω(s)×

 T
N
B

. (6)

Definition 1. A moving orthonormal frame {ξ1, ξ2, ξ3}, through a space curve γ(s) in G, is a
rotation-minimizing frame (RMF) with respect to ξ1 if its angular velocity ω satisfies < ω, ξ1 >=
0, or equivalently, the derivatives of ξ2 and ξ3 are both parallel to ξ1. A similar description holds
when ξ2 or ξ3 is selected as the reference orientation [10,17,18].

In view of Definition 1, we see that the Serret–Frenet frame is an RMF with respect
to the principal normal N, but not with respect to the tangent T(resp. the binormal B).
However, the Serret–Frenet frame is not an RMF with respect to T, and one can simply
obtain such an RMF from it. The new normal plane vectors (N1, N2) are given through a
rotation of (N, B) according to: T

N1
N2

 =

 1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 T
N
B

, (7)

with a certain angle φ(s). Here, we call the set {T, N1, N2} the RMF or Bishop frame. Thus,
the Bishop formulae are:

∇T

 T
N1
N2

 =

 0 κ1 κ2
−κ1 0 0
−κ2 0 0

 T
N1
N2

 = ω̃×

 T
N1
N2

, (8)

where ω̃(s) = −κ2N1 + κ1N2 is the Bishop Darboux vector. Furthermore, the Bishop
curvatures are defined by κ1(s) = κ cos φ, κ2(s) = κ sin φ. One can show that:

κ2
1 + κ2

2 = κ2, and φ = tan−1
(

κ2
κ1

)
; κ1 6= 0,

φ(s) = −
s∫
s0

(τ − τG)ds + φ0, φ0 = φ(s0),

 (9)

where s0 is the initial value of s. In this study, we supposed that s0 = 0. Comparing
Equation (6) with Equation (8), we see that the relative velocity is:

ω(s)− ω̃(s) = (τ − τG)T.

This proves that the Serret–Frenet frame has an extra revolution along the tangent,
whose speed equals (τ − τG). This shows that the integral formula of Equation (9) for
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evaluating the RMF results in the undesirable rotation of the Serret–Frenet frame. Therefore,
we have the following:

Corollary 1. Assume α : I ⊂ R → G is a regular curve with the arc-length parameter s in
G and {T, N, B, κ, τ} comprise its Serret–Frenet apparatus. Then, the Serret–Frenet frame is
obtainedalong with the RMF if and only if the binormal vector B is a constant vector field, that is
τ − τG = 0.

3. Sweeping Surfaces in the Three-Dimensional Lie Group G
Kinematically, the concept of a sweeping surface is generated by a plane curve moving

over the space such that the motion of any point on the surface is constantly orthogonal
to the plane. Hence, by using the RMF frame, the sweeping surface family in G is given
by [13]:

M : Y(s, t) = α(s)+ A(s)r(t) = α(s) + r1(t)N1(s) + r2(t)N2(s), (10)

where α(s) is called the spine curve. Here, the planar profile (cross-section) curve is
specified by the parametric exemplification r(t) = (0, r1(t), r2(t))t, where the character “t”
represents transposition, with different parameters 0 ≤ t ≤ T. The particular orthogonal
matrix A(s) = {T(s), N1(s), N2(s)} is assignedto the RMF along α(s).

Without loss of generality, we can suppose the profile curve r(t) is a unit speed curve,
that is,

.
r2

1 +
.
r2

2 = 1. In the next, we use “dot” to indicate the derivative with respect to the
arc-length parameter of the profile curve r(t). It is readily checked that the two tangent
vectors of M are given by:

Yt =
.
r1N1 +

.
r2N2,

Ys = (1− r1κ1 − r2κ2)T.

