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Mathematical models have become an important tool for understanding the control of eye movements

during reading. Main goals of the development of the SWIFT model (R. Engbert, A. Longtin, & R.

Kliegl, 2002) were to investigate the possibility of spatially distributed processing and to implement a

general mechanism for all types of eye movements observed in reading experiments. The authors present

an advanced version of SWIFT that integrates properties of the oculomotor system and effects of word

recognition to explain many of the experimental phenomena faced in reading research. They propose new

procedures for the estimation of model parameters and for the test of the model’s performance. They also

present a mathematical analysis of the dynamics of the SWIFT model. Finally, within this framework,

they present an analysis of the transition from parallel to serial processing.

In modern society, reading is a central skill, which demonstrates

how efficiently a range of different cognitive processes (e.g.,

visual information processing, word recognition, attention, oculo-

motor control) can work together to perform a complex everyday

task. Consequently, a full account of how we read is among the

crucial problems of cognitive research. Here, we focus on the fact

that eye movements in reading represent an important example for

a coupled cognitive–motor system. Therefore, a detailed analysis

of the interface between high-level cognition (word recognition)

and eye-movement control (saccade generation) is essential to

contribute to our knowledge of reading.

The measurement, analysis, and modeling of eye movements is

one of the most powerful approaches to studying the way visual

information is (a) processed by the human mind and (b) used to

guide our actions (Findlay & Gilchrist, 2003). Measurements of

fixation durations on words or on regions of text are central for

investigating cognitive processes underlying reading (Liversedge

& Findlay, 2000; Rayner, 1998). Therefore, it is of central impor-

tance to develop a detailed understanding of how the experimental

observables are related to the underlying cognitive systems.

Over the last decades, there has been a considerable increase of

knowledge about eye movements and visual information process-

ing (e.g., Hyönä, Radach, & Deubel, 2003; Radach, Kennedy, &

Rayner, 2004; Rayner, 1998). The question of how the contribut-

ing cognitive subsystems for a specific task such as reading are

coordinated is a research problem representative of questions that

we believe cannot be investigated without fully quantitative math-

ematical models. Although it is still possible to investigate aspects

of eye-movement control (e.g., word skipping or programming of

refixations) in a nonmathematical way, a fully quantitative ap-

proach in which most of the experimental phenomena are inte-

grated is necessary to test the interaction of different theoretical

assumptions (e.g., the potential impact of a mechanism for word

skipping on refixation behavior). In perspective, computational

models can be approximated with analytical means to check the

numerically obtained results and to derive the foundations of a

rigorous theory of eye-movement control during reading (e.g.,

Engbert & Kliegl, 2003a).

Our main goal in this article is to propose a mathematical model

for the control of eye movements during reading that is both

psychologically and neurophysiologically plausible and that ac-

counts for most of the known experimental findings. The model

presented here is an advanced and substantially extended version

of the SWIFT1 model proposed earlier (Engbert, Longtin, &

Kliegl, 2002). The model is motivated by many different experi-

mental results, which we discuss in detail. The model incorporates

neurophysiological properties of the oculomotor system. Further-

more, the SWIFT model is compatible with a general framework

of the generation of saccades developed by Findlay and Walker

(1999) and shares concepts with the dynamic field theory of

movement preparation by Erlhagen and Schöner (2002). As our

cognitive systems have never been under evolutionary pressure to

optimize reading abilities (i.e., there has been no special adaptation

of humans for reading), plausible models of eye movements in

reading must have the potential for generalization to task manip-

ulations (e.g., reading with a scotoma) and nonreading tasks (e.g.,

visual search). We discuss the issue of generalizability later in this

article.

The model that we develop here is a minimal model, which is

related to two aspects of model design. First, the model is based on

only a few core principles. This is a challenging problem, because

even when reading relatively simple sentences, patterns of eye

movements turn out to be very complex. As an example, we

observe several different types of saccades including word skip-

ping (no fixation on the skipped word), refixations (more than one

fixation on the same word), and even interword regressions (back-

ward saccades landing on a previously fixated region of text). The
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formulation of separate assumptions for these different types of

eye movements would violate the principle of minimal modeling.

Therefore, we aim at a general mechanism underlying all types of

saccades—the fundamental principle of our model. Second, the

core assumptions of our model are idealizations, which will be

formulated mathematically in a parsimonious way (i.e., with as

few parameters as possible). Minimal modeling is also related to

generalizability, because, with an increasing number of assump-

tions specific to reading, the model would be more and more

inflexible to explain eye movements in different tasks. How we

control eye movements in visual search should be in agreement

with the main control principles guiding the eyes during reading.

A theoretical framework for the dynamics of movement prepa-

ration with a very general claim is the dynamic field theory

(Erlhagen & Schöner, 2002). In this theory, a field of activation—

the mathematical term for a function of space and time—is spa-

tially distributed over a number of potential movement targets.

Using concepts from the theory of nonlinear dynamical systems,

the dynamic field theory proposes laws governing the temporal

evolution of such activation fields. In the dynamic field theory,

there is continuous cross talk between different cognitive sub-

systems (e.g., memory system, perceptual input, movement plan-

ning). This continuous interaction of cognition and motor control

makes the theory highly relevant to eye-movement control during

reading, as the selection of words as saccade targets must be

performed on the basis of partial knowledge, because saccade

latency requires an early start of the next saccade program during

fixation. Thus, a temporally continuous interaction between pro-

cesses of word recognition and saccade generation is essential in a

plausible model of eye-movement control during reading. Al-

though we do not refer to the explicit formalism proposed by

Erlhagen and Schöner (2002), we use the concept of an activation

field already developed in the first version of the SWIFT model

(Engbert et al., 2002). Note, however, that the assumption of an

activation field already has strong implications. A theory built

around the core assumption of a dynamically changing activation

field necessarily involves spatially distributed processing. In read-

ing, words are the elementary targets for the saccadic system. To

build up an activation field, several words must be activated in

parallel. This parallel processing, however, is not necessarily re-

lated to word recognition, but could be limited to early stages of

word processing. We discuss this important aspect of our model

later and derive different types of parallel processing of words.

The first version of our model of eye-movement control in

reading2 (Engbert et al., 2002) was developed as a viable alterna-

tive to the models based on sequential shifts of attention, a prin-

ciple that motivated the development of the currently most ad-

vanced model, E-Z Reader (Reichle, Pollatsek, Fisher, & Rayner,

1998; Reichle, Rayner, & Pollatsek, 1999, 2003; see also Engbert

& Kliegl, 2001). Because of the success of the E-Z Reader model,

which is based on strictly sequential processing, some researchers

speculated that an alternative model based on parallel processing

of words could not perform similarly well. For example, Starr and

Rayner (2001, p. 162) concluded that “such a model seems rather

complicated and would be difficult to implement in a computa-

tional model. Thus, a challenge for proponents of a parallel mech-

anism of attention during reading is to delineate the parameters of

such a framework.” From this perspective, the development of the

first version SWIFT-I was important in order to keep the scientific

debate open and to demonstrate a viable alternative to E-Z Reader

and/or the principle of sequential attention shifts.

Once we have developed a mathematical model based on par-

allel processing of words, we can investigate the problem of serial

versus parallel processing by computational means. We show later

in this article that it is possible to introduce a continuous spectrum

from strictly serial to fully parallel models by a parametrization of

the type of processing. Thus, we show how a computational model

might contribute to this long-standing research problem. In per-

spective, we hope to stimulate new experimental and theoretical

work motivated by the results obtained from the SWIFT-II model.

Before we present our model and its mathematical analysis, we

briefly review three theoretical approaches to the control of eye

movements in reading, formulate the goals for our modeling ap-

proach, and present the core theoretical assumptions as a basis for

the SWIFT-II model.

Models of Eye-Movement Control in Reading

During reading, saccadic eye movements are necessary to move

words to the center of the visual field, the fovea, where high visual

acuity enables efficient word recognition. Thus, reading may be

looked upon as a case study in active vision (Findlay & Gilchrist,

2003), the notion that eye movements are essential for almost all

visual perception.

Given the complexity of eye-movement patterns and the con-

siderable amount of variance in fixation durations, it is unclear

whether eye movements are directly guided by high-level language

processes. With respect to model categorization, we are interested

in the problem of whether cognitive models, mainly driven by

language-related properties of words (e.g., word recognition), are

more adequate than primary oculomotor control (POC) models.

Models that fall into the latter category exploit low-level informa-

tion (e.g., word length) to reproduce some of the basic patterns of

eye movements. For example, Reilly and O’Regan (1998) assumed

that the eye is directed to the longest word in the area of about 20

characters to the right of fixation and that oculomotor errors (e.g.,

overshoot or undershoot of the center of a target word) lead to

properties of within-word corrections necessary for word recogni-

tion (see also O’Regan, 1990, 1992; O’Regan & Lévy-Schoen,

1987). McConkie, Kerr, and Dyre (1994) developed a two-state

model, which provided a good account of within-word landing

positions (McConkie, Kerr, Reddix, & Zola, 1988). It is important

to note that effects of lexical processing on eye-movement control

are not completely excluded in POC; however, it is assumed that

these higher level influences only modulate a control strategy that

is primarily based on low-level visual information.

Another recent primary oculomotor model was suggested by

Yang and McConkie (2001, 2004). The key assumption of their

competition–interaction theory is that the temporal aspect of sac-

cade planning is basically independent of lexical processing. Pro-

cessing difficulty, however, can inhibit the oculomotor system

from initiating a saccade program.

To give new insights into the debate about cognitive versus POC

models, it is necessary to develop a detailed model of eye-

2 We refer to the first version as SWIFT-I. For direct comparisons, the

current version of our model is labeled SWIFT-II.
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movement control that integrates experimentally observed phe-

nomena from both approaches. As an example, such a model

should reproduce effects of word difficulty (e.g., measured by

printed word frequency) as well as oculomotor effects (e.g., sys-

tematic errors in initial landing positions).

Following the terminology we proposed earlier (see Engbert et

al., 2002), cognitive models may be further divided into subclasses

according to their principles of allocation of visual attention. Two

important concepts are control by sequential attention shifts (SAS)

and guidance by attentional gradients (GAG).

SAS models are generally based on Morrison’s (1984) proposal

that covert shifts of attention are generically performed during

fixation. On the basis of these attentional shifts, saccadic eye

movements are prepared (Deubel & Schneider, 1996; Kowler,

Anderson, Dosher, & Blaser, 1995; Kustov & Robinson, 1996). At

the same time, parafoveal information is used to start word rec-

ognition. The mechanism of SAS provided a straightforward ac-

count of selective skipping of short high-frequency words.

The E-Z Reader model (Reichle et al., 1998) represents the most

advanced attempt to build a theory of eye-movement control based

on SAS. The development of this model was motivated by two

important findings incompatible with Morrison’s (1984) model.

First, preview benefit, the shortening of processing time on sub-

sequent words originating from time spent on the foveal word, is

modulated by foveal processing load (Henderson & Ferreira, 1990;

Kennison & Clifton, 1995). Second, one often observes “spillover”

effects due to word frequency (Rayner & Duffy, 1986); that is,

lower frequency words induce longer fixation durations not only

locally but also lengthen the fixation duration on the succeeding

word. Recent further developments of E-Z Reader include landing

site distributions (Reichle et al., 1999) and improved refixation

behavior (Reichle et al., 2003), thus extending the model to repro-

duce effects generated by oculomotor control principles, in addi-

tion to effects of lexical processing. The interface between cogni-

tion and eye-movement control in E-Z Reader was reevaluated

recently (Pollatsek, Reichle, & Rayner, in press). In a variant of an

SAS model, Engbert and Kliegl (2001) showed that it is possible

to relax the strong assumption of lexically driven saccade pro-

gramming. Therefore, the SAS framework is compatible with the

assumption of autonomously generated saccades, saccades that are

not induced by a lexical control loop.

In models based on GAG, there is a continuous distribution of

lexical processing rate over the fixated region of text. Legge, Klitz,

and Tjan (1997) proposed a gradient-type model with a saccade-

targeting mechanism that minimizes the uncertainty about the

current word, called the ideal-observer model of reading (see also

Legge, Hooven, Klitz, Mansfield, & Tjan, 2002).

In SWIFT-I (Engbert et al., 2002), we proposed that four words

are processed in parallel. Processing rate is highest for the foveal

word and decreases to the parafoveal words to the left and to the

right of the fixated word, and there is still some parafoveal pro-

cessing on the second word to the right. Although this assumption

was rather simplified without word lengths taken into account, this

model turned out as a viable alternative to models based on the

SAS principle. To extend the range of phenomena explained by

SWIFT-II and to investigate the question of serial versus parallel

processing of words, we develop an advanced version of SWIFT in

this article. Before we start to explain the core principles of our

new model, it is necessary to clarify the goals of our attempt to

model the control of eye movements during reading.

