
SWeG: Lossless and Lossy Summarization of Web-Scale Graphs

Kijung Shin
School of Electrical Engineering, KAIST, Daejeon, South

Korea
kijungs@kaist.ac.kr

Amol Ghoting
LinkedIn Corporation, Mountain View, CA, USA

aghoting@linkedin.com

Myunghwan Kim
LinkedIn Corporation, Mountain View, CA, USA

mykim@cs.stanford.edu

Hema Raghavan
LinkedIn Corporation, Mountain View, CA, USA

hraghavan@linkedin.com

ABSTRACT

Given a terabyte-scale graph distributed across multiple machines,

how can we summarize it, with much fewer nodes and edges, so that

we can restore the original graph exactly or within error bounds?

As large-scale graphs are ubiquitous, ranging fromweb graphs to
online social networks, compactly representing graphs becomes im-
portant to e�ciently store and process them. Given a graph, graph
summarization aims to �nd its compact representation consisting
of (a) a summary graph where the nodes are disjoint sets of nodes
in the input graph, and each edge indicates the edges between all
pairs of nodes in the two sets; and (b) edge corrections for restoring
the input graph from the summary graph exactly or within error
bounds. Although graph summarization is a widely-used graph-
compression technique readily combinable with other techniques,
existing algorithms for graph summarization are not satisfactory in
terms of speed or compactness of outputs. More importantly, they
assume that the input graph is small enough to �t in main memory.

In this work, we propose SWeG, a fast parallel algorithm for
summarizing graphs with compact representations. SWeG is de-
signed for not only shared-memory but alsoMapReduce settings
to summarize graphs that are too large to �t in main memory. We
demonstrate that SWeG is (a) Fast: SWeG is up to 5400× faster than
its competitors that give similarly compact representations, (b) Scal-
able: SWeG scales to graphs with tens of billions of edges, and (c)

Compact: combined with state-of-the-art compression methods,
SWeG achieves up to 3.4× better compression than them.

ACM Reference Format:

Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema Raghavan. 2019.
SWeG: Lossless and Lossy Summarization of Web-Scale Graphs. In Pro-

ceedings of the 2019 World Wide Web Conference (WWW ’19), May 13–

17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3308558.3313402

1 INTRODUCTION

Large-scale graphs are everywhere. Graphs are natural representa-
tions of the web, social networks, collaboration networks, internet
topologies, citation networks, to name just a few. The rapid growth
of the web and its applications has led to large-scale graphs of
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313402

unprecedented size, such as 3.5 billion web pages connected by
129 billion hyperlinks [36], online social networks with 300 billion
connections [11], and 1.15 billion query-URL pairs [30].

Consequently, representing graphs in a storage-e�cient manner
has become important. In addition to the reduction of hardware
costs, compact representation may allow large-scale graphs to �t
in main memory of one machine, eliminating expensive I/O over
the network or to disk. Moreover, it can lead to performance gains
by allowing large fractions of the graphs to reside in cache [7, 48].

To compactly represent graphs, a variety of graph-compression
techniques have been developed, including relabeling nodes [2, 5, 9,
11], employing integer-sequence encoding schemes (e.g., reference,
gap, and interval encodings) [5], and encoding common structures
(e.g., cliques, bipartite-cores, and stars) with fewer bits [7, 22, 43].
These techniques are either lossless and lossy depending on whether
the input graph can be reconstructed exactly from their outputs.

Graph summarization [38] is a widely-used graph-compression
technique. It aims to �nd a compact representation of a given graph
G consisting of a summary graph and edge corrections. The sum-

mary graph G is a graph where the nodes are disjoint sets of nodes
in G and each edge indicates the edges between all pairs of nodes
in the two sets. The edge corrections (i.e., edges to be inserted, and
edges to be deleted) are for restoring G from G exactly (in cases
of lossless summarization) or within given error bounds (in cases
of lossy summarization). The outputs can be considered as graphs:
(a) the summary graph, (b) the graph consisting of the edges to be
inserted, and (c) the graph consisting of the edges to be deleted.

As a graph-compression technique, graph summarization has
the following desirable properties: (a) Combinable: since graph
summarization produces three graphs, as explained in the previ-
ous paragraph, each of them can be further compressed by any
other graph compression technique, (b) Adjustable: the trade-o�
between compression rates and information loss can be adjusted
by given error bounds, and (c) Queryable: neighbor queries (i.e.,
�nding the neighboring nodes of a given node) can be answered
e�ciently on the outputs of graph summarization (see Appendix A).

However, existing algorithms for graph summarization are not
satisfactory in terms of speed [38, 44] or compactness of output rep-
resentations [20]. These serial algorithms either have high computa-
tional complexity or signi�cantly sacri�ce compactness of outputs
for lower complexity. Moreover, they assume that the input graph
is small enough to �t in main memory. The largest graph used in
the previous studies has just about 10 million edges [20, 38, 44]. As

1679

https://doi.org/10.1145/3308558.3313402
https://doi.org/10.1145/3308558.3313402

●

●
●
●●

●

●
●
●●

●

●
●
●●

5400X
0.65

0.70

0.75

0.80

0.85

10
1

10
2

10
3

10
4

10
5

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

Competitors

SWeG

(Proposed)

(a) Fast and Compact (Lossless
Summarization)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2
5

2
6

2
7

2
8

2
9

2
10

2
28

2
30

2
32

2
34

Size of the Input Graph
E

la
p

s
e

d
 T

im
e

 P
e

r
It

e
ra

ti
o

n
 (

s
e

c
)

SWeG

(Proposed)

Linear

Scalability

(slope=1)

(b) Scalable (Lossless
Summarization)

13X
●

●

●

●

●

●

●

24.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Relative Size of Outputs

P
re

c
is

io
n

 @
 1

0
0

SWeG

(Proposed)

Competitors

(c) Compact and Accurate (Lossy
Summarization)

58%
70%

66%
48%

22%44%23%
42%26%28%

17%28%

0

5

10

15

PR WL WS CA HO DB EM SK YO AM LJ PA
Datasets#

B
its

 P
er

 D
ire

ct
ed

 E
dg

e SWeG + BFS

BFS (Compression Method)

(d) Compact (Lossless Compression)

Figure 1: SWeG is fast and scalable with compact and accurate representations. (a) SWeG is faster with more compact repre-

sentations than the other lossless-summarization methods. (b) SWeG scales linearly with the size of the input graph, success-

fully scaling to graphs with over 20 billions edges. (c) The lossy version of SWeG yields more compact and accurate represen-

tations than the other lossy-summarizationmethods. (d) Combining SWeG and an advanced compression technique [2] yields

up to 3.4×more compact representations than using the technique alone. See Section 4 for details.

large-scale graphs often do not �t in main memory, improving the
scalability of graph summarization remains an important challenge.

To address this challenge, we propose SWeG (SummarizingWeb-
Scale Graphs), a fast parallel algorithm for summarizing large-scale
graphs with compact representations. SWeG is designed for both
shared-memory andMapReduce settings. In a nutshell, SWeG re-
peats (a) dividing the input graph into small subgraphs and (b)
processing the subgraphs in parallel without having to load the
entire graph in main memory. SWeG also adjusts, in each iteration,
how aggressively it merges nodes within subgraphs, and this turns
out to be crucial for obtaining compact representations.

Extensive experiments with 13 real-world graphs show that
SWeG signi�cantly outperforms existing graph-summarization
methods and enhances the best compression techniques, as shown
in Figure 1. Speci�cally, SWeG provides the following advantages:

• Speed: SWeG is up to 5, 400× faster than its competitors that
give similarly compact representations (Figure 1(a)).
• Scalability: SWeG scales to graphs with tens of billions of edges,
showing near-linear data and machine scalability (Figure 1(b)).
• Compression: Combined with advanced graph-compression
methods, SWeG yields up to 3.4× better compression than the
methods (Figure 1(d)).

In Section 2, we provide notations and a formal problem de�ni-
tion. In Section 3, we present our proposed algorithm, SWeG. In
Section 4, we provide our experimental results. After discussing
related work in Section 5, we o�er conclusions in Section 6.

2 NOTATIONS AND PROBLEM DEFINITION

Notations andConcepts. See Table 1 for frequently-used symbols
and Figure 2 for an illustration of concepts. Consider a simple
undirected graph G = (V, E) with nodes V and edges E. We
denote each node inV by a lowercase (e.g., v) and each edge in E
by an unordered pair (e.g., {u,v}). We denote the set of neighbors
of a node v ∈ V in G by Nv ⊂ V .

A summary graph of G = (V, E), denoted by G = (S,P), is a
graph whose nodes are a partition ofV (i.e., disjoint and exhaustive
subsets of V). That is, each node v ∈ V belongs to exactly one
node in S. We call nodes and edges in G supernodes and superedges.

We denote each supernode by an uppercase (i.e., A). P may include
self-loops, and we let P∗ ⊂ P be the set of non-loop superedges.