}
(11)

The first fundamental form is then given by:

I := g11ds2 + 2g12dsdt + g22dt2 = (1− r1κ1 − r2κ2)
2ds2 + dt2, (12)

where:

g11=< Ys, Ys >=(1− r1κ1 − r2κ2)
2, g12 =< Ys, Yt >= 0, g22 =< Yt, Yt >= 1. (13)

The surface unit normal vector is given by:

U(s, t) :=
Yt × Ys

‖Yt × Ys‖
=

.
r2N1 −

.
r1N2. (14)

By a simple derivation, we have:

Yss = −
(
r1κ′1 + r2κ′2

)
T + (1− r1κ1 − r2κ1)(κ1N1 + κ2N2),

Yst = −(
.
r1κ1 +

.
r2κ2)T,

Ytt =
..
r1N1 +

..
r2N2.


This leads to the elements of the second fundamental form h11, h12, and h22, where:

h11 =< Yss, U >= (1− r1κ1 − r2κ1)
(
κ1

.
r2 − κ2

.
r1
)
,

h12 =< Yst, U >= 0,
h22 =< Ytt, U >=

.
r2

..
r1 −

.
r1

..
r2.

 (15)

Hence, the t and s curves of M are curvature lines, that is g12 = h12 = 0. Thereby, the
isoparametric curve:

π(t) : β(t) := Y(t, s0) = α(s0) + r1(t)N1(s0) + r2(t)N2(s0), (16)
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is a 2D unit speed curvature line. Equation (16) determines a family of planes. The unit
tangent vector to β(t) is:

Tβ(t) =
.
r1(t)N1(s0) +

.
r2(t)N2(s0), (17)

and consequently, the unit principal normal vector of β(t) is:

Nβ(t) = Tβ(t)× T(s0) =
.
r2N1 −

.
r1N2 = U(s0, t). (18)

From Equation (18), it is interesting to note that the surface normal U(s0, t) is identical
to the principal normal Nβ(t), that is the curve β(t) is a geodesic 2D curvature line on
Y(t, s0). Surfaces for which parametric curves are curvature lines have numerous imple-
mentations in geometric design [9]. In the case of sweeping surfaces, one has to evaluate the
offset surfaces Y f (t, s) = Y(t, s) + f U(s, t) of a given surface Y(t, s) at a constant distance
f . As a result of this equation, the offsetting procedure for the sweeping surface can be
performed more easily than the offsetting of the 2D profile curve, which is much easier to
deal with.

Proposition 2. Let a sweeping surface M be defined by Equation (10). Assume r f (t) is the planar
offset of the 2D profile r(t) at distance f . Then, the offset surface Y f (r, s) is still a sweeping surface,
defined by the spine curve α(s) and the 2D profile curve r f (r).

3.1. Local Singularities

Singularities are fundamental for the realization of the sweeping surfaces and are
inspected next: It can be seen that the sweeping surface M has singular points if and only if:

‖Yt × Ys‖=ρ− r1 cos φ− r2 sin φ = 0,

where ρ = ρ(s) is the curvature radius of α(s). Using ρ(s), we have the correlations:

r1 = ρ(s) cos φ, r2 = ρ(s) sin φ.

We can obtain the singular curve of M as follows:

C(s) = α(s) + ρ(s)(cos φN1(s) + sin φN2(s)). (19)

We mention that singular points happen at the intersection amidst the 2D profile curve
r = r(t) and the instantaneous axis of rotation:

L(t) = {(r1, r2) | r1 cos φ0 + r2 sin φ0 = ρ(s0).

Corollary 2. Assume that M is a sweeping surface Equation (10), with the profile and spine curves
having non-vanishing curvatures anywhere. Then, M has no singular points if:

r1 cos φ + r2 sin φ 6= ρ(s), (20)

is satisfied for all s and t.