Modeling Goals

The reduction of a real-world problem to a number of simple

rules is among the key principles of mathematical modeling. The

level of detail may vary across model components. As noted in a

recent viewpoint article by May (2004), an approach that includes

as many experimentally observed details as possible represents an

abuse of mathematical modeling, because many of the known

details of a problem may turn out to be irrelevant to the model and

some important ingredients might be missing:

Perhaps most common among abuses, and not always easy to recog-

nize, are situations where mathematical models are constructed with

an excruciating abundance of detail in some aspects, whilst other

important facets of the problem are misty or a vital parameter is

uncertain to within, at best, an order of magnitude. (p. 793)

As stated above, the main objective in our modeling approach is

the interface of visual processing of words and eye-movement

control. In mathematical models developed over the last few years,

it turned out that the control of eye movements in reading can be

captured by a theoretical model without integrating an advanced

model of language processing (see Reichle et al., 2003). Most of

the variance in eye-movement patterns and many of the experi-

mental phenomena can be explained by models on the basis of

rather simplified rules for word recognition and mechanisms for

saccade programming. Thus, although language comprehension is

the function of reading, many higher level linguistic processes

essential to language comprehension typically have a rather small

impact on the details of eye-movement control during reading. To

make our modeling approach more transparent, we briefly discuss

the experimentally observed phenomena that we attempt to repro-

duce with our model and how to evaluate the model’s

performance.

Quantitative Measures for Goodness of Fit

The performance of computational models can be evaluated by

quantitative and qualitative measures. Eye-movement patterns

clearly depend on properties of lexical difficulty, which is most

commonly characterized by printed word frequency and word

predictability (i.e., the probability of guessing a word from the

sequence of previous words of the sentence; Kliegl, Grabner,

Rolfs, & Engbert, 2004; see Rayner, 1998, for a review). Although

printed word frequency can be computed from large text corpora

and independent of context, word predictability incorporates many

aspects of a reader’s knowledge of language, depends strongly on

context, and must therefore be estimated from experiments, ob-

tained from incremental reading tasks, for each word of a given

sentence. An important physical word parameter influencing eye-

movement control is word length. For example, word-length in-

formation acquired parafoveally is used in computing the next

saccade length (e.g., Morris, Rayner, & Pollatsek, 1990; O’Regan,

1979; Rayner, 1979). From these considerations, word frequency,

word predictability, and word length will serve as independent

variables for the analysis of dependent measures discussed in this

section.
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Among the quantitative measures for the control of eye move-

ments in reading are temporal variables (fixation durations), spatial

variables (probabilities for different types of saccades), and a

number of experimentally observed effects, which mainly repre-

sent conditional variables, that is, more complicated combinations

of spatial and temporal measures such as fixation durations con-

ditional on the fixation location within a word.

Fixation durations. Inspection times are central for evaluating

visual information processing in reading. An important measure

for word difficulty is gaze duration (e.g., Rayner, 1998), the sum

of the first fixation and all immediate refixation durations. Because

of the large number of ways in which fixations sum up to gaze

duration, gaze duration is an average measure over many different

patterns of fixations, such as whether two successive fixations in a

word occur in a forward or backward sequence. For a more

detailed look into the model’s dynamics, we aim at a representa-

tion of the experimental data by nonoverlapping measures.3 There-

fore, we separately calculate single fixation duration for all cases

in which words receive one fixation. For the evaluation of refix-

ations, we use first fixation duration4 and second fixation duration.

These measures are limited to first-pass reading (i.e., fixations

after regressions to previous words do not contribute)—irrespec-

tive of whether this word had been skipped or fixated initially.

Finally, we calculate total reading time, the sum of all fixations

regardless of the eye’s trajectory that generates these fixations.5

Fixation probabilities. The four measures of fixation dura-

tions are complemented by four measures of fixation probabilities.

The fixation-probability measures characterize the spatial aspect of

eye-movement patterns. On the basis of first-pass reading, we

calculate skipping probability, the probability for two fixations,

and the probability for three or more fixations.6 Inasmuch as our

model inherently produces interword regressions, we also calculate

the regression probability or, more precisely, the probability that a

word is the target of an interword regression.7

Effects of word length versus word frequency. Means of the

above eight measures of fixation durations and fixation probabil-

ities broken down by logarithmic word-frequency classes have

achieved the status of benchmark data for the first cohort of

computational models of eye-movement control in reading (e.g.,

Engbert & Kliegl, 2001; Engbert et al., 2002; Reichle et al., 1998).

These summary statistics also proved useful for estimating model

parameters. As effects of word length and word frequency are

potentially variables of equal importance, however, we will com-

pute model fits on the basis of individual words in this article.

Thus, each word contributes a “data point” to the dependent

variables. This opens the possibility for a detailed inspection of the

model’s performance on single sentences. Furthermore, by aver-

aging over classes of word length and frequency, we can easily

determine effects of word length and frequency based on the

summary statistics of the earlier studies.

Within-word landing positions. An important impact of the

oculomotor system on reading behavior arises from oculomotor

errors. In addition to random errors, which occur in all motor

systems, we observe a systematic component (McConkie et al.,

1988). As a consequence, the preferred viewing location (Rayner,

1979) is a point left of the center of a word.

Effect of inverted optimal viewing position (IOVP) of fixation

durations. As visual acuity decreases from the maximum in the

center of the visual field (the fovea) to the parafovea and periph-

ery, word recognition is fastest when fixating an isolated word in

the center (O’Regan & Jacobs, 1992; O’Regan & Lévy-Schoen,

1987; O’Regan, Lévy-Schoen, Pynte, & Brugaillere, 1984). Con-

trary to this finding in isolated word recognition, Vitu, McConkie,

Kerr, and O’Regan (2001; see also Nuthmann, Engbert, & Kliegl,

2005) reported for continuous reading that first and single fixation

durations are longer for fixation positions in the word center than

for fixation positions near word boundaries. Without further the-

oretical specification, this effect is opposite to predictions of

cognitive models, which assume word recognition to be fastest

(rather than slowest) near word centers.

In addition to the well-established phenomena described above,

we also investigate model performance in relation to recent, still

somewhat controversial, issues, because one major motivation for

building mathematical models is to generate predictions for future

research directions.

Fixation duration before word skipping. Fixation durations

before skipped words provide a fingerprint for sequential alloca-

tion of attention, postulated in SAS models. The assumption that

the default target of an automatically started saccade program is

the next word implies that word skipping involves the cancelation

of this saccade program and a restart of a new saccade program to

the word beyond the next one. Such saccade cancelation increases

fixation durations before skipped words; that is, it leads to skipping

costs. In a recently published analysis, this theoretical prediction

was not consistently supported with experimental data from con-

tinuous reading (Kliegl & Engbert, 2005). Therefore, we investi-

gate fixation durations before word skipping as a model test.

Lag and successor effects. Fixation durations on a given word

depend not only on the length, frequency, and predictability of the

fixated word but also on these properties of the previous (i.e., lag)

and the next (i.e., successor) words (Kliegl, Nuthmann, & Engbert,

2005). Indeed, lag effects are of similar strength to the effects of

fixated word properties, inducing a longer average fixation dura-

tion on words following low-frequency, low-predictable, or long

words. One of several possible interpretations of this phenomenon

is that processing time spills over from word n � 1 to word n (e.g.,

Rayner & Duffy, 1986). Analogously, we can study successor

effects of word n � 1 on fixation durations of word n, a subset of

which are called parafoveal-on-foveal effects (Kennedy, 2000a,

2000b; Kennedy & Pynte, 2004). Mechanisms that reproduce these

experimental observations might lead to qualitative differences

between different models.

3 Nevertheless, we use gaze duration as a derived measure in Appen-

dix D.
4 In the following, we compute first fixation durations as an average of

all cases with a second (or more) fixation, excluding single-fixation cases.

Traditionally, however, first fixation durations include single-fixation

cases (e.g., Rayner, 1998).
5 This category is necessary to collect all possible fixation sequences in

a “rest” category.
6 By definition, the probability for a single fixation can be calculated by

1 minus the sum of the probability of skipping and the probabilities of two

and three or more fixations.
7 In the following, we use the expression regression for interword

regressions exclusively; refixations oriented to the left are called regressive

refixations.
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Qualitative Aspects of Model Fitting

Several of the dependent variables mentioned above represent

qualitative measures of model performance. For example, models

may differ in (a) whether they account for regressions, (b) whether

they reproduce the IOVP effect, (c) whether they exhibit costs for

(or benefits from) word skipping, and (d) whether they reproduce

patterns of lag and successor effects. Such qualitative aspects of

model fitting are very important to test whether a model’s mech-

anism for reproducing an experimentally observed effect is correct,

whether it is the only possible explanation, and whether it is

possible to develop alternative mechanisms.

Given the substantial amount of knowledge about the neural

foundation of saccade generation, the neurophysiological plausi-

bility of models of eye-movement control is a further qualitative

criterion for the evaluation of theoretical models. A very general

model for the generation of saccades has been proposed by Findlay

and Walker (1999); this model is built on the assumption of two

separate pathways concerned with the spatial and the temporal

programming of eye movements. From this perspective, reading

might be looked on as a case study for the control of eye move-

ments in a well-structured environment. Therefore, we require that

modeling assumptions should be special cases of the general

principles proposed by Findlay and Walker.

Closely related to this point is model generalizability. In read-

ing, eye movements are effectively one-dimensional along the

horizontal axis (except for return sweeps to the next line of text).

Here we can ask whether and how the model’s control principles

can be extended to two-dimensional trajectories, for example, in

visual search. Ideally, a model for the control of eye movements in

reading should be generalizable to and theoretically enrich the

analysis of eye movements in visual search.

Core Concepts of Our Model

Before we present the detailed mathematical formulation, we

summarize the core principles of the SWIFT-II model in brief

statements (see Table 1). The principles are elaborated and dis-

cussed in detail in the following paragraphs.

Spatially distributed processing of an activation field (Principle

1): In our dynamic-field approach (e.g., Erlhagen & Schöner,

2002), all types of saccades are generated inherently to the model,

as target selection is due to a competition among words with

different activations. The parallel build-up of activations over

several words implies that processing is distributed across several

words at a time.

Separate pathways for saccade timing and saccade target se-

lection (Principle 2): Motivated by neurophysiological findings,

temporal and spatial aspects of saccade generation are controlled

on different pathways (Findlay & Walker, 1999). Therefore, the

problems of when to start the next saccade program and where to

go next, are decoupled.

Autonomous saccade generation with time-delayed foveal inhi-

bition (Principle 3): Saccade programs are generated autono-

mously, so that fixation durations are basically realizations of a

random variable. This stochastic process is modulated by a foveal

inhibition process to extend the inspection times for difficult

words. Because this inhibitory process is based on a slower word-

recognition circuit (compared with the short brainstem saccade

generator; e.g., Carpenter, 2000), the inhibitory process includes a

time delay.

Two-stage saccade programming with labile and nonlabile lev-

els (Principle 4): Programming of saccades is a two-stage process,

motivated by results from the double-step paradigm (Becker &

Jürgens, 1979). During the labile stage, the oculomotor system is

prepared for the next saccade program. A new initiation of a

saccade program during the labile stage leads to a cancelation of

the first saccade program and starts a new saccade program. At the

end of the labile stage, the target is selected from the field of

activations, a point-of-no-return is passed, and the saccade can no

longer be canceled.

Systematic and random errors in saccade lengths (Principle 5):

The oculomotor system inherently produces saccadic errors, that

can be decomposed into systematic and random components (Mc-

Conkie et al., 1988). As a consequence, in addition to random

variability in fixation positions, systematic shifts in within-word

landing position distributions as a function of launch-site distance

are observed. Misguided saccades may also lead to fixations on

unintended words (mislocated fixation, see below).

Error correction of mislocated fixations (Principle 6): Experi-

mental data suggest and our simulations show that saccades fre-

quently land on unintended words, which leads to mislocated

fixations (Nuthmann et al., 2005; see also Rayner, Warren, Juhasz,

& Liversedge, 2004). In this case, we assume that a new saccade

program starts immediately, that is, the autonomous timer is over-

ruled. The target of this saccade will be determined at the end of

the labile saccade stage according to the general rule (Principle 4).

This error-correcting mechanism can explain the IOVP effect of

fixation durations.