Given a summary graph G = (S,P) and corrections C =<

C+,C− >, where C+ denotes the set of edges to be inserted and C−

denotes the set of edges to be deleted, a graph Ĝ = (V, Ê), which
we call a restored graph, is created by the following steps:

(1) For each superedge {A,B} ∈ P, all pairs of distinct nodes in A

and B (i.e.,. {{u,v} : u ∈ A,v ∈ B,u , v}) are added to Ê,
(2) Each edge in C+ is added to Ê,
(3) Each edge in C− is removed from Ê.

We let the neighbors of each node v ∈ V in Ĝ be N̂v ⊂ V . On G
and C, neighbor queries (i.e., �nding N̂v for a query node v ∈ V)
can be answered rapidly without restoring entire Ĝ (see Appen-
dix A).

Problem De�nition. The large-scale graph summarization prob-
lem, which we address in this work, is de�ned in Problem 1.

Problem 1 (Large-scale Graph Summarization).

(1) Given: a large-scale graph G = (V, E), which may or may

not �t in main memory, and an error bound ϵ (≥ 0)

(2) Find: a summary graph G = (S,P),

and corrections C =< C+,C− >

Table 1: Table of frequently-used symbols.

Symbol De�nition

G = (V, E) input graph with nodesV and edges E
Nv set of neighbors of node v in G

C =< C+,C− > edge corrections (i.e., edges insertions and deletions)
C+ set of edges to be inserted
C− set of edges to be deleted

G = (S,P) summary graph with supernodes S and superedges P
P∗ non-loop superedges in P

Ĝ = (V, Ê) graph restored from G and C
N̂v set of neighbors of node v in Ĝ

ϵ error bound
T number of iterations
θ (t) merging threshold in the t-th iteration

1680

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

Input graph 𝐺

𝐴 = {𝑎, 𝑏}

𝐵 = {𝑐, 𝑑, 𝑒}

𝐶 = {𝑓, 𝑔}

−	 𝑎, 𝑑 ,−	 𝑐, 𝑒 , +{𝑑, 𝑔}

Summary graph 𝐺̅

Corrections 𝐶

𝐴 = {𝑎, 𝑏}

𝐵 = {𝑐, 𝑑, 𝑒}

𝐶 = {𝑓, 𝑔}

Summary graph 𝐺̅

Corrections 𝐶 = ∅

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

Restored graph: 𝐺5

Restoration

Lossless

summarization

Lossy summarization (𝜖 = 0.5)

Restoration

Figure 2: Illustration of graph summarization. Lossless

summarization of the input graph (upper left) yields a sum-

mary graph and corrections (upper right) from which the

input graph is restored exactly. Lossy summarization of the

input graph (upper left) yields a summary graph and correc-

tions (lower left). The restored graph (lower right) satis�es

Eq. (2). Note that the outputs of the lossless and lossy graph

summarization have fewer edges than the input graph.

(3) to Minimize:

|P∗ | + |C+ | + |C− | (1)

(4) Subject to: the restored graph Ĝ = (V, Ê) satis�es

|Nv − N̂v | + |N̂v − Nv | ≤ ϵ |Nv |, ∀v ∈ V . (2)

The objective (Eq. (1)), which we aim to minimize, measures the
size of the output representation by the count of non-loop (super)
edges. We exclude all self-loops in P from the objective since they
can be encoded concisely using 1 bit per supernode regardless of
their count. The constraints (Eq. (2)) [38] states that the neighbors
Nv of each nodev ∈ V in the input graph and the node’s neighbors
N̂v in the restored graph Ĝ should be similar enough so that the
size of their symmetric di�erence (i.e., (Nv ∪ N̂v) − (N̂v ∩ Nv))
is at most a certain proportion of the size of the node’s neighbors
Nv in the input graph. The proportion is given as a parameter ϵ ,
which we call an error bound, and it controls the trade-o� between
compression rates and the amount of information loss. If ϵ = 0,
then Nv = N̂v holds for every node v ∈ V and thus the restored
graph Ĝ is equal to the input graph G. Thus, Problem 1 is lossless
summarization if ϵ = 0 and lossy summarization if ϵ > 0. See
Figure 2 for lossless and lossy summarization of a toy graph.

3 PROPOSED ALGORITHM: SWEG

We present our proposed algorithm, SWeG (Summarizing Web-
ScaleGraphs). SWeG provides approximate solutions to the lossless
and lossy graph summarization problems (i.e., Problems 1). In Sec-
tion 3.1, we provide an overview of SWeG then describe each step
of it in detail. In Sections 3.2 and 3.3, we discuss parallelizing SWeG

in shared-memory andMapReduce settings. In Section 3.4, we ana-
lyze its time complexity and memory requirements. In Section 3.5,
we present SWeG+, an algorithm for further compression.

Algorithm 1 Overview of SWeG

Input: input graph G = (V, E), number of iterations T , error bound ϵ

Output: summary graph G = (S, P), corrections C
1: initialize supernodes S to { {v } : v ∈ V }
2: for t = 1...T do

3: divide S into disjoint groups ▷ Algorithm 2
4: merge some supernodes within each group ▷ Algorithm 3

5: encode edges E into superedges P and corrections C ▷ Algorithm 4
6: if ϵ > 0 then drop some (super) edges from P and C ▷ Algorithm 5

7: return G = (S, P) and C

Algorithm 2 Dividing Step of SWeG

Input: input graph G = (V, E), current supernodes S
Output: disjoint groups of supernodes: {S (1)

, ..., S (k) }

1: generate a random bijective hash function h : V → {1, ..., |V | }

2: for each supernode A ∈ S do

3: for each node v ∈ A do

4: f (v) ← min({h (u) : u ∈ Nv or u = v }) ▷ shingle of node v

5: F (A) ← min({f (v) : v ∈ A}) ▷ shingle of supernode A

6: divide the supernodes in S into {S (1)
, ..., S (k) } by their F (·) value

7: return {S (1)
, ..., S (k) }

3.1 Description of the Algorithm

We �rst give an overview of SWeG, and then describe each step
of it in detail. In this subsection, for simplicity, we assume that
SWeG is executed serially and the input graph is small enough to
�t in main memory of one machine. Parallelization and distributed
processing are discussed in Sections 3.2 and 3.3.

3.1.1 Overview (Algorithm 1). SWeG requires an input graph
G = (V, E), the number of iterations T , and an error bound ϵ , as
in Problem 1. SWeG �rst initializes the set S of supernodes so that
(a) each supernode consists of a node in V and (b) each node in
V belongs to one supernode (line 1 of Algorithm 1). Then, SWeG

updates S by repeating the following steps T times (line 2):

• Dividing step (line 3, Section 3.1.2): divides S into disjoint
groups, each of which is composed of supernodes with similar
connectivity. Di�erent groups are obtained in each iteration.
• Merging step (line 4, Section 3.1.3): merges some supernodes
within each group in a greedy manner.

Dividing S into small groups makes SWeG faster and more mem-
ory e�cient by allowing it to process di�erent groups in parallel
without having to load entire G in memory (see Sections 3.2 and
3.3). After updating S, SWeG performs the following steps:

• Encoding step (line 5, Section 3.1.4): encodes the edges E into
superedges P and corrections C so that the count of non-loop
(super) edges (i.e., Eq. (1)) is minimized given supernodes S.
• Dropping step (line 6, Section 3.1.5): makes P and C more
compact by dropping some (super) edges from them within the
error bounds (i.e., Eq. (2)) in cases of lossy summarization.

Lastly, SWeG returns the summary graph G = (S,P) and the
corrections C as its outputs (line 7).

3.1.2 Dividing Step (Algorithm 2). The dividing step aims to
divide the supernodes S into disjoint groups of supernodes with
similar connectivity. To this end, we extend the shingle of nodes,
for which it is known that two nodes have the same shingle with

1681

Algorithm 3Merging Step of SWeG

Input: input graph G = (V, E), current supernodes S,
current iteration t , disjoint groups of supernodes {S (1)

, ..., S (k) }

Output: updated supernodes S
1: for each group S (i) ∈ {S (1)

, ..., S (k) } do

2: Q ← S (i)

3: while |Q | > 1 do

4: pick and remove a random supernode A from Q
5: B ← argmaxC∈Q SuperJaccard (A, C) ▷ Eq. (4)
6: if Saving(A, B, S) ≥ θ (t) then ▷ Eq. (3) and Eq. (5)
7: S ← (S − {A, B }) ∪ {A ∪ B } ▷ merge A and B
8: S (i) ← (S (i) − {A, B }) ∪ {A ∪ B }

9: Q ← (Q − {B }) ∪ {A ∪ B } ▷ replace B with A ∪ B

10: return S

probability equal to the jaccard similarity of their neighbor sets
[6], to supernodes. Speci�cally, we de�ne the shingle F (A) of each
supernode A ∈ S as the smallest shingle of the nodes in A. Then,
two supernodesA , B ∈ S are more likely to have the same shingle
if the nodes inA and those in B have similar connectivity. Formally,
given a random bijective hash function h : V → {1, ..., |V |},

F (A) := minv ∈A (f (v)),

where f (v) := minu ∈Nv or u=v h(u) is the shingle of node v ∈ V ,
and Nv is the set of neighbors of node v ∈ V in the input graph G.
SWeG generates such a hash functionh by shu�ing the order of the
nodes inV and mapping each i-th node to i (line 1 of Algorithm 2)
and computes the shingle of every supernode inS (lines 2-5). Lastly,
SWeG divides the supernodesS into disjoint groups {S (1) , ...,S (k) }

by their shingle and returns the groups (lines 6-7). In cases where
large groups exist, Algorithm 2 can be applied recursively to each
of the large groups with a new hash function h.