The conditions that guarantee the convexity or curves that produce parabolic points
of a surface are desired in various implementations (such as manufacturing of sculpted sur-
faces or layered manufacturing). Therefore, we discuss in what conditions the parametric
curves are parabolic curves as follows: The Gaussian curvature of M at a regular point can
be obtained as:

K(s, t) :=
h11h22 − h2

12
g11g22 − g2

12
=

(
.
r2

..
r1 −

.
r1

..
r2)
( .
r2 cos φ− .

r1 sin φ
)

(ρ− r2 cos φ− r2 sin φ)
. (21)
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Let ϑ(s, t) be the angle between the normal N(s) of the isoparametric curve t=const.
and U(s, t) be the normalof the surface M, then we have:

U(s, t) = cos ϑN(s)+ sin ϑB(s), (22)

where:
cos ϑ =

.
r1 sin φ +

.
r2 cos φ, and sin ϑ = − .

r1 cos φ +
.
r2 sin φ. (23)

Since every generating 2D profile curve is a curvature line for the sweeping surface,
the value of one principal curvature is:

χ1(s, t) :=

∥∥ .
r× ..

r
∥∥∥∥ .

r
∥∥3 =

.
r1

..
r2 −

.
r2

..
r1. (24)

Furthermore, the curvature of the parametric curves t = const. is:

χ(s, t) :=
‖Ys × Yss‖
‖Ys‖3 =

1
ρ− r1 cos φ + r2 sin φ

. (25)

Substituting Equations (23)–(25) into Equation (21) yields:

K(s, t) = −χ1(s, t)χ(s, t) cos ϑ. (26)

In order to describe the shape of M, we attempted to obtain the curves on M that
are traced by parabolic points, that is points with zero Gaussian curvature. These curves
divide the elliptic (K > 0, locally convex) and hyperbolic (K < 0, hence non-convex) parts
of the surface. As a result of Equation (26), there three cases emerge when parabolic points
are considered:

Case (1) exists when χ1 = 0. If χ1 = 0, the 2D profile curve r = r(t) is turned into a
straight line, and from Equation (24), it can be seen that:

χ1 = 0 if and only if
.
r× ..

r = 0 if and only if
.
r ‖ ..

r. (27)

This equation shows that a flat or inflection point of r = r(t) forms a parabolic curve
s = const. on parts of the sweeping surface.

Case (2) exists when χ(s, t) = 0. From Equation (25), it can be found that if κ(s) = 0,
then χ(s) = 0. This means that the spine curve α = α(s) is turned into a straight line.
Likewise, a flat or inflection point of the spine curve forms a parabolic curve t =const. on
parts of the sweeping surface.

Case (3) exists when ϑ = π/2. From Equation (22), it can be found that if U(s, t) ‖ B,
hence cos ϑ = 0. Then, the curve α(s) is not only a curvature line, but also an asymptotic of
the sweeping surface. Thus, for the parabolic points, the condition:

.
r1 sin φ +

.
r2 cos φ = 0, (28)

is satisfied for all s and t. Thus, the following corollary can be given:

Corollary 3. Consider M to be a sweeping surface Equation (10), with the profile and spine curves
having non-vanishing curvatures everywhere. Then, M has parabolic points if and only if the spine
curve is an asymptotic curve.

By the integration of Equation (28), the following can be acquired:

r1 cos φ + r2 sin φ = ζ(s), (29)
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where ζ = ζ(s) is an arbitrary function. Then, we have the relationships:

r1 = ζ(s) cos φ, r2 = ζ(s) sin φ. (30)

Therefore, from Equation (10), it follows that the parabolic curve is:

P(s) = α(s) + ζ(s)N(s). (31)

Corollary 4. Consider M to be a sweeping surface Equation (10), with the spine and profile curves
having non-vanishing curvatures everywhere. Then, M has precisely one parabolic curve if and
only if the spine curve is an asymptotic curve.

Example 1. Let the spine curve α(s) be:

α(s) = (cos s, sin s, 0), 0 ≤ s ≤ 2π.