Modulation of saccade latency by intended saccade amplitude

(Principle 7): As a final principle, we assume that saccade latency

is modulated by the amplitude of the intended saccade. Because in

our model saccade target selection is performed at the end of the

labile stage of the saccade program—the intended saccade ampli-

tude is computed at the end of the labile stage—only the nonlabile

stage can be influenced by the intended saccade amplitude. We

will show that this principle, which is motivated by basic oculo-

motor research (e.g., Wyman & Steinman, 1973), contributes to

the explanation of the IOVP effect in fixation durations.

Given the core principles, there is no unique way for a transla-

tion into mathematics, of course. Therefore, we discuss the specific

choice of mathematical equations in the next section. Once for-

mulated mathematically, we can implement the model on a com-

puter to generate artificial data, which can be analyzed using the

same algorithms as applied for the analysis of experimental data.

Table 1

Core Principles of the SWIFT Model

No. Principle

1 Spatially distributed processing of an activation field
2 Separate pathways for saccade timing and saccade target selection
3 Random saccade generation with time-delayed foveal inhibition
4 Two-stage saccade programming with labile and nonlabile stages
5 Systematic and random errors in saccade lengths
6 Error correction of mislocated fixations
7 Modulation of saccade latency by saccade length
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Moreover, semianalytical techniques may add to our understand-

ing of the control principles underlying eye movements in reading

(e.g., Engbert & Kliegl, 2003a).

Mathematical Formulation of the Model

Dynamic Field of Activations

Our model is a cognitive model with word recognition driving

eye movements. In SWIFT, a one-dimensional field of activations

{an(t)} for words n � 1, 2, 3, . . . , Nw at time t functions as a

saliency map, from which potential saccade targets are computed

(Principle 1). It is no limitation of the formalism that the number

of words, Nw, in a given sentence is unknown when reading the

first words of the sentence, as the number of words could be

specified later in the reading process. Furthermore, it will turn out

that word j with index j � n � 4 typically has close to zero

activation during fixation on word n. Thus, there is a limited

horizon of saccade targets constrained by target selection proba-

bilities at any time.8

The activation field {an(t)} changes over time because of word

recognition. Activation is built up in a preprocessing stage and

decreases during a later lexical completion process. The relative

amount of activation will determine the probability that a word is

selected as a saccade target. It is important to note the dynamical

nature of the interplay between lexical processing and eye-

movement control. Fixation position has a strong impact on word-

recognition time, which determines the temporal evolution of the

activation field. Because the activation field determines saccade

targets, our model inherently exhibits historicity, that is, a strong

dependence on the previous sequence of fixations. Historicity is a

key property of nonlinear dynamical systems. Formulated from a

general mathematical viewpoint, nonlinearity of the underlying

equations in SWIFT adds a new source of complexity in eye

movements to the stochastic origins in previous models (Engbert,

Kliegl, & Longtin, 2004).

Word Difficulty

The assumption of an activation field still leaves open how

lexical difficulty of words is represented. Here we assume that the

maximum activation Ln of word n is related to the word’s process-

ing difficulty. Our approach to this problem is based on a proposal

by Reichle et al. (1998) that word difficulty depends on printed

word frequency (per million words) and predictability. Previous

theoretical models were based on a multiplicative interaction of

word frequency and predictability (Engbert & Kliegl, 2001, 2003b;

Engbert et al., 2002, 2004; Reichle et al., 1998, 1999, 2003).

Recently, Rayner, Ashby, Pollatsek, and Reichle (2004) pub-

lished an experimental study demonstrating that fixation durations

only mildly departed from an additive combination of word fre-

quency and predictability: Predictability effects were larger for

low-frequency than for high-frequency words. Additional numer-

ical simulations using different variants of the E-Z Reader model

indicated that an additive model of word frequency and predict-

ability fit better than the previous multiplicative one. Thus, Rayner

et al.’s (2004) results suggest that the specific mathematical inter-

action of word frequency and predictability is additive (or a

mixture of additive and multiplicative) rather than strictly

multiplicative.

Here, we propose an alternative view on the interaction of word

frequency and predictability. The combination of word frequency

fn and predictability pn of word n in a single equation for word

difficulty might be problematic because of the temporal charac-

teristics inherent in the two variables. Whereas word frequency

information unfolds during the word-recognition process, word

predictability is by definition independent of visual input. Thus,

we suggest different processes of how the two variables generate

certain modulations of processing times. First, we assume that

word difficulty—as a variable in our model—can be estimated

from word frequency alone, that is,

Ln � ��1 � �
log fn

F
� , (1)

where � is the intercept value of the lexical access time, which is

modulated by the (natural) logarithm of word frequency, fn, with

slope parameter �. The constant F � 11 is used to scale the values

of log fn to a range in the interval [0; 1], so that the coefficient �

is dimensionless and characterizes the strength of the frequency

effect.

Second, we assume that word predictability modulates process-

ing rates. As a consequence, the impact of predictability pn on the

time course of processing of word n might be earlier than the

impact of word frequency. The mathematical implementation of

these processes is described below in the section on the equation of

motion of our model. We speculate that such a process dissociation

underlying effects of word frequency and predictability will yield

neither a strictly additive nor a strictly multiplicative interaction,

which could be compatible with the above experimental results by

Rayner et al. (2004).

Lexical Processing Rate

For spatially distributed processing, we assume that lexical

processing rate, denoted by � � 0, is a function of the distance

(eccentricity) of a word to the current fixation position. This

distance must be a function of the eccentricities of all letters of the

word. We show later that this assumption has strong implications

for spatial aspects of lexical processing.

The fixation position at time t is denoted by k(t), where the range

of k can be from 1 to the number of all characters, spaces, and

punctuation marks in the sentence.9 Motivated by the well-known

bias of processing in the direction of reading, fixations on the

spaces between words are counted as fixations on the words to the

right of the spaces. The processing rate of word n is a function of

processing rates of all letters j � 1, 2, 3, . . . , Mn, where Mn is the

number of letters of word n. We assume that processing speed is

mainly limited by visual acuity, which is a function of the distance

from the center of the visual field (i.e., the fovea). The distance of

letter j of word n from the current fixation position is given by the

eccentricity

8 Note that this horizon is the result of the model’s dynamics, not an ad

hoc choice in building the model.
9 In the first version of our model (Engbert et al., 2002), we neglected

word length, and fixation position k was the index of the fixated word.
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�nj�t� � xnj � k�t�, (2)

where xnj is the position of letter j of word n. Lexical processing

rate is a function of eccentricity, � � �(�). The size of the

perceptual span decreases from at least 10 letters in central vision

to 1.7 letters at an eccentricity of 15° (Legge, Mansfield, & Chung,

2001). This decrease is related to a corresponding reduction of

reading rate. Because of the asymmetry of the perceptual span

(McConkie & Rayner, 1976; Rayner, Well, & Pollatsek, 1980), we

assume an asymmetric Gaussian function as the mathematical

relation between lexical processing rate and eccentricity, that is,

���� � �0 exp �� �2

2	2� with �	 � 	L, if � 
 0

	 � 	R, if � � 0 , (3)

where 	L characterizes the extension of the processing rate to the

left and 	R applies to the processing of letters to the right of the

current fixation position (see Figure 1). The normalization constant

�0 of the lexical processing rate function, Equation 3, can easily be

calculated from the normalization condition

1 � �
��

��

����d� � �
��

0

�0 exp�� �2

2	L
2�d�

� �
0

��

�0 exp�� �2

2	R
2�d�, (4)

which yields the relation10

�0 � �2

�

1

	R � 	L

. (5)

Using the normalization, total lexical processing rate is fixed at a

constant value of 1. This value is the theoretical maximum of

lexical processing rate, which can be reached if letters are arranged

along the horizontal axis from �� to ��. In a realistic situation,

this will never occur, of course. Thus, the total lexical processing

rate will effectively be bounded between 0 and 1.

Given our assumption on lexical processing rate for letters

(Equation 3), we now have to specify how the processing rate of

a word can be calculated from the set of processing rates of all its

letters. Two special cases for word-based processing rates can be

distinguished: The lexical processing rate of a word is (a) the sum

of the rates of all its letters or (b) the mean of all of its letters. In

the first case, every additional letter would be a processing advan-

tage, as it can potentially help to enhance word recognition. In the

second case, however, every additional letter leads to processing

costs. Because of these very different views, we use a parametrized

function, which includes both (a) and (b) as special cases,

�n�t� � �Mn�
�� �

j�1

Mn

���nj�t��, (6)

where for � � 0, the processing rate of the word is the sum of the

rates of all letters, and for � � 1, it is the mean of the rates of all

letters. Using numerical simulations, we show below that—under

the assumptions made here—the actual value of � is an interme-

diate value between the two extreme cases.

The asymmetry of the distribution of lexical processing rate

(Equation 3) for 	R 	 	L leads to a shift of the maximum of lexical

rate to the left (see Figure 2). This result is qualitatively in

agreement with experimental observations: First, the preferred

viewing location (Rayner, 1979) is indicated by the maximum of

the distribution of initial fixations on a word, which shows a shift

to the left from the word center. Second, the optimal viewing

position (OVP) is determined as the position of the minimum of

recognition time (for studies of isolated word recognition, see

O’Regan & Jacobs, 1992; O’Regan & Lévy-Schoen, 1987;

O’Regan, Lévy-Schoen, Pynte, & Brugaillere, 1984) and/or the

position of the minimum of refixation probability. In our data, this

minimum turned out to be close to the word center with a leftward

bias, too (Nuthmann et al., 2005).11 The interesting question is

whether this leftward tendency is functional or whether it is related

to systematic errors of the oculomotor system. As illustrated in

Figure 2, our assumptions on word processing yield a maximum of

the processing rate shifted to the left from word center. Thus, our

concept of how lexical processing rates of words are calculated

from rates of letters is highly compatible with the experimental

observations of a leftward shift of the preferred viewing location.

Temporal Evolution: Equation of Motion

In our model, the activation field can be interpreted as a map of

visual salience (e.g., Findlay & Walker, 1999). Before processing,

the word is unknown, and after processing, the word is completely

processed, which is in both cases related to an activation of zero.

During preprocessing, activation an(t) of word n increases to its

maximum value Ln. The time to reach the maximum is denoted by

tp(n). Preprocessing is defined as the first stage of processing in

10 Here we use the normalization formula of the Gaussian distribution:

�
��

�� 1

�2�	
exp�� x2

2	2�dx � 1.

11 McConkie, Kerr, Reddix, Zola, and Jacobs (1989), however, reported

a small rightward bias.

Figure 1. Lexical processing rate is assumed to follow an asymmetric

Gaussian distribution with different parameters, 	L and 	R, to the left and

to the right of the fixation point, respectively.
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our model.12 In a second stage, called lexical completion, the

activation tends to zero until it is completely processed. An addi-

tional process is decay of activation, assuming a nonidealized

memory with leakage.

The temporal evolution of activations during reading of a sen-

tence consisting of Nw words is governed by a system of Nw

coupled ordinary differential equations (ODEs),

dan�t�

dt
� Fn�t�
n�t� � 
, (7)

where

• Fn(t) is a preprocessing factor, modulated by predictability,

• 
n(t) is a stochastic variable for processing rate, and

• 
 gives the strength of the global decay process.

Now we discuss these three processes in more detail. The decay

process is introduced as a global parameter, which induces a slow

decrease of activations of all words with a constant rate and may

be interpreted as a memory leakage, which prevents the exact

tracking of processing states for all words.

The preprocessing factor Fn(t) introduces an asymmetry be-

tween preprocessing and lexical completion, which is also modu-

lated by predictability. First, during preprocessing, preliminary

information on a specific word will be accumulated for potential

target selection. The preprocessing factor introduces an asymmetry

with a fast increase and a slower decrease of activation. The

question of how much lexical (orthographic or semantic) informa-

tion can be accessed using parafoveal information is an open

research problem and clearly beyond the scope of the current

article (see Rayner & Juhasz, 2004, for a recent review). We return

to this problem below. We would like to comment here that

preprocessing of a word is a rather preliminary stage of processing

in our model, which mainly adds the word to the set of possible

saccade targets, that is, all words with an(t) � 0.

Second, as noted above in the section on word difficulty, we

assume that the predictability pn of word n modulates the process-

ing rate. We assume that for high-predictable words, that is, with

pn close to 1, processing rate is decreased during preprocessing as

long as the word is not fixated. This assumption is motivated by

the fact that for a high-predictable word there is a high probability

that the word can be guessed without (or with minimal) visual

input. As a consequence, the activation of a parafoveal high-

predictable word should build up more slowly than the activation

of a parafoveal low-predictable word. Because activations repre-

sent a measure for target selection probability in our model, there

will be a higher skipping probability for high-predictable words.