3.1.3 Merging Step (Algorithm 3). To describe this step, we
�rst de�ne several concepts. We de�ne the cost of each supernode
A ∈ S given supernodes S, denoted by Cost (A,S), as the amount
of increase in Eq. (1) (i.e., the count of non-loop (super) edges
in outputs) due to the edges adjacent to any node in A (see the
encoding step in Section 3.1.4). Then, we de�ne the saving due to
the merger between supernodes A , B ∈ S given supernodes S as

Saving(A,B,S) := 1 −
Cost (A ∪ B, (S − {A,B}) ∪ {A ∪ B})

Cost (A,S) +Cost (B,S)
, (3)

where Cost (A,S) +Cost (B,S) is the cost of A and B before their
merger, andCost (A∪B, (S−{A,B})∪{A∪B}) is their cost after their
merger. That is, Saving(A,B,S) is the ratio of the cost reduction
due to the merger and the cost before the merger. Lastly, we de�ne
the supernode jaccard similarity between supernodes A , B ∈ S as

SuperJaccard (A,B) :=

∑

v ∈NA∪NB
min(w (A,v),w (B,v))

∑

v ∈NA∪NB
max(w (A,v),w (B,v))

, (4)

where NA :=
⋃

v ∈A Nv is the set of nodes adjacent to any node
in supernode A ∈ S, and w (A,v) := |{u ∈ A : {u,v} ∈ E}| is the
number of nodes in supernode A ∈ S adjacent to node v ∈ V .
SuperJaccard (A,B) measures the similarity of A and B in terms
of their connectivity. Notice that it is 1 if A and B have the same
connectivity (i.e.,w (A,v) = w (B,v) for every v ∈ NA ∪ NB) and it
is 0 if their nodes have no common neighbors (i.e., NA ∩ NB = ∅).

Given disjoint groups of supernodes {S (1) , ...,S (k) }, the merg-
ing step merges some pairs of supernodes within each groupS (i) in
a greedy manner, as described in Algorithm 3. Notice that, in line 5,
SWeG uses SuperJaccard (A,B) instead of Saving(A,B,S), which is
a more straightforward choice, to �nd a candidate pair of supern-
odesA , B ∈ S (i) . This is because (a) SuperJaccard (A,B) is cheaper
to compute than Saving(A,B,S) and (b) intuitively, Saving(A,B,S)
tends to be highwhenA andB have similar connectivity. Computing
SuperJaccard (A,C) instead of Saving(A,C,S) for every supernode
C ∈ Q in line 5 leads to a signi�cant improvement in speed with
small loss in the compactness of outputs, as shown empirically in
Section 4.2. In line 6, themerging threshold θ (t) is set as in Eq. (5) so
that SWeG gradually shifts from exploration (of supernodes in the
other groups) to exploitation (of supernodes in the same group).

θ (t) :=




(1 + t)−1 if t < T ,

0 if t = T
(5)

This decreasing threshold is crucial for obtaining compact output
representations, as shown empirically in Section 4.2.

3.1.4 Encoding Step (Algorithm 4). Given the supernodes S
from the previous steps, the encoding step encodes the edges E of
the input graph into superedges P and corrections C =< C+,C− >.
We �rst describe how to encode edges that connect di�erent supern-
odes (lines 3-5 of Algorithm 4). For each supernode pair A , B ∈ S,
we let EAB ⊂ E be the set of edges connecting A and B, and πAB
be the set of all pairs of nodes in A and B. That is,

EAB := {{u,v} ⊂ V : u ∈ A,v ∈ B, {u,v} ∈ E}, (6)

πAB := {{u,v} ⊂ V : u ∈ A,v ∈ B}. (7)

Recall how a graph is restored from P and C in Section 2. Then,
the two options to encode the edges in EAB are as follows:

(a) without superedges: merge EAB into C+,
(b) with a superedge: add {A,B} to P; merge (πAB − EAB) into C

−.

Since (a) and (b) increase our objective (i.e., Eq. (1)) by |EAB | and
(1 + |πAB | − |EAB |), respectively, SWeG chooses (a) if |EAB | ≤
|πAB |/2 = |A| · |B |/2 (line 4). Otherwise, it chooses (b) (line 5).

SWeG encodes edges between nodes within each supernode in
a similar manner (lines 6-7). For each supernode A ∈ S, we let
EAA ⊂ E be the set of edges between nodes within A, and πAA be
the set of all pairs of distinct nodes within A. That is,

EAA := {{u,v} ⊂ V : u , v ∈ A, {u,v} ∈ E}, (8)

πAA := {{u,v} ⊂ V : u , v ∈ A}. (9)

Then, the two options to encode the edges in EAA are as follows:

(c) without superloops: merge EAA into C+,
(d) with a superloop: add {A,A} to P; merge (πAA − EAA) into C

−.

Since (c) and (d) increase our objective (i.e., Eq. (1)) by |EAA | and
(|πAA |−|EAA |), respectively, SWeG chooses (c) if |EAA | ≤ |πAA |/2 =
|A| · (|A| − 1)/4 (line 6). Otherwise, it chooses (d) (line 7).

3.1.5 Dropping Step (Algorithm 5). The dropping step is an
optional step for lossy summarization (i.e., when ϵ > 0). This
step is skipped if lossless summarization is needed (i.e., when ϵ =

0). Given the summary graph G = (S,P) and corrections C =<
C+,C− > from the previous step, the dropping step drops some
(super) edges from P and C to make the output representation

1682

Algorithm 4 Encoding Step of SWeG

Input: input graph G = (V, E), supernodes S

Output: summary graph G = (S, P), corrections C =< C+, C− >

1: P ← ∅; C+ ← ∅; C− ← ∅;
2: for each supernode A ∈ S do

3: for each supernode B (, A) where EAB , ∅ do ▷ Eq. (6)

4: if EAB ≤
|A|·|B |

2 then C+ ← C+ ∪ EAB
5: else P ← P ∪ {{A, B } }; C− ← C− ∪ (πAB − EAB) ▷ Eq. (7)

6: if EAA ≤
|A |·(|A|−1)

4 then C+ ← C+ ∪ EAA ▷ Eq. (8)
7: else P ← P ∪ {{A, A} }; C− ← C− ∪ (πAA − EAA) ▷ Eq. (9)

8: return G = (S, P) and C =< C+, C− >

more compact (i.e., to further reduce our objective Eq. (1)) without
changing more than ϵ of the neighbors of each node (i.e., within the
error bounds given in Eq. (2)). SWeG �rst initializes the change limit

cv of each node v ∈ V to ϵ · |Nv |, which is the right-hand side of
Eq. (2) (line 1 of Algorithm 5). Then, within the change limit of each
node, SWeG drops some adjacent edges from C+, C−, and P, as
described in lines 2-4, lines 5-7, and lines 8-12, respectively. Notice
that, when a superedge {A,B} is dropped, the total decrement in the
change limits is proportional to |A| · |B |, which is used to sort the
superedges in line 8. Lastly, SWeG returns the updated summary
graph G = (S,P) and corrections C =< C+,C− > that satisfy the
error bounds given in Eq. (2), as shown in Theorem 3.1 (line 13).

Theorem 3.1 (Error Bounds). Given an input graphG = (V, E),

a summary graph G = (S,P), and corrections C =< C+,C− > sat-

isfying that the restored graph Ĝ is equal to G, Algorithm 5 returns

G and C that satisfy Eq. (2).