For this curve,

T(s) = (− sin s, cos s, 0),

N(s) = (− cos s,− sin s, 0),

B(s) = (0, 0, 1),

where κ(s) = 1, τ(s) = 0 and τG(s) = 1
2 . Then φ(s) = s

2 , and the Bishop curvatures are,
respectively, as follows:

κ1(s) = cos
s
2

, and κ2(s) = sin
s
2

.

Using Equation (7), we obtain the Bishop frame {T, N1, N2} as: T
N1
N2

 =

 1 0 0
0 cos s

2 sin s
2

0 − sin s
2 cos s

2

 T
N
B

;

therefore:

N1 =
(
− cos

s
2

cos s,− cos
s
2

sin s, sin
s
2

)
,

N2 =
(

sin
s
2

cos s, sin
s
2

sin s, cos
s
2

)
.

If we consider r(t) = (0, cos t, sin t), then we obtain a member of the sweeping surface family
in the special orthogonal group SO(3), as shown in Figure 1:

M : Y(s, t) = (cos s, sin s, 0) + cos tN1 + sin tN2.

Example 2. Let the spine curve α(s) be:

α(s) = (
1√
2

cos s,
1√
2

sin s,
s√
2
), 0 ≤ s ≤ 2π.

Then,

T(s) = (− 1√
2

sin s,
1√
2

cos s,
1√
2
),

N(s) = (− cos s,− sin s, 0),

B(s) = (
1√
2

sin s,− 1√
2

cos s,
1√
2
),
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where κ(s) = τ(s) = 1√
2
, τG(s) = 0. Then, φ(s) = − s√

2
, and:

κ1(s) =
1√
2

cos
s
2

and κ2(s) =
1√
2

sin
s
2

.

Similarly, we obtain: T
N1
N2

 =

 1 0 0
0 cos s√

2
− sin s√

2
0 sin s√

2
cos s√

2


 T

N
B

,

from which we have:

N1 =

 N11
N12
N13

 =


− cos s√

2
cos s− 1√

2
sin s√

2
sin s

cos s√
2

sin s + 1√
2

sin s√
2

cos s
− 1√

2
sin s√

2

,

N2 =

 N21
N22
N23

 =


− sin s√

2
cos s + 1√

2
cos s√

2
sin s

− sin s√
2

sin s− 1√
2

cos s√
2

cos s
1√
2

cos s√
2

.

If we consider r(t) = (0, cos t, sin t), then we obtain a member of the sweeping surface family
in a commutative group G as shown in Figure 2:

M : Y(s, t) =
(

1√
2

cos s,
1√
2

sin s,
s√
2

)
+ cos tN1 + sin tN2.

Figure 1. Sweeping surface over a circle.
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Figure 2. Sweeping surface over a helix.

3.2. Developable Surfaces

Developable surfaces are curved surfaces developing on planes without tearing and
stretching. The significance of such surfaces is illustrated in manufacturing and engineer-
ing applications such as automobile components, ship hulls, and apparel modeling (see,
e.g., [13–16]). Therefore, we analyzed the case in which the profile curve r(t) degenerates
into a line. Then, we have two developable surfaces as follows:

M : Y(s, t) = α(s) + tN2(s), t ∈ R, (32)

and:
M⊥ : Y⊥(s, t) = α(s) + tN1(s), t ∈ R. (33)

Moreover,
M : Ys × Yt = −(1− tκ2)N1(s), (34)

and:
M⊥ : Ys × Yt = (1− tκ1)N2(s). (35)

Then, M (resp. M⊥) is the normal developable surface of M⊥(resp. M) along α(s),
and α(s) is a curvature line of M (resp. M⊥).

Proposition 3. Let M be a sweeping surface Equation (10); if the profile curve r(t) degenerates
into a straight line, then M is a developable surface.

Theorem 1 (Existence and uniqueness). Under the above notations, there exists a unique
developable surface Equation (32).