Because word recognition will be faster for high-predictable words

than for low-predictable words, however, we assume that process-

ing rate increases with predictability once the word is in the lexical

completion state, that is, the state with decreasing activation.

Mathematically we formulate these mechanisms as

Fn�t� � �
�f�1 � �pn� if t 
 tp�n� and k � n

(parafoveal preprocessing)

�f if t 
 tp�n� and k � n

(foveal preprocessing)

��1 � �pn� if t � tp�n�

�lexical completion�

, (8)

where f � 1 indicates that preprocessing is faster than lexical

completion and the factors (1 � �pn) generate the proposed mod-

ulations by predictability.

Finally, lexical completion is implemented as a memory-

retrieval process, which is known to be inherently stochastic (e.g.,

Ratcliff, 1978). As a consequence, we explicitly simulate a random

walk for the temporal evolution of activations, that is, for both

preprocessing and lexical completion. Therefore, we assume that

the lexical processing rate �n(t) of word n fluctuates around its

mean with a standard deviation proportional to its mean,


n�t� � �n�t��1 � ��t�, (9)

where �t represents Gaussian noise with zero mean and a standard

deviation of one. Noise samples are uncorrelated between integra-

tion time steps. For all simulations presented here, we chose � �

2, which produces a reasonable amount of stochasticity in word

recognition. An example for the resulting stochastic activation

process is illustrated in Figure 3.13

Saccade Target Selection

Given the principles for the temporal evolution of the set of

lexical activations, {an(t)}, assumptions on saccade target selec-

tion are straightforward.14 Saccade target selection is a competitive

process among all activated words, that is, among all words with

12 Note that the distinction between preprocessing and lexical comple-

tion does not refer to parafoveal versus foveal processing.
13 For a study of the role of noise in a model of eye-movement control,

see Engbert and Kliegl (2003b).
14 Whereas the lexical processing assumption had to be modified

strongly because of letter-based metrics of words in the new version of our

model, the mechanism of saccade target selection is effectively the same as

in the first version of our model (Engbert et al., 2002).

Figure 2. Lexical processing rate as a function of word length and

fixation position relative to word center. The within-word maxima are

shifted to the left with increasing word length. For � � 0.5, lexical

processing rate shows an absolute maximum of � � 0.32 at relative

fixation position k � �1.37 for word length 7. In this example, the

parameters of the asymmetric Gaussian are chosen as 	R � 3.6 letters and

	L � 1.4 letters. The bold lines correspond to within-word fixation posi-

tions; the dashed lines indicate fixation positions beyond the word edges.
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an(t) � 0. As a consequence, if words are activated in parallel

substantially,15 the model can potentially generate all types of

saccades observed in experiments (e.g., word skipping,

refixations).

In mathematical terms, we assume that target selection is a

stochastic process. The probability �(n, t) to select word n as a

saccade target at time t is given by its relative lexical activation,

��n, t� �
an

��t�

�
j�1

Nw

aj
��t�

, (10)

where the exponent � is a measure for the stochasticity in the target

selection process. We can consider two special or extreme cases of

how target words are selected,

• � � 0: Target selection probability for all words with nonzero

lexical activation is equal (random target selection), and

• � 3 �: Target selection is deterministic; the word with

highest activation is the next saccade target (“winner-takes-all”).

Previous simulations have shown that � � 1 gives the best fits.

In this case, target selection probability is proportional to relative

lexical activation, which is known as Luce’s (unbiased) choice rule

(Luce, 1959).

Control of Fixation Duration by Foveal Inhibition

According to Principle 3, saccade timing is a stochastic process,

which is modulated by the amount of foveal activation. We assume

that the time interval between two commands to initiate a saccade

program is purely stochastic with a predefined mean tsac, which is

related to a reader’s individual reading rate. The inhibitory mod-

ulation of this random process will be derived in two steps.

First, the fixation duration on word n is modulated by the

amount of foveal activation. Let us denote the time of initiation of

the saccade program for saccade i by ti. The next command for

starting a new saccade program i � 1 will happen after a stochastic

interval 
ti�1 with mean value tsac. This interval will, however, be

procrastinated by an inhibitory top-down signal from the lexical

processing module. The next command for starting saccade pro-

gram i � 1 is generated, if

t � ti � 
ti�1 � hak�t�, (11)

where h gives the strength of the foveal inhibition process. Note

that the prolongation is limited even for arbitrarily high values of

the constant h. Using an analytical approximation (Kliegl & Eng-

bert, 2003), we have shown that the maximum inhibition time T is

given by

T �
�

��0� � 1/h
O¡

h3 � �

��0�
, (12)

where �(0) is the foveal processing rate defined in SWIFT-I

(Engbert et al., 2002).

Second, processes of word recognition are much slower than the

fast brainstem saccade generator (e.g., Sparks, 2002). Therefore,

word recognition can impact the saccadic system only with a time

delay. This assumption is motivated by the plausibility argument

that the module for lexical processing performing word recogni-

tion is physiologically separated from the oculomotor nuclei of the

brainstem, which will produce a time delay for the impact of

processing difficulty on the control of fixation durations. To sup-

press noise, we introduce an additional integral average over the

interval from t � � to 0 for the inhibition process and replace

Equation 11 by

t � ti � 
ti�1 � h�ak��, (13)

where

�ak�� �
1

� �
t��

0

ak�t��dt�. (14)

Thus, the average delay is �/2. An important property of this

implementation is that for a time delay of the order of the average

fixation time, the evaluated activation in Equation 14 refers to a

previous fixation, which frequently occurred on the previous word.

Thus, the concept of time-delayed foveal inhibition can potentially

explain lag effects of processing.16

Saccade Programming

Programming of saccades is a two-stage process involving a

labile and a nonlabile stage. First, after starting a saccade program,

a labile stage with an average duration �lab is entered. If there is

another saccade command in this period of time, the labile stage

can be canceled. In principle, saccade cancelation can happen

successively. Using numerical simulations of our model, we found

that 90.0% of all saccades are not canceled during the labile stage,

8.6% are canceled once, and 1.1% are canceled twice (all other

cases are negligible).

15 The degree of parallel activation is not only a question of the model

architecture. It will depend on the values of model parameters.
16 A simpler but both psychologically and neurophysiologically less

plausible generalization of foveal inhibition would have been to add a new

term �h1ak�1(t) to the right-hand side of Equation 11.

Figure 3. Illustration of the time evolution of stochastic activation by the

equations of motion (Equations 7–9). The activation is a random-walk

model, which accounts for the inherent stochasticity in the memory-

retrieval process underlying word identification.
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Second, the nonlabile stage with average duration �nl is entered

after the labile stage terminates. The transition from labile to

nonlabile stage triggers the target selection process (Equation 10).

The two-stage organization is illustrated in Figure 4. The saccade

execution is included in the model with average duration �ex.

During saccades, sensitivity to visual input is reduced, an effect

called saccadic suppression (Matin, 1974). Because visual input

stops during saccades, preprocessing is paused in SWIFT. Because

of an eye-to-brain lag of approximately 50 ms (e.g., Foxe &

Simpson, 2002; see also Reichle et al., 2003), preprocessing is

interrupted for the duration of the saccade with a temporal delay of

50 ms (for both onset and offset of the saccade).17 Because lexical

completion should not depend critically on new visual input, we

assume that lexical completion continues during saccades.

In the context of programming of saccades during reading, the

assumption of two stages was first introduced by Reichle et al.

(1998; see also Engbert & Kliegl, 2001) and later used in SWIFT-I

(Engbert et al., 2002). The main motivation for the assumption

derives from the double-step paradigm in saccade generation

(Becker & Jürgens, 1979), which was used to demonstrate that

presentation of a second target earlier than approximately 250 ms

after the first could induce a cancelation of the saccade to the first

target. A later presentation, however, led to fixations of both

targets in a sequence. This effect is captured by passing a “point-

of-no-return” at the transition from labile to nonlabile stages of

saccade programming in our model.

Oculomotor Errors in Saccade Generation

Our assumptions on saccadic errors inherent to the oculomotor

system are based on results by McConkie et al. (1988). The

theoretical assumption underlying their analyses was that saccades

are directed toward the center of a target word. These saccades,

however, are modified by random as well as systematic error

components, so that, on average, a small deviation of the initial

landing position from the word center is observed. The systematic

error component is known as the range effect (see also Kapoula,

1985; Poulton, 1981). Let us denote the intended saccade ampli-

tude, the distance to the optimal viewing position of the next target

word, by A. The realized saccade length l is given by the sum of

the intended saccade amplitude A and two error terms,

l � A � lSRE � lG, (15)

where lSRE is called the saccade range error (systematic error) and

lG is Gaussian-distributed random error with zero mean.

The systematic deviation of the saccade length l from the

intended saccade amplitude A can be interpreted as a limited

adaptivity of the oculomotor system to arbitrary saccade lengths. If

the intended saccade amplitude A differs from an optimal saccade

amplitude A0, we observe undershoot for A � A0 and overshoot for

A � A0. In a linear approximation of this effect, we can write the

saccade range error as

lSRE � �SRE�A0 � 	A	�, (16)

where �SRE gives the strength of the saccade range error.

The oculomotor noise is a Gaussian-distributed random compo-

nent of the saccadic errors with zero mean. Generally, we observe

an increase in random errors with movement amplitude in almost

all processes of motor control (Poulton, 1981). For simplicity, we

assume, again in a linear approximation, that the standard devia-

tion of the random error can be approximated by the linear relation

	G � �0 � �1	A	. (17)

From the perspective of minimal modeling, we aim at a model

with as few parameters as possible. Fortunately, oculomotor errors

do not add free parameters to the model, as all parameters in

Equations 16 and 17 can be estimated directly from experimental

data (McConkie et al., 1988). The four parameters (�SRE, A0, �0,

and �1), however, may have different values for forward saccades,

refixations, and regressions. Using the data obtained on the Pots-

dam Sentence Corpus (Kliegl et al., 2005), we estimated the

parameters of the saccade range error separately for these three

types of saccades and used the same value in the case of the

random error component (see Table 2). The result indicates that the

parameters are very similar for forward saccades and refixations.18

For regression, we observe a much smaller coefficient, �SRE, which

is in agreement with Radach and McConkie’s (1998) observation

of a negligible saccade range error for interword regressions.

Mislocated Fixations and Error Correction

In the previous section, we discussed oculomotor errors in

saccade generation with systematic and random components. Al-

though even small errors will influence processing rates due to our

assumption of a processing gradient, which is limited by visual

acuity, saccadic undershoot and overshoot can lead to fixations on

unintended words (see Figure 5). These mislocated fixations are

most likely to happen close to word boundaries (Nuthmann et al.,

2005). We assume that these misguided saccades are immediately

corrected by starting a new saccade program, if there is currently

17 Using numerical simulations, we found no significant impact of the

eye-to-brain lag on our results. We kept this assumption, however, for

physiological plausibility.
18 The negative sign of the factor �SRE is due to the definition of the

saccade range error in Equation 16.

Figure 4. Temporal scheme of saccade programming. After the start of

the saccade program, a labile (lab) stage is entered, which signals the

engagement of the oculomotor system. At the end of the labile stage, the

saccade target is determined and the saccade can no longer be canceled

during the nonlabile (nl) stage. Finally, the saccade is executed (ex) and the

fixation position shifts to a new position.
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no labile saccade program active.19 To implement this assumption

in the simulation algorithm, we introduce a vanishing intersaccade

interval,


ti
misloc � 0, (18)

for mislocated fixations. Thus, the mean interval between two

saccade program initiations, 
ti, will be shortened by this

mechanism.

On average, the shortening of the intersaccade interval will

induce a decreased fixation duration close to word boundaries—at

beginnings and ends of words—which was observed in the IOVP

effect of fixation duration by Vitu et al. (2001). Generally, such a

mechanism is compatible with all models of eye-movement con-

trol that (a) specify a target word for each saccade and (b) include

oculomotor errors (see Nuthmann et al., 2005 for details).