Proof. From Ĝ = G, N̂v = Nv holds for every node v ∈ V at the
beginning of the algorithm. Thus, after the change limit cv of each
node v ∈ V is initialized to ϵ · |Nv | in line 1, Eq. (10) holds.

cv ≤ ϵ · |Nv | − |N̂v − Nv | − |Nv − N̂v |,∀v ∈ V . (10)

Recall how Ĝ is constructed from G and C in Section 2. Eq. (10)
still holds after C+ is processed in lines 2-4 since dropping an edge
from C+ decreases cv by 1, increases |Nv − N̂v | by at most 1, and
keeps |N̂v − Nv | the same for each adjacent node v ∈ V . Likewise,
Eq. (10) still holds after C− is processed in lines 5-7 since dropping
an edge in C− decreases cv by 1, increases |N̂v − Nv | by at most
1, and keeps |Nv − N̂v | the same for each adjacent node v ∈ V .
Similarly, we can show that Eq. (10) still holds after P is processed
in lines 8-12. Eq. (11) is enforced by lines 3, 6, and 9.

cv ≥ 0,∀v ∈ V . (11)
Eq. (10) and Eq. (11) imply Eq. (2). ■

3.2 Parallelization in Shared Memory

We describe how each step of SWeG (Algorithm 1) is parallelized in
shared-memory environments. In the dividing step (Algorithm 2),
the supernodes in line 2 are processed independently in parallel.
In the merging step (Algorithm 3), the groups of supernodes in
line 1 are processed in parallel. In lines 6 and 7, the accesses and
updates of S are synchronized. In the encoding step (Algorithm 4),
the supernodes in line 2 are processed independently in parallel.
Speci�cally, each thread has its own copies of P, C+, and C−; and
the copies are merged once, after all supernodes are processed.
Lastly, in the dropping step (line 5), parallel merge sort [24] is used
when sorting P in line 8. Although the other parts of the dropping

Algorithm 5 Dropping Step of SWeG (Optional)

Input: input graph G = (V, E), error bound ϵ

summary graph G = (S, P), corrections C =< C+, C− >

Output: updated summary graph G = (S, P),
updated corrections C =< C+, C− >

1: cv ← ϵ · |Nv | for each node v ∈ V ▷ change limits of nodes
2: for each edge {u, v } ∈ C+ do

3: if cu ≥ 1 and cv ≥ 1 then

4: C+ ← C+ − {{u, v } }; cu ← cu − 1; cv ← cv − 1

5: for each edge {u, v } ∈ C− do

6: if cu ≥ 1 and cv ≥ 1 then

7: C− ← C− − {{u, v } }; cu ← cu − 1; cv ← cv − 1

8: for each superedge {A, B } ∈ P in the increasing order of |A | · |B | do
9: if A , B and (∀v ∈ A, cv ≥ |B |) and (∀v ∈ B, cv ≥ |A |) then

10: P ← P − {{A, B } };
11: for each v ∈ A do cv ← cv − |B |

12: for each v ∈ B do cv ← cv − |A |

13: return G = (S, P) and C =< C+, C− >

step are executed serially, they take a negligible portion of the total
execution time because they are executed only once, while the
dividing and merging steps are repeated multiple times.

3.3 Distributed Processing withMapReduce

We describe how each step of SWeG is implemented in theMapRe-

duce framework for large-scale graphs not �tting in main memory.
We assume that the input graph G is stored in a �le in a distributed
�le system where each record describes the nodes in a supernode
and the neighbors of the nodes in G. Speci�cally, the record R (A)
for a supernode A ∈ S is in the following format:

R (A) := (id of A, |A|, (u, |Nu |, (
|Nu |
︷ ︸︸ ︷
v, ...,w)), ..., (x , |Nx |, (

|Nx |
︷ ︸︸ ︷
y, ..., z))

︸ ︷︷ ︸
|A |

),

(12)

where (u, |Nu |, (v, ...,w)) describes the neighbors of node u ∈ A.
Dividing and Merging Steps: First, each iteration of the divid-
ing and merging steps (Algorithms 2 and 3) is performed by the
following MapReduce job:

• Map-1: The hash function h is broadcast to the mappers. Each
mapper repeats taking a record R (A), computing F (A) (lines 3-5
of Algorithm 2), and emitting < F (A),R (A) >.
• Reduce-1: The supernodesS are broadcast to the reducers. Each
reducer repeats taking {R (A) |A ∈ S (i) } for a group S (i) , updat-
ing S (i) (lines 2-9 of Algorithm 3), and emitting R (A) for each
supernodeA in the updated S (i) . In the end, each reducer writes
the updates in S to the distributed �le system.

Note that updates in S are not shared among the reducers during
the reduce stage. However, in our experiments, the e�ect of this
lazy synchronization on the compactness of output representations
was negligible.
Encoding Step: Next, the following map-only job performs the
encoding step (Algorithm 4):

• Map-2: The supernodes S are broadcast to the mappers. Each
mapper repeats taking a record R (A), encoding the edges adja-
cent to any node in A (lines 3-7 of Algorithm 4), and emitting

1683

the new (super) edges in P, C+, and C−. Di�erent output paths
are used for P, C+, and C−.

Dropping Step: Lastly, for the dropping step (Algorithm 5), Map-3
initializes the change limit of each node (line 1); and Map-4 and
Reduce-4 sort the superedges in P (line 9).

• Map-3: Each mapper repeats taking a record R (A) and emitting
< v, ϵ · |Nv | > for each node v ∈ A.

• Map-4: The input �le, which is an output of Map-2, lists the
superedges in P. Each mapper repeats taking a superedge {A,B}
and emitting < (|A| · |B |, {A,B}), ∅ >.
• Reduce-4: A single reducer repeats taking a superedge {A,B} ∈
P and emitting it. The superedges are sorted in the shu�e stage.

The other parts of the dropping step are processed serially. Speci�-
cally, after loading the nodes’ change limits (the output of Map-3) in
memory, our implementation repeats reading a (super) edge in C+

(an output of Map-2), C− (an output of Map-2), and P (the output of
Reduce-4) and writing the (super) edge to the output �le if it is not
dropped. Note that entire C+, C−, or P is not loaded in memory at
once. These serial parts take a small portion of the total execution
time because they are executed only once, while the dividing and
merging steps are repeated multiple times.

3.4 Complexity Analysis

We analyze the time complexity and memory requirements of
SWeG. To this end, we let EA := {{u,v} ∈ E : u ∈ A} be the
set of edges adjacent to any node in supernode A ∈ S and E (i) :=
⋃

A∈S (i) EA be the set of edges adjacent to any node in any su-

pernode in group S (i) . We also let k be the number of groups of
supernodes from the dividing step. Since the groups are disjoint,

∑k

i=1
|E (i) | ≤

∑

A∈S
|EA | ≤ 2|E |. (13)

Since the encoding step (Algorithm 4) yields outputs with no more
(super) edges than (P ← ∅,C+ ← E,C− ← ∅),

|C+ | + |C− | + |P | ≤ |E|. (14)

Lastly, we assume that |V | ≤ |E|, for simplicity.
3.4.1 Time Complexity. The dividing step (Algorithm 2) takes
O (|E |) time since its computational bottleneck is to compute the
shingles of all supernodes (lines 2-5), which requires accessing every
edge in E twice. Themerging step (Algorithm 3) takesO (

∑k
i=1 |S

(i) |·

|E (i) |) time, since when each group S (i) is processed (lines 2-9), the
number of iterations is |S (i) | − 1 and each iteration takesO (|E (i) |)

time. The encoding step (Algorithm 4) takesO (
∑

A∈S |EA |) = O (|E |)

time since to process each supernode A (lines 3-7) takesO (|EAA | +
∑

B (,A):EAB,∅ |EAB |) = O (|EA |) time. This follows from |πAB | <
2 · |EAB | and |πAA | < 2 · |EAA | in lines 5 and 7, which are due to the
conditions in lines 4 and 6. Lastly, the dropping step (Algorithm 5)
takesO (|E | + |C+ | + |C− | + |P |) = O (|E |) time (see Eq. (14)). Note
that P (line 8) can be sorted in O (|P | + |E |) time using any linear-
time integer sort (e.g., counting sort) since |A| · |B | ∈ {1, ..., 2 · |E |}
for every {A,B} ∈ P due to the conditions in lines 4 and 6 of Algo-
rithm 4. Thus, all the steps except for the merging step take O (|E |)

time. The merging step, whose complexity isO (
∑k
i=1 |S

(i) | · |E (i) |),
also takes O (|E |) time if S is divided �nely in the dividing step
so that the size of each group is less than a constant (see Eq. (13)).
In such cases, the overall time complexity of SWeG (Algorithm 1)

Algorithm 6 SWeG+: Algorithm for Further Compression

Input: input graph G = (V, E), number of iterations T , error bound ϵ
graph-compression method ALG

Output: compressed G = (S, P), G+ = (V, C+), and G− = (V, C−)

1: run SWeG to get G = (S, P) and C =< C+, C− > ▷ Algorithm 1

2: run ALG on each of G = (S, P), G+ = (V, C+), and G− = (V, C−)

3: return the compressed G, G+, and G−

Table 2: Summary of the real-world datasets that we used.

Name # Nodes # Edges Summary

Caida (CA) [27] 26, 475 53, 381 Internet
Protein (PR) [18] 6, 229 146, 160 Protein Interaction
Email (EM) [21] 36, 692 183, 831 Email
DBLP (DB) [56] 317, 080 1, 049, 866 Collaboration

Amazon (AM) [26] 403, 394 2, 443, 408 Co-purchase
Youtube (YO) [37] 1, 134, 890 2, 987, 624 Social
Ski�er (SK) [27] 1, 696, 415 11, 095, 298 Internet

Web-Small (WS) [5] 862, 664 16, 138, 468 Hyperlinks
Patent (PA) [15] 3, 774, 768 16, 518, 947 Citations

LiveJournal (LJ) [56] 3, 997, 962 34, 681, 189 Social
Hollywood (HO) [5] 1, 985, 306 114, 492, 816 Collaboration
Web-Large (WL) [5] 39, 454, 463 783, 027, 125 Hyperlinks

LinkedIn (LI) > 600 millions > 20 billions Social

is O (T · |E |) since the dividing and merging steps are repeated T
times. This linear scalability is shown experimentally in Section 4.4.