Proof. For the existence, we have the developable surface Equation (32). On the other
hand, since M is a ruled surface, we assume that:

M : Y(s, t) = α(s) + ta(s), t ∈ R,

a(s) = a(s)T+a1(s)N1+a2(s)N2,

‖a(s)‖2 = a2 + a2
1 + a2

2 = 1, a′(s) 6= 0.

 (36)

It can be instantly seen that M is developable if and only if:

det(α′, a, a′) = 0 if and only if a1
(
a′2 + aκ2

)
− a2

(
a′1 + aκ1

)
= 0. (37)

Further, we have:



Symmetry 2022, 14, 698 10 of 14

(Ys × Yt)(s, t) = ±λ(s, t)N1, (38)

where λ = λ(s, t) is a differentiable function. In addition, the normal vector Ys × Yt at the
point (s, 0) is:

(Ys × Yt)(s, 0) = −a2N1 + a1N2. (39)

Thus, from Equations (38) and (39), one finds that:

a1 = 0, and a2 = λ(s, 0), (40)

and it follows from Equation (37) that a2aκ1 = 0, which leads to a2a = 0, with κ1 6= 0. If
(s, 0) is a regular point (i.e., λ(s, 0) 6= 0), then a2(s) 6= 0 and a = 0. Therefore, the direction
of a(s) is the direction of N2(s). This means that the uniqueness holds.

In analogous arguments for M⊥, we can give the corresponding Theorem 1, and we
omit the details here. Thus, the Joachimsthal theorem in G can be stated as follows:

Theorem 2 (Joachimsthal). Let M and M⊥ be two developable surfaces in G such that M ∩
M⊥ = α(s) is a regular curve and < N1, N2 >= 0 along α(s), where N1 and N2 are unitary
normal vector fields to M and M⊥, respectively. Then, α(s) is a curvature line of M if and only if it
is a curvature line of M⊥.

As a utility (such as cylindrical or flank milling), through the movement of the RMF,
consider a cylindrical cutter that is rigidly linked to this frame. Hence, the equation of a
family of cylindrical cutters, which is traced by the movement of a cylindrical cutter along
α(s), can be obtained as follows:

M : Y(s, t) = Y(s, t) + $N1(s), (41)

where $ indicates the cylindrical cutter’s radius. This surface is a developable surface offset
of the surface Y(s, t). The equation of M can therefore be written as:

M : Y(s, t) = α(s)+ tN2(s) + $N1(s). (42)

The normal vector of the cylindrical cutter can be represented as:

U(s, t) =
Ys × Yt∥∥Ys × Yt

∥∥ = N1(s). (43)

On the other hand, we can rewrite Equation (42) as:

M : Y(s, t) = Y(s, t)− $N1(s). (44)

Moreover, we have:

Ys(s, t) = Ys(s, t) + ω̃(s)× ($N1(s)) (45)

from which Ys(s, t) is orthogonal to the normal vector N1. Furthermore, the vector N1
is orthogonal to the tool axis vector T(s). Hence, the developable surface Y(s, t) and the
envelope surface of the cylindrical cutter have a common normal vector, and the length
between the two surfaces is the cylindrical cutter’s radius $.

Therefore, we conclude the following:

Proposition 4. If the developable surface Equation (32) possessing α(s) as a curvature line and
the envelope surface of the cylindrical cutter Y(s, t) are regular, the two surfaces are offset devel-
opable surfaces.



Symmetry 2022, 14, 698 11 of 14

Regarding curves with developable surfaces, we studied the conditions when the
developable surface M is a cylinder, cone, or tangent surface, respectively.

Theorem 3. The developable surface Equation (32) in G is a cylinder surface if and only if
ϕ(s) = 0.

Proof. M is a cylindrical surface if and only if:

N2(s)×∇TN2(s) = 0 if and only if κ sin φN1 = 0. (46)

Since N1 is a non-zero unit vector, then M is a cylinder if and only if:

sin φ = 0 if and only if φ(s) = 0.