What are potential mechanisms for the immediate start of an

error-correcting saccade program? It is commonly accepted that

saccade amplitudes are determined by population-coded activa-

tions in the superior colliculus (e.g., Sparks, 2002, for a recent

review). Accordingly, a single saccade is controlled by an effer-

ence copy of the motor signal to the eye muscles (Carpenter, 2000;

Wurtz, 1996). Thus, errors are monitored during saccades. Re-

cently, the idea that activation in the superior colliculus represents

saccade vectors was challenged by Bergeron, Matsuo, and Guitton

(2003), who demonstrated that collicular activation is related to

gaze error in multistep gaze shifts. Regardless of whether saccade

steps during reading are best described as single movements or

multistep vectors (see also Krauzlis & Carello, 2003), the bottom-

line from our current knowledge on the function of motor maps in

the superior colliculi is that gaze errors are monitored continu-

ously, which potentially provides a very fast detection of saccade

errors. Thus, neurophysiological findings support the fast error-

correction mechanism assumed in our model.

Saccade Latency Modulation

The error-correction mechanism in case of mislocated fixations

discussed in the previous section will lead to decreased fixation

durations near word boundaries. This effect, however, will turn out

to be more pronounced in experimental data compared with model

simulations for first fixations. Assuming that the center of the word

is the unique saccade target, the programming of a refixation with

a first fixation placed very close to the word center is a very special

situation, in which the intended saccade amplitude is rather small

(i.e., one to two letters). Thus, if we assume an increased saccade

programming time for small intended saccade amplitudes, we can

explain the pronounced peak in first fixation durations. A basic

dependence of saccade latency on intended amplitude has been

demonstrated in several studies (Adams, Wood, & Carpenter,

2000; Kalesnykas & Hallett, 1994; Wyman & Steinman, 1973). It

seems appropriate to remark, however, that such an effect will be

very difficult to test experimentally in continuous reading.

From these considerations, we introduce a modulation of sac-

cade programming time by intended saccade amplitude. In princi-

ple, such a modulation could occur at all stages of saccade gen-

eration, that is at the level of intersaccade intervals or the labile and

nonlabile program stages. In SWIFT, the most likely saccade

target can be read off from the activation fields any time this

information is required. For simplicity, we assume that the non-

labile saccade stage, �nl, is affected by the intended saccade

amplitude, A, that is, that the modulation occurs after target

selection.

The impact of a dependence �nl � �nl(A) on reading behavior

depends on the range of the intended saccade amplitude A consid-

ered. For short amplitudes, A � 4, the saccades are mainly intra-

word movements, whereas for longer amplitudes, A � 6, most

saccades are interword movements to the right. Therefore, for

short saccades the functional relation �nl(A) will modulate the

IOVP effect, whereas for longer saccades the relation will affect

successor effects, because a decreasing saccade latency with in-

creasing intended saccade amplitude will produce shorter fixation

durations before long parafoveal words compared with short

parafoveal words. Consequently, it will be very difficult to disen-

19 If there is already an active saccade program, the process of (potential)

error correction cannot be accelerated.

Table 2

Parameter Values for Oculomotor Error Relations

Error type Parameter
Forward
saccade

Forward
refixation

Regressive
refixation Regression Reference

Saccade �SRE 0.41 0.49 �0.5 �0.15 Equation 16
Range error A0 5.4 5.7 4.3 10.0 Equation 16

Gaussian �0 0.87 Equation 17
Random error �1 0.084 Equation 17

Figure 5. Saccadic undershoot and overshoot can result in fixations on

unintended words (mislocated fixations). (a) Unintended forward saccade

due to undershoot. (b) Unintended skipping due to overshoot.
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tangle latency modulation from effects of lexical processing

experimentally.20

For simplicity, we assume that the average duration of the

nonlabile saccade stage is a Gaussian-type function of the intended

saccade amplitude A,

�nl�A� � �nl
0 � �0 exp ���1A

2�, (19)

where the parameter �nl
0 is the average asymptotic nonlabile sac-

cade programming time, �0 represents the strength of the modu-

lation, and �1 determines the width of the modulation by the

intended saccade amplitude. In all simulations presented here, we

fix �1 at a value of 0.1.

Stochasticity in Saccade Programming

After the nonlabile stage of saccade programming terminates,

the saccade will be executed. We assumed that the mean saccade

execution time is �ex � 25 ms. For the simulation of noise in both

saccade programming and saccade execution, we use a gamma

distribution with a relation between standard deviation and mean

of 1/3, a gamma distribution of 8th order.

Model Overview

In this section, we briefly summarize how the different sub-

systems of our model are orchestrated (see Figure 6) before we

address the numerical simulations of the model. Word recognition

is implemented as a spatially distributed process (Principle 1). A

set of lexical activations keeps track of the actual state of word

processing and controls saccade target selection (“where”) and

saccade timing (“when”) via foveal inhibition using two separate

pathways (Principle 2). The lexical decision circuit, which is a

cortical long-loop control system compared with the brainstem

saccade generator, can influence saccade timing by foveal inhibi-

tion only with a time delay � (Principle 3). Saccade programming

is a two-stage process (Principle 4). After a labile stage, a point of

no return is passed and the nonlabile stage is entered. Target

selection occurs at the transition from labile to nonlabile stage.21

Numerical Simulations and Model Parameters

On the basis of Principles 1 to 7 of the model (see Table 1), we

discussed the precise mathematical formulation and some motiva-

tions for the underlying assumptions in the last section. Next, we

carry out numerical simulations to fit the model’s parameters and

to compare the model’s performance with experimental data.22

Compared with the first version SWIFT-I (Engbert et al., 2002),

we completely redesigned the numerical and statistical procedures

and proposed a new and more detailed test of computational

models of eye-movement control in reading.

First, we used a recently published experimental study with the

Potsdam Sentence Corpus (for details on the sentence corpus, see

Kliegl et al., 2004), which was meanwhile extended from 65 to 222

participants (Kliegl et al., 2005). With this amount of experimental

data, we were able to analyze all of the discussed phenomena on

the same data set. Because many effects are produced by highly

nonlinear interactions, deviations in one empirical observable can

potentially produce considerable deviations in other measures.

Therefore, a strong test of model performance must be based on a

single complete data set.23

Second, we computed all experimental measures for each word.

The Potsdam Sentence Corpus consists of 1,138 words from 144

sentences. For statistical analyses, we currently exclude the first

and last words from each sentence from our analysis. Therefore,

we obtained a maximum of eight measures (four fixation durations

and four fixation probabilities) for each of 850 words, yielding a

total of 6,800 data points for model fitting. This procedure is a

major advantage compared with the parameter-fitting procedures

used for SWIFT-I and E-Z Reader 1–7. In these analyses, for only

six measures (three fixation durations and three fixation probabil-

ities), statistical averages were calculated on the basis of five

classes of word frequency, yielding an empirical basis of 30 data

points. The possible range of data patterns that could be explained

by those models was very limited because of nonlinear interactions

of parameters. Therefore, although we still believe that the previ-

ous method produced reliable results, we clearly suggest that the

procedure proposed here should be used in future modeling

studies.

Third, given the word-based nature of the measures, we com-

puted chi-square-type statistics to evaluate the model (see Appen-

dix A for details). Furthermore, we investigated effects of word

frequency, predictability, and word length by averaging word-

based measures over classes. Finally, we tested more specific

effects (e.g., IOVP, lag effects) based on the same simulated data

set.

20 Note, however, that with our choice of �1 � 0.1 in Equation 19,

latency modulation will predominantly affect IOVP effects in our model.
21 Principles 5 to 7 (see Table 1) are related to saccadic errors and

saccade program latencies; we did not include these principles in the

schematic diagram of SWIFT organization in Figure 6.
22 The implementation of SWIFT-II used in this article is available at

http://www.psych.uni-potsdam.de/computational/
23 This principle was not implemented in tests of the E-Z Reader model.

As an example, McConkie et al.’s (1988) results on initial landing positions

were combined with statistics of fixation durations obtained by Schilling,

Rayner, and Chumbley (1998).

Figure 6. Model overview. A basic principle of SWIFT is that spatial

(“where”) and temporal (“when”) pathways of saccade programming are

separated.
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Numerical Simulations

As model input, for all words of the Potsdam Sentence Corpus,

word length, word frequency, and predictability were available

(Kliegl et al., 2005). The temporal evolution of our model is based

on an equation of motion, which is generated as a coupled system

of Nw ODEs (Equation 7), where Nw is the number of words in a

given sentence. The coupling of the ODEs is given by the saccade

dynamics, mainly driven by target selection (Equation 10), and

change of lexical processing rates by updating eccentricity after

saccades (Equation 2). The ODEs are discretized using the Euler

method,24

an�t � �t� 
 an�t� � �Fn�t�
n�t� � 
��t, (20)

where the integration step size is �t � 2 ms. It is important to note

that the noise level of the processing rate (Equation 9) depends on

�t, because a different realization for the processing rate is chosen

in each time step �t.

Model Parameters

The estimation of model parameters was performed using word-

based measures for

• four measures of fixation durations (first fixation duration,

second fixation duration, single fixation duration, and total reading

time),

• four measures of fixation probabilities (skipping probability,

probability for two fixations, probability for three or more fixa-

tions, and regression probability); additionally we used

• the distributions of the four measures of fixation durations and

• the relations between fixation duration and within-word fix-

ation position (IOVP effects) for first and single fixation durations.

The details of the fitting procedure are presented in Appendix A.

The performance of the model is defined as a sum of mean squared

normalized errors of fixation durations and fixation probabilities

per word. An optimization procedure was applied to find a set of

parameters, which yielded estimates of parameters and errors (see

Table 3).

To keep the number of free model parameters as small as

possible, we fixed some of the parameters. The noise level of

lexical processing was estimated from experimentally observed

distributions; � � 2 yielded comparable results. Target selection

weight � � 1 was motivated by Luce’s (1959) choice rule and was

tested in SWIFT-I (Engbert et al., 2002). The parameter �1 � 0.1

(Equation 19), which represents the range of the latency modula-

tion, was fixed at a reasonable value in advance.25 We tested a few

combinations of fixed values for these parameters in advance, to

check the stability of our simulations.

On the basis of the finding that the model is in agreement with

experimental data within a certain range of parameter errors, we

assume that this error is a plausible value for the simulation of

interindividual variance of parameters. In each run, parameter

errors were used to simulate interindividual differences. This ap-

proach is self-consistent, because parameter uncertainties represent

error ranges for parameters, for which the model’s dynamics are

stable. During the procedure of parameter estimation, the param-

eter errors converged and settled to specific values indicating the

sensitivities of parameters (see also Appendix A). The introduction

of parameter errors turns out as a viable solution to the general

24 Because the temporal evolution of the ODE system is linear during

fixations, it is not necessary to apply a more advanced numerical integra-

tion method (e.g., 4th-order Runge-Kutta).
25 The value of 1/�2�1 � 2.2 represents the range of intended saccade

length, where the latency modulation is strongest, because �1 derives from

a Gaussian-type formula.

Table 3

Model Parameters

Parameter Symbol Value Error Min Max Reference

Lexical parameters
Frequency, intercept � 63.5 2.0 10 150 Equation 1
Frequency, slope � �0.20 0.03 �0.5 0 Equation 1
Predictability � 0.11 0.09 0 1 Equation 8

Visual processing
Visual span, right 	R 3.74 0.08 1 7 Equation 3
Visual span, left 	L 2.41 0.15 0 5 Equation 3
Word length exponent � 0.448 0.035 0 1 Equation 6
Preprocessing factor f 70.2 20.6 1 200 Equation 7
Global decay 
 0.01 Equation 7
Processing noise � 2 Equation 9

Saccade timing
Random timing (ms) tsac 179.0 3.6 100 250 Equation 13
Inhibition factor h 2.62 0.15 0 10 Equation 13
Time delay (ms) � 375.7 30.0 0 600 Equation 13
Target selection weight � 1 Equation 10

Saccade programming
Labile stage (ms) �lab 108.0 1.5 50 150 Figure 4
Nonlabile stage �nl

0 6.1 2.7 5 50 Equation 19
Latency modulation �0 105.2 2.7 0 200 Equation 19
Latency modulation �1 0.1 Equation 19

Note. Min � minimum; Max � maximum.
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problem that model results typically show less variance than

experimental data.

Simulation Results

We start the discussion of modeling results with an example for

a single eye-movement trajectory generated by the model. This

example already demonstrates the general mechanism of saccade

target selection from the activation field underlying all types of

saccades: forward saccades, word skipping, refixations, and re-

gressions. Next, we present examples for word-based measures

(four fixation durations and four fixation probabilities), which are

computed from 200 runs of the model. These word-based measures

were averaged over classes of word frequency and word length in

subsequent analyses to evaluate related effects statistically.

After these basic comparisons, we investigate the model’s per-

formance on more specific effects. We discuss distributions of

initial landing positions, refixation probabilities as a function of

landing position, the effect of inverted optimal viewing position of

fixation durations and lag and successor effects, and whether our

model produces costs for skipping.