3.4.2 Memory Requirements. The space required for storing S,
{S (1) , ...,S (k) }, {h(v) : v ∈ V}, and {cv : v ∈ V} is O (|V |), and
the space required for storing G, G, and C is O (|E |) (see Eq. (14)).
Thus, in shared-memory settings, where all of them are stored in
memory, the memory requirements of SWeG (Algorithm 1) are
O (|V | + |E |) = O (|E |). In MapReduce settings, as described in
Section 3.3, eachmapper or reducer requiresO (|V |)memory, which
is used to store S, {h(v) : v ∈ V}, or {cv : v ∈ V}, in all the stages
except for Reduce-1. In Reduce-1, in addition to O (|V |) memory
for S, each reducer requires O (max1≤i≤k |E

(i) |) memory to load
{R (A) : A ∈ S (i) } for each group S (i) at once. Thus, the memory
requirements are O (|V | + max1≤i≤k |E

(i) |) per reducer. In real-
world graphs, max1≤i≤k |E

(i) | is much smaller than |E |, as shown
experimentally in Appendix B.

3.5 Further Compression: SWeG+

We propose SWeG+, an algorithm for further compression. The
outputs of SWeG (i.e., G = (S,P) and C =< C+,C− >) can be
represented as three graphs: G = (S,P), G+ = (V,C+), and G− =
(V,C−). As described in Algorithm 6, SWeG+ further compresses
each of the graphs using a given graph-compression method ALG.
Any graph-compression method, such as [2, 5, 7, 9, 11, 43], can
be used as ALG depending on the objectives of compression.1 In
Section 4.6, we empirically show that for many graph-compression
methods, SWeG+ gives signi�cantly more compact representations
than directly compressing the input graph using the methods.

1684

SWeG (Proposed) SAGS Randomized Greedy

3500X0.40

0.45

0.50

0.55

0.60

0.65

10-1 100 101 102 103 104

Elapsed Time (sec)R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(a) Caida

370X
0.1

0.2

0.3

10-1 100 101 102 103 104

Elapsed Time (sec)R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(b) Protein

2370X0.60

0.65

0.70

0.75

0.80

0.85

10-1100101102103104105

Elapsed Time (sec)R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(c) Email

650X

0.5

0.6

0.7

100 101 102 103 104

Elapsed Time (sec)R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(d) DBLP

●

●
●●●

●

●
●●●

●

●
●●●

610X
0.55

0.60

0.65

0.70

0.75

0.80

10
1

10
2

10
3

10
4

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(e) Amazon

●

●
●
●●

●

●
●
●●

●

●
●
●●

5400X
0.65

0.70

0.75

0.80

0.85

10
1

10
2

10
3

10
4

10
5

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(f) Youtube

●
●
●●●

●

●
●●●

●

●
●●●

4490X

0.5

0.6

0.7

10
1

10
2

10
3

10
4

10
5

10
6

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(g) Ski�er

●
●
●●●

●
●
●●●

●
●
●●●

3150X
0.20

0.25

0.30

0.35

10
1

10
2

10
3

10
4

10
5

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(h) Web-Small

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●

0.75

0.80

0.85

0.90

10
2

10
3

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(i) Patent

●

●

●
● ●

●

●

●
● ●

●

●

●
● ●

0.70

0.75

0.80

0.85

10
2

10
3

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(j) LiveJournal

●

●

●
●●

●

●

●
● ●

●

●

●
● ●

0.550

0.575

0.600

0.625

10
2

10
3

10
4

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(k) Hollywood

●●● ● ●
●●● ● ●
●●

● ● ●

0.10

0.15

0.20

10
3

10
4

10
5

Elapsed Time (sec)

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

o.o.t.

(l) Web-large

Figure 3: SWeG (lossless and shared-memory) signi�cantly outperforms existing lossless summarization methods. o.o.t.: out

of time (> 48 hours). Speci�cally, SWeG was up to 5, 400× faster than the others that give similarly compact outputs.

4 EXPERIMENTS

We review our experiments for answering the following questions:

Q1. Lossless Summarization: Does the lossless version of SWeG

yield more compact representations faster than its competitors?
Q2. Lossy Summarization: Does the lossy version SWeG yield

more compact and accurate representations than baselines?
Q3. Scalability: How well does SWeG scale as the size of the input

graph, the number of machines, and the number of cores grow?
Q4. E�ects of Parameters: How do the number of iterations T

and the error bound ϵ a�ect the compactness of outputs?
Q5. Further Compression: How much does SWeG+ improve the

compression rates of combined compression methods?

4.1 Experimental Settings

Machines: We ran single instance experiments on a machine with
2.10GHz Intel Xeon E6-2620 CPUs (with 6 cores) and 64GB memory.
We ran MapReduce experiments on a private Hadoop cluster.
Datasets: We used the graphs listed in Table 2. We ignored the
direction of edges in all of them.
Implementations:We implemented all the considered algorithms
in Java 1.8. We implemented the shared-memory version of SWeG

using standard Java multithreading, and we set the number of
threads to 8 unless otherwise stated. We implemented the MapRe-

duce version of SWeG using Hadoop 2.6.1, and we set the numbers
of mappers and reducers to 40 unless otherwise stated. In both
implementations, we ran the dividing step recursively so that each
group had at most 500 supernodes, as described in Section 3.1.2.
Evaluation Metric: Given an output representation G = (S,P)

and C =< C+,C− > of a graph G = (V, E), we measured its
compactness using the relative size of outputs, de�ned as

(|P∗ | + |C+ | + |C− |)/|E |, (15)

where the numerator is our objective function (i.e., Eq. (1)) and the
denominator is a constant for a given input graph.1If ALG relabels nodes, to keep the labels of V in G+ and G− the same, the labels
obtained when compressing G+ are used for G− , which tends to be smaller than G+ .

2.7X0.45

0.50

0.55

0.60

100 101 102

Elapsed Time (sec)R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(a) DBLP

3.5X
0.200

0.225

0.250

0.275

101 102 103 104

Elapsed Time (sec)R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts
(b) Web-Small

SWeG

(Proposed)

SWeG-J

SWeG-G

SWeG-T

SWeG-P

Figure 4: SWeG (lossless and shared-memory) signi�cantly

outperforms its variants. This justi�es our design choices.

4.2 Q1. Lossless Summarization

We compared the following lossless graph-summarization methods
in terms of speed and compactness of representations: 2

(a) SWeG (proposed): the shared-memory and lossless version of
SWeG with ϵ = 0 and T = {5, 10, 20, 40, 80}.

(b) SAGS [20]: SAGS with �ve di�erent parameter settings. 3

(c) Randomized [38].
(d) Greedy [38].
(e) SWeG-P: a variant of (a) without parallelization.
(f) SWeG-G: a variant of (a) that does not group the supernodes.
(g) SWeG-J: a variant of (a) that chooses supernodes to merge

based on the exact savings instead of jaccard similarity.
(h) SWeG-T: a variant of (a) where the merging thresohld θ (t) is 0.

To this end, we measured the elapsed time and the relative size of
the outputs (i.e., Eq. (15)) of each algorithm.

SWeG gave the best trade-o� between speed and compact-

ness of outputs on all the datasets, as seen in Figure 3. For example,
on the Youtube dataset, SWeG was 5, 400× faster with 2% smaller
outputs than Randomized and 18% faster with 10% smaller out-
puts than SAGS. Greedy did not terminate within a reasonable
2We slightly modi�ed (b)-(d) so that they aim to minimize the same objective of SWeG
(i.e., Eq. (1)). We �xed T to 20 in (e)-(h). (b)-(e) are serial, and the others are parallel.
3 {h = 28, b = 7, p = 0.3}, {h = 28, b = 7, p = 0.1}, {h = 28, b = 7, p = 0.2},
{h = 30, b = 10, p = 0.3},{h = 30, b = 15, p = 0.3}. p denotes the overlap ratio.

1685

SWeG (Proposed) BAZI Bounded Random

16X

23.5X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(a) Protein (NCN, Precision)

1.7X

2.2X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(b) Email (NCN, Precision)

2.3X

3.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(c) DBLP (NCN, Precision)

1.8X

2.5X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(d) Amazon (NCN, Precision)

2.4X

3.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(e) Ski�er (NCN, Precision)

13X

24.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(f) Web-S (NCN, Precision)

16X

23.5X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(g) Protein (NCN, NDCG)

1.7X

2.2X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(h) Email (NCN, NDCG)

2.3X

3.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(i) DBLP (NCN, NDCG)

1.8X

2.5X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(j) Amazon (NCN, NDCG)

2.4X

3.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(k) Ski�er (NCN, NDCG)

7.2X

14X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(l) Web-S (NCN, NDCG)

15.7X

14.1X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(m) Protein (RWR, Precision)

1.6X

1.9X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(n) Email (RWR, Precision)

2.3X

2X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(o) DBLP (RWR, Precision)

1.8X

1.6X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(p) Amazon (RWR, Precision)

2.4X

3.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(q) Ski�er (RWR, Precision)

7X

12.8X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(r) Web-S (RWR, Precision)

16X

15X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(s) Protein (RWR, NDCG)

1.7X

2.2X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(t) Email (RWR, NDCG)

2.3X

2X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(u) DBLP (RWR, NDCG)

1.8X

2.5X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(v) Amazon (RWR, NDCG)

2.4X

3.3X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(w) Ski�er (RWR, NDCG)

7.2X

7.7X
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(x) Web-S (RWR, NDCG)

Figure 5: SWeG (lossy) signi�cantly outperforms baseline methods for lossy graph summarization. Speci�cally, SWeG

yielded up to 24.3×more compact and similarly accurate representations than the other methods.

time (48 hours). In Figure 4, we show that SWeG (withT = 20) also
outperformed its variants, justifying our design choices in Section 3.