Remark 2. In Theorem 3, by sin φ = 0, we know φ = 0 or π. However, in any case, we have
φ′ = 0, then τ − τG = 0. Therefore, in terms of the Serret–Frenet formulas in G, we have that B is
a constant vector, the curve α(s) is a planar curvature line, and M is a binormal surface.

Theorem 4. The developable surface Equation (32) is a cone if and only if κ sin φ = κ0 sin φ0,
where φ0 = φ(0) and κ0 = κ(0).

Proof. The first derivative of the directrix is:

α′(s) = β′(s) + σ(s)N′2(s) + σ′(s)N2(s),

where β′ is the first derivative of the striction curve and σ(s) is a regular function. Then, M
is a cone if and only if the striction curve β(s) degenerates into a point, that is β′(s) = 0.
This means that:

T(s) = −κ2σ(s)T(s) + σ
′
(s)N2(s).

Hence, by equating the coefficients of T and N2, σκ2 = −1, σ′ = 0, this implies that:

σ = const. = − 1
κ sin φ

if and only if κ sin φ = κ0 sin φ0,

where φ0 = φ(0) and κ0 = κ(0).

In Theorem 4, we have that if φ is a constant, that is τ − τG = 0, then the curve α(s) is
a planar curvature line with a constant curvature. Similarly, if κ is also a constant, we can
have τ − τG = 0, and φ is also constant. Then, the curve α(s) is the arc of a circle.

Theorem 5. The developable surface Equation (32) is tangential developable if and only if κ sin φ 6=
κ0 sin φ0, where φ0 = φ(0) and κ0 = κ(0).

Proof. According to the proof of Theorem 4, when κ sin φ 6= κ0 sin φ0, we have β
′ 6= 0.

Since det(β′, N2, N′2) = 0, < β′, N′2>=0, and < N2, N
′
2 >= 0, then β′‖N2. This means that

M is tangential developable.

3.3. Examples

In this subsection, we confirm the correctness of the formulae obtained above.

Example 3. Based on Example 1, we construct a cylinder in G with the following equation
(Figure 3):

M : Y(s, t) = (cos s, sin s, 0) + t(0, 0, 1), t ∈ R. (47)
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Obviously, it does not satisfy Theorem 3, that is τ − τG 6= 0. This means that a cylinder
in a commutative group G is developable, but a cylinder in a three-dimensional Lie group G is
not developable. More explicitly, since τG = 0, then φ(s) is a constant. If φ(s) = 0 or π, the
developable surface M is a cylinder. If we take φ = 0 for example, then M is shown in Figure 3.
Take φ(s) = π

4 for example; the developable surface:

M : Y(s, t) = (cos s, sin s, 0) +
t√
2
(− cos s,− sin s, 1)

is a cone (Figure 4). Then, we state the following: in the three-dimensional Lie group, there exists no
developable cylinder (resp. cone) surface possessing a given planar curve as a curvature line.

Figure 3. A right cylinder.

Figure 4. A circular cone.
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Example 4. Based on Example 2 and Theorem 3, we have κ sin φ 6= κ0 sin φ0. Then, the devel-
opable surface:

M : Y(s, t) = (
1√
2

cos s,
1√
2

sin s,
s√
2
) + t


− cos s√

2
cos s− 1√

2
sin s√

2
sin s

cos s√
2

sin s + 1√
2

sin s√
2

cos s
− 1√

2
sin s√

2


is a tangential developable surface in a commutative group G (Figure 5).

Figure 5. A tangential developable.

4. Conclusions

In the three-dimensional Lie group G, we developed a new mathematical framework
for finding a sweeping surface family. We also showed that the parameter curves are
curvature lines and gave their Gaussian curvatures. This led us to study their geometric
properties and local singularities. In the process of the derivation, the necessary and
sufficient conditions when the resulting sweeping surface is a developable ruled surface
were also analyzed.
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