Simulation Example

A typical numerical output of the SWIFT-II model is illustrated

in Figure 7 by plotting the time evolution of the set of activations

{an(t)} and the fixation position k(t) along the vertical axis. The

sequence of words fixated in this example is

�1, 2, 3, 5, 4, 5, 6, 6, 8, 9�.

We now briefly explain some of the phenomena observed in this

example.

Word skipping occurs for Word 4 and for Word 7 in first-pass

reading. The mechanism for word skipping can be seen clearly in

both examples, as we observe parallel activation of several words.

Word skipping is the result of competing activation for target

selection. Thus, in our model, words need not to be fully identified

in order to be skipped. Refixations are likely in difficult or long

words or both. In the example shown here, the refixation on Word

6 is the result of a first fixation on the space before Word 6, which

is counted as a fixation on the word. As a consequence of this

fixation far from the word’s center, the activation is still very high

when the next saccade target is computed. As a result of the

saccade range error and saccadic noise, the second fixation occurs

on the last letter of Word 6. Because the realized trajectory in

Figure 7 is the result of both target selection and oculomotor

processes, it cannot be decided from the plot whether this refix-

ation was “intended” by the model, but of course, we can tell by

looking “inside” the model. In the framework of SWIFT, a regres-

sion can occur because of unfinished lexical access before the

corresponding region of text is left. In the example shown here,

Word 4 was skipped in the first pass and later fixated with a

regression, because parafoveal processing did not lead to full

lexical access. Unlike in real data, within the confines of our model

we are always in a perfect state of knowledge about the causes and

consequences of specific reading patterns.

Word-Based Measures

As the next step toward the statistical evaluation of our model’s

performance, we analyzed average fixation durations and fixation

probabilities for each word. We used 200 runs of the model and

calculated averages for four measures of fixation duration and four

measures of fixation probabilities, as discussed before.26 Model

simulations were in good agreement with experimental data. Main

patterns of fixation durations and fixation probabilities were re-

produced at the level of individual words, as illustrated in Figure 8.

Deviations for first and last words are due to their exclusion from

parameter fitting.

Summary Statistics

To investigate effects of word frequency (CELEX Frequency

Norms; Baayen, Piepenbrock, & van Rijn, 1999) and word length,

we averaged word-based measures over classes of word frequency

(Class 1: 1–10, Class 2: 11–100, Class 3: 101–1,000, Class 4:

1,001–10,000, and Class 5: �10,000; frequencies per million

words) and word length (Classes 2 to 11: 2–11, Class 12: �12).

Figure 9 shows the results for model simulations with the results

obtained from experiments. The patterns of fixation durations and

fixation probabilities are in good agreement, in particular, our

model reproduces the effects of both word length and word fre-

quency correctly. Results on gaze durations are also reported in

Appendix D.

Next, we compared the distributions of fixation durations in

model simulations with the corresponding distributions observed

in experiments. From the agreement between simulated and ex-

perimental data (see Figure 10), we concluded that the random-

walk process assumption for word processing generates a reason-

able amount of variability to reproduce the observed distributions

of fixation durations.

26 These measures were already used in the parameter estimation

procedure.

Figure 7. Example of the numerical simulation of the SWIFT model.

Time evolves (from top to bottom) along the vertical axis. The fixation

position k(t) is indicated by the dark black line in units of letters. Activa-

tions an(t) are indicated by the gray areas, whereas saccades are indicated

by the lighter horizontal lines.
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Effects of Word Length and Word Frequency

A well-known problem in assessing the independent contribu-

tions of word length and word frequency to visual and lexical

processes is the large correlation between the two variables (�.62

for the 850 corpus words used in our simulations, excluding the

first and last words of each sentence). In order to investigate

effects of word length and word frequency, every sentence of the

Potsdam Sentence Corpus contains a target word. These target

words are uncorrelated in length and frequency (correlation be-

tween word length and log frequency � �.004) and constitute an

orthogonal Word Length (3) � Word Frequency (2) design, with

24 words in each cell. Figure 11 displays the results for two

duration measures from the word-based summary statistics (see

Figure 9), now restricted to target words. For experimental as well

as simulated data, each duration measure exhibits both a word

length and a frequency effect. For simulated data, however, the

frequency effect with longer durations for low-frequency words is

considerably smaller than for experimental data. This problem

probably reflects the fact that with printed frequency, only one of

many other possible lexical variables (such as neighborhood fre-

quency) is explicitly specified in the model.

Initial Landing Positions

Given the general agreement between measures of fixation

durations and measures of fixation probabilities at the level of

single words and at the level of summary statistics for classes of

word length and word frequency, we now compare more detailed

aspects related to the oculomotor assumptions in our model. Dis-

tributions of initial fixations in words show a rich pattern of

variation. Following McConkie et al.’s (1988) study, it is impor-

tant to analyze corresponding distributions as a function of word

length and launch site distance (see Figure 12).

First, model simulations were in good agreement with experi-

mental data. Second, our model simulations reproduced the effects

that (a) the standard deviations of distributions of initial landing

positions increase with both word length and modulus of launch

site distance and (b) the maxima of the distributions are shifted to

the end of the words for short saccades (launch site �1) and are

shifted to the beginning of words for long saccades (launch sites

�5 and �7). Thus, the effects of the implemented saccade range

error were clearly visible in the model simulations.

Refixation Probability

Refixations indicate the optimal viewing position in reading,

because the minimum of the probability for performing a refix-

ation—as a function of the initial landing position—indicates the

best fixation position for processing a word. First, our model

includes assumptions on oculomotor control based on McConkie

et al.’s (1988) work to produce a realistic variance in initial landing

positions. Second, the assumption of a processing gradient turns

Figure 8. Example of the simulation results on the level of mean values over 200 runs of the model for four

different measures of fixation durations (a and b) and four measures of fixation probabilities per word (c and d).
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out to be strong enough to reproduce the U-shaped form of the

within-word refixation probability (see Figure 13); however, there

was a tendency to a more asymmetric form in the simulations; that

is, there are more regressive refixations in experiments. This

discrepancy will be explored in future model variants.

It is straightforward to formulate a hypothesis for the function of

refixations in long words, as visual acuity decreases strongly from

the center of the visual field. Refixations enable readers to process

long words using two (or more) fixations by bringing different

parts of a word close to the fovea. This interpretation is suggested

by experimental data, because we observe the tendency for two

fixations at the beginning and end of a word (or vice versa).

For short words (word length less than 5), the function of

refixations is less obvious. In our model, we added a new hypoth-

esis to explain refixations independent of effects of word length,

because the autonomous saccade generator can induce the start of

a new saccade program in the absence of lexical processing

demands.

Regression Probability

The results on the probability for interword regressions are of

special interest in SWIFT, because of our hypothesis that regres-

sions can be triggered by incomplete word recognition. We ex-

pected that it would be rather difficult to reproduce pattern of

regressions, if this hypothesis were inadequate. In the summary

statistics (see Figure 9), we computed the probability for a word to

become the target of a regression. If our hypothesis of incomplete

lexical access as a cause of regressions is correct, we would expect

a greater regression probability for words that were skipped in

first-pass reading. A corresponding analysis for both experimental

data and model simulations demonstrates that regression probabil-

ity is higher for skipped words (see Figure 14). More important,

the basic pattern of the experimental data are reproduced by our

simulations. Thus, the agreement between experimental data and

model simulations supports the hypothesis that incomplete word

recognition is a powerful mechanism to explain the pattern of

regressions, in particular for effects of word length (see also Vitu

& McConkie, 2000). The fact that regression probability is slightly

overestimated in our simulations indicates that more constraints

are needed to estimate regression probabilities.

Inverted Optimal Viewing Position

Having identified the OVP in reading, we would expect a

minimum of lexical processing time for fixations close to the OVP.

An analysis of three large corpora by Vitu et al. (2001) demon-

strated that this is not the case: Fixation durations are longest,

rather than shortest, when the fixation position is at the center of

a word. Consequently, this phenomenon was called the inverted

OVP (or IOVP) effect of fixation durations. A corresponding

analysis of data obtained for the Potsdam Sentence Corpus sup-

ported the effect (Nuthmann et al., 2005; see also Kliegl et al.,

2005).

Figure 9. Summary statistics of different eye-movement measures by word-frequency classes and by word-

length classes for model simulations and experimental data. (a) Mean durations for first, second, and single

fixation durations and total reading time as a function of word-frequency class. Results for model simulations

are indicated by the solid lines, whereas results obtained for experimental data are indicated by dotted lines. (b)

Probabilities of skipping, of two fixations, of three or more fixations, and that a given word is the target of a

regression, as a function of word-frequency class. (c) Mean duration for the same measure as in (a) as a function

of word-length class. (d) Probabilities as a function of word-length class.
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The IOVP effect for single fixation durations is reproduced by

our model (see Figure 15) by implementing Principle 6: error

correction of misguided saccades. Near word boundaries for fix-

ation position on the first or last letter of words, the probability for

mislocated fixation is higher than close to word centers. If a

misguided saccade leads to a fixation on an unintended word, we

implemented the immediate start of a new saccade program, which

is potentially error correcting. This mechanism induces the de-

Figure 10. Distributions of fixation durations for experimental data (dotted lines) and model simulations (solid

lines): (a) first fixation durations, (b) second fixation durations, (c) single fixation durations, and (d) total reading time.

Figure 11. Effects of word length and word frequency in target words. Summary statistics for target words:

Mean single fixation duration and total reading time for target words of different lengths (3–4, 5–7, 8–9) and

frequencies (high vs. low).
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crease of mean fixation durations near word boundaries, which can

explain the IOVP effect. The model reproduced the inverted pat-

tern. Thus, from performance on single fixation durations, we

conclude that the proposed error correction mechanism for mislo-

cated fixations is a potential explanation of the IOVP effect.

Although the basic mechanism seems compatible with other

models of eye-movement control (e.g., E-Z Reader), we would like

to discuss an advantage of the SWIFT model here: There is no

need to specify the target of the upcoming new saccade, as saccade

target selection is performed by computing probabilities from the

activation field, according to the general rule for all saccades

(Equation 10). A fixed-target saccade, which needs to be imple-

mented necessarily in E-Z Reader, may be too hardwired, inas-

much as saccade targeting is based on partial knowledge and many

saccades may turn out to be no longer required when they start. In

the case of mislocated fixations, the intended word may be pro-

cessed from the parafovea as well and, consequently, an error-

correcting saccade is no longer necessary. Therefore, the flexible

mechanism in saccade target selection turns out to be an architec-

tural advantage of our model.

For a precise understanding of the mechanism producing the

IOVP effect on fixation durations in the model, we performed a

Figure 12. Distributions of initial landing positions by word length and launch site. The rows of panels show

distributions for word lengths 4, 6, and 8, and the columns of panels account for launch sites �1, �3, �5, and

�7 for saccades. Rel. Freq. � relative frequency.

Figure 13. Probability distributions for refixations as a function of the initial landing position. Experimental

data (b) show a U-shaped curve without systematic influence of word length. In model simulations (a), the results

are reproduced qualitatively.
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detailed analysis of mislocated fixations (Nuthmann et al., 2005).

As shown above, our model reproduced the distributions of initial

landing positions very precisely. Assuming that the landing distri-

butions (see Figure 16a) can be extrapolated smoothly, we can

estimate the probability for mislocated fixations. First, we fit

normal distributions to the simulated data. Second, we estimated

the overlap of these distributions to neighboring words to obtain

the relative fraction (i.e., the probability of mislocated fixations as

a function of word length; see Figure 16b). For details of the

algorithms see Nuthmann et al. The estimated curves obtained

from experimental data (dotted lines) and exact results for the

model simulations (solid lines) are in good agreement, which

demonstrates that the hypothesis of overlapping distributions of

initial landing positions serves as a useful explanation of the IOVP

effect in single fixations.27

Next, we investigated the IOVP effects in two-fixation cases.

The IOVP effect has not been found for gaze durations as a

function of initial fixation position, because we observe a trade-off

in durations for first and second fixation durations (see Figure 17),

so that effects in first and second fixation durations cancel each

other.28 Whereas the IOVP effect is qualitatively the same for first

fixation durations as for single fixation durations (Figure 15),

average second fixation durations show a U-shaped pattern when

plotted as a function of the position of the first fixation. This

finding suggests that the amount of processing time spent on the

word during the first fixation is saved during the following fixa-

tions. Therefore, second fixation durations are shortest near word

centers. As an alternative explanation, Vitu et al. (2001) argued

that the fixation-duration trade-off effect in two-fixation cases

results from the fact that the IOVP effect is found for both first and

second fixation durations, combined with the statistical fact that

initial fixations near the center of a word (which tend to be longer)

are more likely to be followed by a fixation toward one end (which

tend to be shorter), and vice versa.