4.3 Q2. Lossy Summarization

We compared the following lossy graph-summarization methods in
terms of the compactness and accuracy of output representations:

(a) SWeG (proposed): the shared-memory and lossy version of
SWeG with T = 80 and ϵ = {0, 0.18, 0.36, 0.54, 0.72, 0.9}.

(b) BAZI [3]: BAZI with s = log2 |S|, w = 50, and k = {0.1 · |V |,
0.28 · |V |, 0.46 · |V |, 0.64 · |V |, 0.82 · |V |, |V |}.

(c) Bounded: a baseline that performs only the dropping step of
SWeG, i.e., SWeGwithT = 0 and ϵ = {0.18, 0.36, 0.54, 0.72, 0.9}.

(d) Random: a baseline that randomly drops ϵ = {0.18, 0.36, 0.54,
0.72, 0.9} of the edges from the input graph.

To this end, for each method, we measured the relative size of
outputs (e.g., Eq. (15)) and measured how accurately the outputs
preserve the relevances between nodes as follows:

S1. randomly choose 100, 000 seed nodes in the input graph.

S2. compute the true relevances between each seed node and the
other nodes in the input graph.

S3. compute the approximate relevances between each seed node
and the other nodes in the graph restored from the outputs.

S4. measure how accurate the approximate relevances from S3 are.

In S2 and S3, we used one of the following relevance scores:

• Random Walk with Restart (RWR) [53]: each node’s RWR score
with respect to a seed node is de�ned as the stationary probability
that a random surfer is at the node. The random surfer either
moves to a neighboring node of the current node (with probability
0.8) or restarts at the seed node (with probability 0.2).
• Number of Common Neighbors (NCN): each node’s NCN score
with respect to a seed node is de�ned as the number of common
neighbors of the node and the seed node.

In S4, we computed one of the following accuracy measures for
every seed node and then averaged them.

• Precision@100: Precision@100 is de�ned as the fraction of the 100
most relevant nodes in terms of the true relevances among those
in terms of the approximate relevances.

1686

• NDCG@100 [17]: Let r (i) be the true relevance of the i-th most
relevant node in terms of the approximate relevances. Then,

NDCG@100 :=
1

Z

∑100

i=1

2r (i)

log2 (1 + i)
,

where Z is a constant normalizing NDCG@100 to be within [0, 1].

SWeG yielded the most compact and accurate representa-

tions on all the considered datasets, as seen in Figure 5. For example,
on theWeb-Small dataset, SWeG gave a 24.3×more compact and
similarly accurate representation than the other methods. BAZI
tended to yield representations with most (super) edges since it
aims to reduce the number of supernodes instead of minimizing
the number of (super) edges (see Section 5).

4.4 Q3. Scalability

We evaluated the scalability of the shared-memory andMapReduce

implementations of SWeG. Speci�cally, we measured how rapidly
their running times change depending on the size of the input
graph, the number of threads, and the number of machines (i.e., the
numbers of mappers and reducers in the MapReduce framework).
In the shared-memory setting, we used graphs with di�erent sizes
obtained by sampling di�erent numbers of nodes from the Web-

Large dataset. In the MapReduce setting, we used graphs obtained
in the same manner using the LinkedIn dataset. When measuring
the data scalability, we �xed the number of threads to 8 and the
number of machines to 40. When measuring the machine and multi-
core scalability, we �xed the size of the input graph.

SWeG scaled linearly with the size of the input graph, as
seen in Figures 6(a) and 6(b). The lossless summarization by SWeG

as well as the additional dropping step for lossy summarization
(with ϵ = 0.1) scaled near linearly with the number of edges in the
input graph in both settings. Note that the largest graph used had
more than 20 billion edges.

SWeG achieved signi�cant speedup in the shared-memory

andMapReduce settings. As seen in Figure 6(c), the speedup, de-
�ned as T1/TN where TN is the running time of SWeG with N

threads, increased near linearly with the number of threads in the
shared-memory setting. Speci�cally, SWeG provided a speedup of
3.3with 4 threads and 5.7with 8 threads. As seen in Figure 6(d), the
speedup of SWeG, de�ned as T1/TN where TN is the running time
of SWeGwithN machines, increased near linearly with the number
of machines in theMapReduce setting. Speci�cally, SWeG provided
a speedup of 8.3 with 10 machines and 26.4 with 40 machines.

4.5 Q4. E�ects of Parameters

Wemeasured how the number of iterationsT and the error bound ϵ
in SWeG a�ect the compactness of its output representation using
the relative size of outputs (i.e., Eq. (15)). When measuring the e�ect
of T , we �xed ϵ to 0 and changed T from 1 to 80. When measuring
the e�ect of ϵ , we �xed T to 80 and changed ϵ from 0 to 0.5.

The larger the number of iterations, the more compact

the output representation. As seen in Figure 7, the size of outputs
decreased over iterations and eventually plateaued. The larger the
error bound, the more compact the output representation.
As seen in Figure 8, the size of outputs decreased near linearly as the
error bound increased. The relative size of outputs was especially
small in web graphs and protein-interaction graphs, where nodes
tend to have similar connectivity [10, 23].

4.6 Q5. Further Compression

We measured how much SWeG+ improves the compression rates
of the following advanced graph-compression methods:

(a) BP [11]: reordering nodes as suggested in [11] with 20 iterations
and using the webgraph framework [5].

(b) Shingle [9]: reordering nodes as suggested in [9] and using
the webgraph framework [5].

(c) BFS [2]: running BFS with the default parameter setting at
https://github.com/drovandi/GraphCompressionByBFS.

(d) VNMiner [7]: running VNMiner with 80 iterations.

For the webgraph framework in (a)-(b), we used the default param-
eter setting (i.e., r = 3,W = 7, Lmin = 7, and ζ3). We measured the
compression rates using the objective function of each compression
method. That is, we used the number of bits per directed edge4 for
(a)-(c) and the relative size of outputs (i.e., Eq. (15)) for (d).

SWeG+ achieved signi�cant further compression. As seen
in Figures 1(d) and 9, the lossless version of SWeG+ with T = 80

and ϵ = 0 yielded up to 3.4×more compact representations than
all the input compression methods on all the datasets. Especially,
SWeG+ with ALG = BFS represented the Web-Large dataset using
less than 0.7 bits per directed edge without loss of information.

5 RELATED WORK

While this paper addresses Problem 1, the term “graph summa-
rization” has been used for a wider range of problems related to
concisely describing static plain graphs [12, 22, 28, 33–35, 38, 39, 42,
46, 52, 58], static attributed graphs [8, 13, 16, 19, 41, 47, 49, 51, 55, 57],
and dynamic graphs [1, 29, 40, 45, 50]. We refer the reader to an
excellent survey [32] for a review on these problems. In this section,
we focus on previous work closely related to Problem 1.

LosslessGraph Summarization.Greedy [38] repeatedly �nds
and merges a pair of supernodes so that savings in space are maxi-
mized given the other supernodes. If there is no pair whose merger
leads to non-negative savings, then Greedy creates a summary
graph and corrections so that the number of (super) edges is min-
imized given the current supernodes. Greedy is computationally
and memory expensive because it maintains and updates savings
for O (|V |2) pairs of supernodes. Without maintaining any pre-
computed savings, Randomized [38], whose time complexity is
O (|V | · |E |), randomly chooses a supernode �rst and then chooses
another supernode to be merged so that savings in space are maxi-
mized given the other supernodes. SAGS [20] chooses supernodes
to be merged using locality sensitive hashing without computing
savings in space, which are expensive to compute. We empirically
show in Section 4.2 that all these serial algorithms are not satis-
factory in terms of speed or compactness of outputs. They either
have high computational complexity or signi�cantly sacri�ce com-
pactness of outputs for lower complexity. More importantly, they
cannot handle large-scale graphs that do not �t in main memory.

Lossy Graph Summarization. Apxmdl [38] reduces the prob-
lem of choosing edges to be dropped from outputs of Greedy to
a maximum b-matching problem and uses GabowâĂŹs algorithm
[14], whose time complexity is O (min(|E |2 log |V |, |E | · |V |2)).
Due to this high computational complexity, Apxmdl does not scale
4We regarded undirected graphs as symmetric directed graphs.