To explain the complicated interaction of first and second fix-

ation durations, we implemented a new mechanism of modulation

of saccade latencies as a function of intended saccade lengths

(Principle 7) in addition to the principle of error correction of

mislocated fixations (Principle 6). For two-fixation cases, error

correction could not explain the strength of the inverted U shape of

mean first fixation durations. Because the saccade following the

first fixation in a two-fixation case has a very short length on

average, the nonlabile saccade latency increases strongly because

of our assumption in Equation 19. This assumption is physiolog-

ically plausible, because the production of a saccade with very

small amplitude is a difficult problem for the oculomotor system

(Adams et al., 2000; Kalesnykas & Hallett, 1994; Wyman &

Steinman, 1973), as an extremely short neuronal pulse must be

produced by the brainstem saccade generator (e.g., Sparks, 2002).

An additional analysis presented in Appendix B shows that the

latency modulation specifically contributes to explain the IOVP

effect in first fixation cases, whereas for single fixation durations,

the error correction mechanism alone is sufficient to reproduce the

inverted U shape of the curve.

Finally, we investigated the influence of word frequency on the

IOVP effect. Our analysis is based on corpus target words (see

above in section “Effects of Word Length and Word Frequency”).

Figure 18 displays results for mean single fixation durations on

target words of different lengths and frequency (high [�50 per

million] vs. low [1 to 4 per million]) as a function of the landing

zone initially fixated. Words of all lengths were divided into five

zones (cf. Vitu et al., 2001), and data for each zone were averaged

across word lengths and subjects. The empirical data show a

frequency effect on fixation durations that was independent of

landing zone (Nuthmann et al., 2005; see also Rayner, Sereno, &

Raney, 1996; Vitu et al., 2001). The simulated data reproduce this

frequency effect qualitatively. The effects of word frequency,

however, turned out to be smaller in simulations than in experi-

mental data.

Model Predictions on Current Topics

Whereas the quantitative fits to data are related to well-

established experimental findings, we now present model predic-

tions on more recently investigated phenomena. First, we investi-

gate whether our model generates costs for skipping, and second,

we analyze lag and successor effects.

Costs for Skipping

The analysis of average fixation durations before skipped words

is an interesting test of models of eye-movement control. In

general, there are two different processes that potentially contrib-

ute to increased fixation durations before skipped words in theo-

retical models of eye-movement control. First, in models based on

SAS, word n � 1 is the default saccade target during fixation of

word n. As a consequence, word skipping can only occur after a

saccade cancelation of the default saccade to word n � 1 and the

programming of a new saccade to word n � 2. Because of the

27 Note that we validated our algorithm for the estimation of the per-

centage of mislocated fixation from empirical data by the simulations of

our model.
28 O’Regan and Lévy-Schoen (1987), first reporting a trade-off effect,

postulated that a constant amount of time is required for processing a word.

Figure 14. Statistics for interword regressions. Experimental data (dotted

lines) demonstrate that regression probability decreases with word length.

Moreover, regression probability is much higher for words, which were

skipped in first-pass reading. Although the qualitative patterns are repro-

duced by model simulations (solid lines), regression probability is gener-

ally higher in simulations than in experimental data.
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saccade latency and the fact that the cancelation can happen only

later than the default saccade to word n � 1, there are increased

fixation durations before skipped words. Thus, SAS models ge-

nerically predict skipping costs. The amount of skipping costs,

however, might be reduced by the additional assumption of auton-

omous saccade programs (Engbert & Kliegl, 2001). In SWIFT,

word skippings are not causally linked to saccade cancelations

because of the general principle of activation-based saccade target

selection.29

Second, word processing based on GAG will allow parallel

processing of words, which implies a longer accumulation of

parafoveal information. As a consequence, the probability of skip-

ping word n � 1 will increase if the fixation duration on word n

increases. Thus, in GAG models, long fixation durations are a

cause, not a consequence, of skipping. In these models, however,

the link between fixation durations and subsequent skipping is

much less tight because there is no strict assumption about default

saccade targets as in SAS models. Moreover, in the SWIFT model,

saccades are generated autonomously with only a limited modu-

latory influence from time-delayed foveal inhibition, that is, with-

out triggering by word recognition. In summary, an analysis of

skipping costs in SWIFT seems impossible without carrying out

numerical simulations.

Experimentally, there have been rather contradictory results on

the difference between average fixation durations before skipped

and nonskipped words ranging from �26 ms (Radach & Heller,

2000, Table 2) to �84 ms (Pynte, Kennedy, & Ducrot, 2004, Table

3). A solution to this controversy was proposed recently by Kliegl

and Engbert (2005) using a statistical analysis that involved pattern

matching and a Monte Carlo type of resampling procedure.

In a first step, Kliegl and Engbert (2005) selected three-word

segments (triplets) that were read with one fixation per word in

forward direction (see Figure 19, top panel: nonskip). For the

subsequent statistical analysis, four-word segments were identified

that differed from the triplets only by skipping word n � 1 (see

Figure 19, bottom panel: before-skip). In addition, it was checked

that word n was never the target of a regression. To exclude

potential influences from within-word fixation position, Kliegl and

Engbert matched fixation sequences on word n and fixation zone

within word n. To test the differences of fixation durations on word

n between patterns, they applied a three-step procedure using 100

Monte Carlo samplings (see Kliegl & Engbert, 2005, for details).

The main results obtained from this analysis were that there

were strong effects of word frequency and word length on skipping

costs. First, in model simulations (see Figure 20a), there were

global skipping costs, that is, average fixation duration was in-

creased before word skipping compared to nonskip cases. The

difference curve indicates a linear relation between the increase in

fixation duration and the length of the skipped word (Figure 20b).

For experimental data, the main results are plotted in Figure 20 (c

and d). Fixation durations before short words were shorter when

subsequent words were skipped compared with when they were

fixated. With increasing word length, this effect is reversed to

produce longer fixations before long words. Thus, different from

model simulations, there were benefits from skipping short words

and costs from skipping long words. As in the model simulations,

however, the differences between nonskip and before-skip cases

turned out to be roughly linearly increasing with word length (see

Kliegl & Engbert, 2005).

In summary, the SWIFT-II model generates global skipping

costs, which is in contradiction to our own results from experi-

mental data (Kliegl & Engbert, 2005). Although there are diverg-

ing results from different experiments, this might indicate that in

the current version of our model, the effects of preview as a

consequence of long fixation durations are a dominant process,

which causes word skipping. Therefore, it is an open problem

whether the model can be modified to generate reduced fixation

durations before skippings as well.

Lag and Successor Effects

A key assumption for eye-movement research is that proper-

ties of the fixated word are the dominant variables modulating

fixation duration. This immediacy-of-processing assumption

(see Rayner, 1998, for a review) is a platform for much of

psycholinguistic research. Using a detailed analysis of a large

data basis from continuous reading, we recently showed that

there are multiple nonlocal effects of word difficulty (Kliegl et

al., 2005).

29 Saccade cancelations can occur in SWIFT during the labile stage of

saccade programming; however, these cancelations do not represent the

driving mechanism for word skippings.

Figure 15. Effect of inverted optimal viewing position for single fixation durations as a function of initial

fixation position for model simulations (a) and experimental data (b).
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In a sequence of three first-pass single fixations, we computed

fixation duration on word n (the center word) as a function of

frequencies, predictabilities, and lengths of word n � 1, word n,

and word n � 1 (see Figure 21). A first glance at Figure 21 shows

that there are strong effects in both experimental data and model

simulations. Most important, however, simulation results generally

show the same trend as the experimental data.

Lag effects. The strongest effect (more than 40 ms in aver-

age single fixation duration) is produced by the last word’s

length, which is even stronger than the effect induced by the

current word’s length (see Figure 21, bottom panels). In the

SWIFT-II model, there are two mechanisms that are responsible

for this lag effect. First, a fixation on word n � 1 will generate

less preview on word n, when word n � 1 is longer. As a

consequence, the fixation on word n will last longer on average,

if word n � 1 was a long word. The same argument also applies

to the lag effect for the word-frequency plot (see Figure 21, top

panels) because of the correlation between word length and

word frequency.

Second, we implemented a time delay in the foveal inhibition

process (Equation 13) to account for the neurophysiological fact

that the word-recognition loop will operate much more slowly than

the fast brainstem saccade generator. The numerical value of the

time delay was estimated as � � 375.7 ms (see Table 3). Given an

average single fixation duration of 200 ms, the current word’s

fixation duration is effectively controlled by inhibition from the

last word. Thus, the time-delayed foveal inhibition will produce

spillover effects.

Successor effects. The performance of our model with respect

to successor effects (i.e., effects of the features of the successor

word n � 1 on fixation durations of word n) is rather interesting,

because there are no explicit mechanisms for modulations of

foveal processing by processing of words to the right of the

currently fixated word. As a consequence, all effects in Figure 21

are effects due to spatial selections in the perceptual span. A note

of caution: Successor effects are small compared with the lag

effects in both experimental and simulated data (Kliegl et al.,

2005). Thus, future model modifications might change the data

Figure 16. Analysis of mislocated fixations from overlapping initial landing positions. (a) Relative frequency

of initial landing positions for different word lengths. (b) The probability of mislocated fixations as a function

of letter position for different word lengths. The estimated curves (dotted lines) are calculated from extrapola-

tions of the distributions in (a), whereas the exact results (solid lines) are directly computed from model

simulations.

Figure 17. Effects of optimal viewing position on fixation durations of two-fixation cases. In the experimental

data (b), there is a clear trade-off effect between first and second fixation durations, with a pronounced U-shaped

curve for second fixation durations as a function of the position of the first fixation. In the results from the

numerical simulations (a), the model reproduced the U-shaped curve for second fixation durations, whereas the

inverted optimal viewing position effect for first fixation durations was less pronounced than in the experimental

data.
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pattern on successor effects more strongly than other effects. We

report the predictions about successor effects to stimulate future

research.

Is Word Processing Parallel or Serial?

In the SWIFT model, all words are processed in parallel because

of the assumption of a processing gradient. The processing rate,

however, decreases very rapidly with increasing eccentricity.

Thus, the number of words with effectively changing activations is

much smaller than the number of words Nw in a sentence. A

dynamical analysis shows that SWIFT’s behavior can be investi-

gated qualitatively by the activations of only three words, ak(t),

ak�1(t), and ak�2(t), during fixation of word k. In terms of dynam-

ical systems theory (e.g., Kaplan & Glass, 1995), we can show that

the dynamics of SWIFT can be approximated by a two-

dimensional subspace embedded in an Nw-dimensional state space

(see Appendix C). Therefore, the potential number of dynamical

degrees of freedom are reduced by the estimated model parameters

values in a psychologically plausible way, so that only a few

activated words determine SWIFT’s behavior at a time.

The two alternative theoretical concepts of serial (SAS; e.g.,

Engbert & Kliegl, 2001; Reichle et al., 2003) versus parallel

(SWIFT) processing of words are asymmetrically related to each

other with respect to generalization. Whereas serial processing

may be looked upon as a special case of a model of parallel

processing, new assumptions must be made in a serial model to

extend the model to parallel processing. On the basis of these

considerations, we introduce a parametrization for a continuous

tuning of the SWIFT model from strictly serial to parallel process-

ing. Thus, the distinction between serial and parallel processing is

not necessarily dichotomous, and we can study both processing

types within the same model.

Given the gradient-type assumption of parallel processing of

words, we can add restrictions on parallel processing to include serial

processing as a special case in SWIFT’s behavior. Because word

recognition is a two-stage process in SWIFT, there are two different

versions of the serial model: Model A, in which global processing

(preprocessing and lexical completion) is serial, and Model B, in

which lexical completion is serial and preprocessing is parallel.

For both Versions (Models A and B) of serial versus parallel

processing, we can define a parametrization, which introduces a

continuous transition between serial and parallel processing by tuning

a single parameter �. The basic assumption is that processing is

modulated by the number of words with nonvanishing activation to

Figure 18. Inverted optimal viewing position curves as a function of word frequency, for experimental data

(first row) and model simulations (second row). Displayed are mean single fixation durations on target words

of different lengths (3 and 4; 5–7; and 8 and 9) and frequencies (high vs. low) as a function of the landing zone

initially fixated. Words of all lengths were divided into five zones, and data for each zone were averaged across

word lengths and subjects.