1687

https://github.com/drovandi/GraphCompressionByBFS

SWeG (Lossless) SWeG (Lossy, Dropping Step Only) Linear Scalability

25

26

27

28

29

210

228 230 232 234

Number of Edges

E
la

ps
ed

 T
im

e
 P

er
 It

er
at

io
n

(s
ec

)

27

29

211

213

228 230 232 234

Number of Edges

E
la

ps
ed

 T
im

e
(s

ec
)

(a) Data Scalability (MapReduce)

23

24

25

26

27

28

225 227 229

Number of Edges

E
la

ps
ed

 T
im

e
 P

er
 It

er
at

io
n

(s
ec

)

2-1

21

23

25

225 227 229

Number of Edges

E
la

ps
ed

 T
im

e
(s

ec
)

(b) Data Scalability (Shared Memory)

0

2

4

6

8

0 2 4 6 8
Number of Threads

S
pe

ed
 U

p

(c) Multi-Core Scalability
(Shared Memory)

0

10

20

30

40

0 10 20 30 40
Number of Machines

S
pe

ed
 U

p

(d) Machine Scalability
(MapReduce)

Figure 6: SWeG is scalable. (a-b) SWeG scaled linearlywith the size of the input graph. (c-d) SWeG achieved signi�cant speedup

as more machines and CPU cores were used. Note that the largest graph used had more than 20 billion edges.

●
●●● ● ● ● ● ● ●
●
●●●●●● ● ● ●
●
●●●●●● ● ● ●

0.2

0.4

0.6

0.8

0 20 40 60 80

Number of Iterations

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

CA

SK

AM

PR

EM

LJ

●
●●● ● ● ● ● ● ●

●
●●●●●● ● ● ●

●
●●●●●● ● ● ●

0.2

0.4

0.6

0.8

0 20 40 60 80

Number of Iterations

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

WS

DB

HO

WL

YO

PA

Figure 7: As the number of iterations in SWeG (lossless)

increases, the output representations become compact.

●
● ● ● ● ●

●
● ● ● ● ●

●
● ● ● ● ●

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5

Error Bounds

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts

CA

SK

AM

PR

EM

LJ

●
● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5

Error Bounds

R
e
la

ti
v
e
 S

iz
e
 o

f
O

u
tp

u
ts

WS

DB

HO

WL

YO

PA

Figure 8: As the error bound in SWeG (lossy) increases, the

output representations become compact.

even to moderately-sized graphs. For the same problem, the drop-
ping step of SWeG takes O (|E |) time (see Section 3.4.1) without
sacri�cing the compactness of outputs (see Appendix C). In [38],
combining Greedy and Apxmdl into a single step was also dis-
cussed. Several algorithms [3, 25, 31, 42] have been developed for a
problem that is similar but not identical to Problem 1. They aim to
�nd a weighted summary graph with a given number of supernodes
so that the di�erence between the original and restored graphs is
minimized without edge corrections. The way of restoring a graph
is also di�erent from that in Problem 1. Since these algorithms aim
to reduce the number of supernodes, instead of (super) edges, they
are not e�ective for Problem 1 (see Section 4.3).

Combination with Other Compression Techniques. In ad-
dition to graph summarization, numerous graph-compression tech-
niques have been developed, including relabeling nodes [2, 5, 9, 11],
utilizing encoding schemes for integer sequences (e.g., reference,
gap, and interval encodings) [5], and encoding common structures
(e.g., cliques, bipartite-cores, and stars) with fewer bits [7, 22, 43].
See [4] for a comprehensive survey on these techniques. As de-
scribed in Section 3.5 and Section 4.6, SWeG is readily combinable
with any compression technique for static plain graphs. In [44],
tightly combining two speci�c summarization and compression
algorithms [38, 54] into a single process was presented.

Algorithm 7 Neighbor Query Processing on G and C

Input: summary graph G = (S, P), corrections C =< C+, C− >,
query node v ∈ V

Output: the set N̂v of v ’s neighbors in the restored graph Ĝ
1: N̂v ← ∅; Sv ← the supernode in S where v ∈ Sv
2: if Sv has a self-loop in G then N̂v ← N̂v ∪ (Sv − {v })

3: for each neighbor A (, Sv) of Sv in G do N̂v ← N̂v ∪ A

4: N̂v ← (N̂v ∪ N
+

v) − N
−
v ▷ N +v : v ’s neighbors in C

+

5: return N̂v ▷ N −v : v ’s neighbors in C−

6 CONCLUSIONS

We propose SWeG, a fast parallel algorithm for lossless and lossy
summarization of large-scale graphs, which may not �t in main
memory. We present e�cient implementations of SWeG in shared-
memory andMapReduce environments. We also propose SWeG+

where SWeG and other graph-compression methods are combined
to achieve better compression than individual methods. We theo-
retically and empirically show the following strengths of SWeG:

• Speed: SWeG provides similarly compact representations up to
5, 400× faster than existing summarization methods (Figure 3).
• Scalability: SWeG scales near linearly with the size of the input
graph, the number of machines, and the number of CPU cores. It
successfully scales to graphs with over 20 billion edges (Figure 6).
• Compression: SWeG+ achieves up to 3.4× better compression
than individual state-of-the-art graph-compression methods that
are combined with SWeG (Figures 1(d) and 9).

A APPENDIX: NEIGHBOR QUERIES
Algorithm 7 describes how to answer neighbor queries (i.e., �nding
the neighbors N̂v of a given node v ∈ V) e�ciently on a summary
graph G = (S,P) and corrections C =< C+,C− > without restor-
ing entire Ĝ. Let N−v be the neighbors of node v ∈ V in C−. If
there is no redundant edge5 in C+ and we use a hash table for N̂v
and adjacency lists for C+, C−, and P, then the running time of
Algorithm 7 is proportional to |N̂v | + 2|N−v |. In every dataset listed
in Table 2 in Section 4, when SWeG (T = 80) was used, |C− | was
at most 6% of the number of edges in the input graph, regardless
of the error bound ϵ . Thus, since |N̂v | ≤ (1 + ϵ) · |Nv | from Eq. (2),
|N̂v | + 2|N

−
v | was at most (1.12 + ϵ) · |Nv | on average.

B APPENDIX: SIZE OF SUBGRAPHS
Wemeasured the size of the largest subgraphs that need to be loaded
in main memory at once in our MapReduce implementation of
SWeG (withT = 80). As seen in Figure 10, the largest subgraphs had
5As in the outputs of SWeG, if {A, B } ∈ P, u ∈ A, and v ∈ B , then {u, v } < C+ .

1688

53%56%
39%

24%
29%

13%28%26%43%
48%16%

29%

0.0

0.2

0.4

0.6

0.8

PR WL WS HO SK LJ EM AM DB CA PA YO

Datasets

R
e

la
ti
v
e

 S
iz

e
 o

f
O

u
tp

u
ts SWeG+ (ALG = VNMiner)

VNMiner

(a) SWeG+ (lossless) vs. VNMiner

49%46%
46%

21%
15%32% 8% 24%21%

10%21%
14%

0

5

10

15

PR WL WS HO EM CA AM DB SK LJ YO PA
Datasets#

B
its

 P
er

 D
ire

ct
ed

 E
dg

e SWeG+ (ALG = BP)

BP

(b) SWeG+ (lossless) vs. BP

52%47%
50%

17%
38%21%19%

37%12%
21% 6%

15%

0

5

10

15

20

PR WL WS HO CA EM SK DB AM YO LJ PA
Datasets#

B
its

 P
er

 D
ire

ct
ed

 E
dg

e SWeG+ (ALG = Shingle)

Shingle

(c) SWeG+ (lossless) vs. Shingle

Figure 9: SWeG+ (lossless) signi�cantly improves the compression rates of state-of-the-art graph-compression algorithms.

6X
4X 10X

108X
284X 42X

33X 56X 1209X
294X

139X

27X

10
5

10
7

10
9

CA PR EM DB AM YO SK WS PA LJ HO WL

Datasets

N
u

m
b

e
r

o
f

E
d

g
e

s Largest Subgraph
(that needs to be loaded in main memory)

Input Graph

Figure 10: Subgraphs that SWeG (MapReduce) loads in

memory at once are signi�cantly smaller than input graphs.

SWeG (Proposed)

ApxMDL

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●20000

30000

40000

50000

0.1 0.2 0.3 0.4 0.5

Error BoundN
u
m

b
e
r

o
f
(S

u
p
e
r)

 E
d
g
e
s

Figure 11: While SWeG has much lower time complexity

than Apxmdl, they give similarly compact results.

up to 1, 209× fewer edges than the entire graphs. The experimental
settings were the same with those in Section 4.1.

C APPENDIX: COMPARISON WITH APXMDL

To compare SWeG and Apxmdl [38] in terms of the compactness
of their output representations, we measured how the number of
(super) edges in their outputs, which Apxmdl aims to minimize,
changes depending on the error bound ϵ . We used the same small-
scale graph used in [38], which is a web graphwith 40, 000 nodes [5].
SWeG (withT = 80) andApxmdl yielded similarly compact outputs,
as seen in Figure 11, where we compare with the numbers reported
in [38]. Speci�cally, SWeG gavemore compact outputs thanApxmdl
when ϵ was large, while the opposite happened when ϵ was small.
SWeG has much lower time complexity than Apxmdl. Speci�cally,
the dropping step of Apxmdl takesO (min(|E |2 log |V |, |E | · |V |2))

time, while that of SWeG takes O (|E |) time (see Section 3.4.1).

REFERENCES
[1] Bijaya Adhikari, Yao Zhang, Aditya Bharadwaj, and B Aditya Prakash. 2017.

Condensing temporal networks using propagation. In SDM.
[2] Alberto Apostolico and Guido Drovandi. 2009. Graph compression by BFS.

Algorithms 2, 3 (2009), 1031–1044.
[3] Maham Anwar Beg, Muhammad Ahmad, Arif Zaman, and Imdadullah Khan.

2018. Scalable Approximation Algorithm for Graph Summarization. In PAKDD.
[4] Maciej Besta and Torsten Hoe�er. 2018. Survey and Taxonomy of Lossless

Graph Compression and Space-E�cient Graph Representations. arXiv preprint
arXiv:1806.01799 (2018).

[5] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In WWW.

[6] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.
2000. Min-wise independent permutations. J. Comput. System Sci. 60, 3 (2000),
630–659.

[7] Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining ap-
proach to web graph compression with communities. In WSDM.

[8] Chen Chen, Cindy X Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng Yan, and
Jiawei Han. 2009. Mining graph patterns e�ciently via randomized summaries.
PVLDB 2, 1 (2009), 742–753.

[9] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-
dro Panconesi, and Prabhakar Raghavan. 2009. On compressing social networks.
In KDD.

[10] Fan Chung, Linyuan Lu, T Gregory Dewey, and David J Galas. 2003. Duplication
models for biological networks. Journal of Computational Biology 10, 5 (2003),
677–687.

[11] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. 2016. Compressing graphs and indexes with recursive
graph bisection. In KDD.

[12] Cody Dunne and Ben Shneiderman. 2013. Motif simpli�cation: improving net-
work visualization readability with fan, connector, and clique glyphs. In CHI.

[13] Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Diversi�ed top-k graph pattern
matching. PVLDB 6, 13 (2013), 1510–1521.

[14] Harold N. Gabow. 1983. An E�cient Reduction Technique for Degree-constrained
Subgraph and Bidirected Network Flow Problems. In STOC.

[15] Bronwyn H Hall, Adam B Ja�e, and Manuel Trajtenberg. 2001. The NBER patent
citation data �le: Lessons, insights and methodological tools. Technical Report.
National Bureau of Economic Research.

[16] Nasrin Hassanlou, Maryam Shoaran, and Alex Thomo. 2013. Probabilistic graph
summarization. In WAIM.

[17] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. TOIS 20, 4 (2002), 422–446.

[18] G Joshi-Tope, Marc Gillespie, Imre Vastrik, Peter D’Eustachio, Esther Schmidt,
Bernard de Bono, Bijay Jassal, GR Gopinath, GR Wu, Lisa Matthews, et al. 2005.
Reactome: a knowledgebase of biological pathways. Nucleic Acids Research 33,
suppl_1 (2005), D428–D432.

[19] Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. 2014. Set-based uni�ed
approach for attributed graph summarization. In BdCloud.

[20] Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. 2015. Set-based ap-
proximate approach for lossless graph summarization. Computing 97, 12 (2015),
1185–1207.

[21] Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email
classi�cation research. In ECML.

[22] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. 2014. VOG: Sum-
marizing and Understanding Large Graphs. In SDM.

[23] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivakumar, Andrew
Tomkins, and Eli Upfal. 2000. Stochastic models for the web graph. In FOCS.

[24] Douglas Lea. 2000. Concurrent programming in Java: design principles and patterns.
Addison-Wesley Professional.

[25] Kristen LeFevre and Evimaria Terzi. 2010. GraSS: Graph structure summarization.
In SDM.

[26] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. 2007. The dynamics
of viral marketing. TWEB 1, 1 (2007), 5.

[27] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densi�cation and shrinking diameters. TKDD 1, 1 (2007), 2.

[28] Cheng-Te Li and Shou-De Lin. 2009. Egocentric information abstraction for
heterogeneous social networks. In ASONAM.

[29] Yu-Ru Lin, Hari Sundaram, and Aisling Kelliher. 2008. Summarization of social
activity over time: people, actions and concepts in dynamic networks. In CIKM.

[30] Chao Liu, Fan Guo, and Christos Faloutsos. 2009. Bbm: bayesian browsing model
from petabyte-scale data. In KDD.

[31] Xingjie Liu, Yuanyuan Tian, Qi He, Wang-Chien Lee, and John McPherson. 2014.
Distributed graph summarization. In CIKM.

[32] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summa-
rization Methods and Applications: A Survey. CSUR 51, 3 (2018), 62.

[33] Antonio Maccioni and Daniel J Abadi. 2016. Scalable pattern matching over
compressed graphs via dedensi�cation. In KDD.

[34] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and
Antti Ukkonen. 2011. Sparsi�cation of in�uence networks. In KDD.

1689

[35] Yasir Mehmood, Nicola Barbieri, Francesco Bonchi, and Antti Ukkonen. 2013.
Csi: Community-level social in�uence analysis. In ECML/PKDD.

[36] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2014.
Graph structure in the web—revisited: a trick of the heavy tail. In WWW.

[37] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks.
In IMC.

[38] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. 2008. Graph summa-
rization with bounded error. In SIGMOD.

[39] Manish Purohit, B Aditya Prakash, Chanhyun Kang, Yao Zhang, and VS Subrah-
manian. 2014. Fast in�uence-based coarsening for large networks. In KDD.

[40] Qiang Qu, Siyuan Liu, Christian S Jensen, Feida Zhu, and Christos Faloutsos. 2014.
Interestingness-driven di�usion process summarization in dynamic networks. In
ECML/PKDD.

[41] Sriram Raghavan and Hector Garcia-Molina. 2003. Representing web graphs. In
ICDE.

[42] Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2017. Graph
summarization with quality guarantees. Data Mining and Knowledge Discovery
31, 2 (2017), 314–349.

[43] Ryan A Rossi and Rong Zhou. 2018. GraphZIP: a clique-based sparse graph
compression method. Journal of Big Data 5, 1 (2018), 10.

[44] Hojin Seo, Kisung Park, Yongkoo Han, Hyunwook Kim, Muhammad Umair, Ki-
fayat Ullah Khan, and Young-Koo Lee. 2018. An e�ective graph summarization
and compression technique for a large-scaled graph. The Journal of Supercom-
puting (2018), 1–15.

[45] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.
2015. Timecrunch: Interpretable dynamic graph summarization. In KDD.

[46] Zeqian Shen, Kwan-Liu Ma, and Tina Eliassi-Rad. 2006. Visual analysis of large
heterogeneous social networks by semantic and structural abstraction. TVCG 12,
6 (2006), 1427–1439.

[47] Maryam Shoaran, Alex Thomo, and Jens HWeber-Jahnke. 2013. Zero-knowledge
private graph summarization.. In Big Data.

[48] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In DCC.

[49] Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and Hui Sun. 2018. Mining
summaries for knowledge graph search. TKDE 30, 10 (2018), 1887–1900.

[50] Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph stream summarization:
From big bang to big crunch. In SIGMOD.

[51] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. 2008. E�cient aggre-
gation for graph summarization. In SIGMOD.

[52] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. 2011. Com-
pression of weighted graphs. In KDD.

[53] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk
with restart and its applications. In ICDM.

[54] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices
with e�cient compression. TODS 31, 1 (2006), 1–38.

[55] Ye Wu, Zhinong Zhong, Wei Xiong, and Ning Jing. 2014. Graph summarization
for attributed graphs. In ISEEE.

[56] Jaewon Yang and Jure Leskovec. 2015. De�ning and evaluating network commu-
nities based on ground-truth. KAIS 42, 1 (2015), 181–213.

[57] Ning Zhang, Yuanyuan Tian, and Jignesh M Patel. 2010. Discovery-driven graph
summarization. In ICDE.

[58] Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig A
Knoblock. 2016. Unsupervised entity resolution on multi-type graphs. In ISWC.

1690

	Abstract
	1 Introduction
	2 Notations and Problem Definition
	3 PROPOSED ALGORITHM: SWeG
	3.1 Description of the Algorithm
	3.2 Parallelization in Shared Memory
	3.3 Distributed Processing with MapReduce
	3.4 Complexity Analysis
	3.5 Further Compression: SWeG+

	4 Experiments
	4.1 Experimental Settings
	4.2 Q1. Lossless Summarization
	4.3 Q2. Lossy Summarization
	4.4 Q3. Scalability
	4.5 Q4. Effects of Parameters
	4.6 Q5. Further Compression

	5 Related Work
	6 Conclusions
	A Appendix: Neighbor Queries
	B Appendix: Size of Subgraphs
	C Appendix: Comparison with Apxmdl
	References