Figure 19. Pattern selection for the analysis of skipping costs. For com-

paring fixation durations, matched fixation sequences for nonskip cases

(top panel) and before-skip cases (bottom panel) were selected.
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the left of the word under consideration, because any word with

nonzero activation signals that the corresponding word is not com-

pletely identified. To formulate this approach mathematically, we

replace the processing rate �n(t) of word n (Equation 6) by

�n
��t� � � 1

P�t��
�

�n�t�, (21)

where P(t) is the number of words with nonzero activation am(t) �

0 at time t, from word 1 up to word n (i.e., with m � n). As a

consequence, the processing rate �n
�(t) of word n is decreased for

increasing numbers of words to the left of word n. More important,

both serial and parallel processing are included in Equation 21 if

we consider the two limiting cases:

� 3 0: parallel processing

� 3 �: serial processing.

Obviously, for � 3 �, processing of word n is prevented if

P(t) � 0.

To implement the two different versions (Models A and B) of

serial processing introduced above, we apply Equation 21 to pre-

processing and lexical completion (Model A, in which processing

of words is controlled by parameter � � �A) or to the lexical

completion process only (Model B). In the latter case, preprocess-

ing will lead to a parallel activation of words, whereas the decrease

of activations during lexical completion will vary between parallel

and serial processing depending on parameter � � �B.

Next, we demonstrate by numerical simulations that variation of

parameter � can induce the transition from parallel to serial process-

ing. Using 100 runs of the model, we computed the fraction of time


j (from total simulation time), where j words have nonzero activa-

tion. In a strictly serial model, the fraction 
j must be zero for j � 2;

that is, there is maximally one activated word at a time.30 It turns out

that in SWIFT, 
1 � 19%, 
2 � 32%, and 
�2 � 48%. Thus, there

are more than two words with nonvanishing activation for nearly 50%

of the time. Keeping all parameters of the SWIFT model fixed, we

vary parameter � for both Versions A (with � � �A) and B (with � �

30 For an efficient model, we would also require that 
0 be close to zero,

because during the time interval with vanishing activation for all words,

nothing is processed.

Figure 20. Analysis of costs for word skipping from statistical analysis. Model simulations: (a) Fixation

durations increase with word length (of the skipped word) before a skip and slightly decrease with word length

before a nonskip. There are global costs. (b) The differences between cases of skips and nonskips increase

approximately linearly with word length. Experimental data: (c) There are reduced fixation durations before

short skipped words and costs before longer skipped words compared with nonskipped cases. (d) The difference

increases linearly with the length of the skipped word.
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�B) and compute the resulting fractions 
j (see Figure 22). The

SWIFT model is retained for � � 0, but our simulations show that the

model’s behavior will be rather stable up to � � 0.1.

If processing rates are modified by Equation 21 for both pre-

processing and lexical completion (Model A), we observe a sharp

transition from parallel to serial processing, which is indicated by

the rise of 
1 close to 100% at � � 10 (note that the direction of

the abscissa is inverted; i.e., � increases from right to left in

Figure 22a). If we restrict the lexical completion stage of word

processing only (Model B), the distribution of activations changes

less drastically (see Figure 22b). It is interesting that the fraction of

time with one activated word, 
1, decreases with increasing �.

Therefore, if lexical completion becomes more serial, the distri-

bution of activation will be broader. This effect is caused by the

fact that there are no restrictions on preprocessing: Several words

are preprocessed at a time, but the model must wait to start lexical

completion until all words to the left of the word under consider-

ation are completely identified.

Because we demonstrated that the SWIFT model can be used as

a framework to study the transition from parallel to serial process-

ing, it may be an important tool to generate predictions on a

number of phenomena, which are currently investigated to deter-

mine experimental boundary conditions on the possibility of par-

allel processing and on the limitations of serial processing. In this

respect, two candidate phenomena are the analysis of skipping

costs and lag and successor effects discussed in the previous

section.

General Discussion

In this article, we developed an advanced and substantially

extended SWIFT-II model based on the first version, SWIFT-I

(Engbert et al., 2002). An incremental study of the effect of adding

the various mechanisms to the basic framework is carried out in

Appendix B. We showed that the new model can reproduce and

explain many experimentally observed phenomena of eye move-

ments during reading. Whereas the model’s intended level of

mathematical detail with respect to word processing and saccade

programming agrees with the E-Z Reader framework (Reichle et

al., 1998, 2003), the core assumption of spatially distributed pro-

cessing in SWIFT turned out as a viable alternative to the strictly

serial allocation of attention assumed in E-Z Reader.

Motivated by recent advances in the dynamic field theory of

movement preparation (Erlhagen & Schöner, 2002), we imple-

mented SWIFT as a computational model for saccade generation

based on a spatially distributed activation field. There is similarity

of the SWIFT model with the dynamic field concept; however, we

did not refer to the formal theory of Erlhagen and Schöner. The

main reason was that saccade generation in reading is not only a

problem of movement planning, but also a problem of word

processing, so that many properties related to word processing had

to be combined with ideas proposed in the dynamic field theory.

Thus, the dynamic field concept motivated our model, but the

formal framework was simplified in order to focus on aspects of

word recognition in order to reproduce effects of word difficulty in

Figure 21. Analysis of lag and successor effects. Bottom row: Average single fixation durations as a function

of word length of the previous word (word n � 1, left column), the current word (word n, middle column), and

the next word (word n � 1, right column). Middle and top rows: Corresponding plots as a function of

word-predictability class and word-frequency class, respectively.
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eye-movement data. In perspective, we believe, however, that the

general concept of interactions between local excitation and global

inhibition in the dynamic field theory is a potentially very useful

framework for a coherent explanation of eye movements during

reading.

Neurophysiological Background

The investigation of the brainstem circuitry of saccade genera-

tion has been an active field of research for many years, resulting

in a very detailed level of understanding of the immediate presac-

cadic processes (Moschovakis, Scudder, & Highstein, 1996;

Sparks, 2002). One of the key results is that there exist both

omnipause and burst cells in the brainstem. Whereas omnipause

cells fire during fixations and cease activation during saccades, the

burst cells show the opposite activity pattern; that is, burst cells fire

at a high rate for the duration of a saccade. Because omnipause

cells show no specificity, but burst cells code the spatial metrics of

saccade, there are at least two descending pathways in the neuro-

physiology of the oculomotor system. One carries spatial informa-

tion (“where”), whereas the other serves as a trigger and is in-

volved in temporal aspects of saccades (“when”).31 The competing

processes between fixation and saccade generation have been

further investigated by Munoz and Wurtz in a series of publica-

tions (Munoz & Wurtz, 1993a, 1993b, 1995a, 1995b; Wurtz,

1996). Their work has focused on the superior colliculus, which

carries a representation of the fovea of the visual field. The

superior colliculus shows distributed coding as an important prop-

erty (McIlwain, 1991). Visual cells turned out to have unexpect-

edly large receptive fields. Thus, a cell in the collicular map can be

activated from a rather wide range of visual space. Motivated by

these neurophysiological results, Findlay and Walker (1999) pro-

posed a general model for the control of eye movements. The

model is organized into five different levels, all of which are

separated into “where” and “when” pathways. Moreover, Findlay

and Walker suggested that processes of competitive interaction

operate within a salience map (their Level 2) to compute a unique

saccade goal.

In the SWIFT model, we adopted the fundamental separation

between “where” and “when” pathways as a key principle of

model design. As a consequence, we implemented temporal and

spatial control of saccades with as little interaction as possible. It

turned out in the development of SWIFT-I (Engbert et al., 2002)

that foveal inhibition of an autonomous random timer is a minimal

model of the control processes necessary to adjust fixation dura-

tions. Here, we included a time delay for the inhibition process to

separate the slower word-recognition system from the fast brain-

stem saccade generator. Given the neurophysiological organization

of the contributing neural systems, the time-scale separation is

very plausible. The competition between alternative saccade tar-

gets is a powerful mechanism for generating all types of saccades

(forward saccade, word skipping, refixations, regressions) from a

single underlying mechanism. Therefore, the neurophysiological

foundations of saccade generation in reading are compatible with

our mathematical model.

31 The concept of separate “where” and “when” pathways was first

introduced by oculomotor physiologists (Van Gisbergen, Gielen, Cox,

Bruijns, & Kleine Schaars, 1981).

Figure 22. The transition from parallel to serial processing in the SWIFT model. (a) If the processing rate is

controlled by parameter � for both preprocessing and lexical completion (Model A), then we observe a sharp

transition to serial processing 
1 � 100% for � � 10. (b) When lexical completion is modulated by � with

preprocessing fully parallel (Model B), the distribution of activation over words is even broader than in the

SWIFT model.
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Phenomena Reproduced by SWIFT

Word-based measures. Using experimental data obtained for

the Potsdam Sentence Corpus (Kliegl et al., 2005), we fitted

word-based fixation durations and probabilities. For all of the 850

words of the corpus (all words of the corpus excluding first and

last words of the sentences), the model reproduced averages of

first, second, single, and total fixation durations as well as prob-

abilities for skipping, two fixations, three or more fixations, and

regressions. Word-based fitting is a major advantage compared

with fitting averages representing classes of word frequency, as

was done in previous studies (Engbert & Kliegl, 2001; Engbert et

al., 2002; Reichle et al., 1998, 2003), because word-based analyses

provide a new level of detail for analyses of model performance.

Effects of length and frequency. The obtained word-based

measures are the basis for additional analyses of effects of both

word length and word frequency by averaging dependent variables

over classes of length and frequency, respectively. This analysis

demonstrated that SWIFT accurately captures effects of both word

length and word frequency. Thus, SWIFT is the first computa-

tional model that reproduces effects of word length and word

frequency to a comparable level of accuracy.

Distributions of fixation durations. Fixation durations in read-

ing are highly variable and show broad distributions. Therefore, it

is important that computational models reproduce these distribu-

tions. There are two main sources of variability for fixation dura-

tions in SWIFT. First, the standard deviations of fixation durations

are modulated by the stochastic assumptions on the random-walk

process for word recognition. This simple assumption can be

replaced in a future version of our model without changing the

model’s architecture. Furthermore, foveal inhibition can influence

the variability of fixation durations in a more complicated way

(compared with the random-walk process). As an example, a broad

distribution of fixation durations will induce a broader distribution

of the variability created by foveal inhibition and, hence, amplify

the noise. Such complicated interactions of stochasticity and non-

linearity typically occur in nonlinear dynamical systems (e.g.,

Millonas, 1996; Moss & McClintock, 1989).

Refixations. The within-word position of the minimum of the

probability for refixating a word defines the optimal viewing

position. In SWIFT, refixations on short words occur as a conse-

quence of autonomous saccade timing. For longer words, refix-

ations are necessary because of visual acuity limitations, which are

incorporated in SWIFT by the assumption of the processing

gradient.

Regressions. Liversedge and Findlay (2000) put the mecha-

nisms underlying regressive saccades on the list of outstanding

problems in eye-movement research. In normal reading, regres-

sions are the rule rather than the exception. Following Rayner

(1998), 10% to 15% of all saccades are regressive. As a conse-

quence, for a typical sentence of eight words, the probability for a

regression is about 2/3 (ranging from .57 to .73).32 In SWIFT,

regressions are triggered by incomplete word recognition. This is

a simple and psychologically plausible explanation, which is sup-

ported by our analysis of patterns of words that were targeted by

a regression after skipping during first-pass reading.

Initial landing positions. Following the hypothesis first pro-

posed by McConkie et al. (1988) that oculomotor errors can be

divided into systematic and random components, we included

these two types of saccadic errors in our model. Our simulations

show that the distributions of experimentally observed initial land-

ing positions are reproduced by the model. This is a nontrivial

result, because it proves that the assumptions on oculomotor con-

trol made in SWIFT are compatible with the error pattern found by

McConkie et al.

IOVP effects and mislocated fixations. The presence of ocu-

lomotor errors induces mislocated fixations (Nuthmann et al.,

2005). It is likely that the cognitive control system responds to

these errors with some correction mechanism. Such a mechanism

represents a coupling of word processing and oculomotor systems.

Computational models are ideal tools to test the hypothesis on the

consequences of mislocated fixations. In SWIFT, we implemented

an error-correction program as a response to mislocated fixations,

as proposed earlier by Nuthmann et al. Because mislocated fixa-

tions are more frequent near word boundaries, the immediate

triggering of a new saccade program reduced fixation duration at

word edges. Therefore, our model can explain IOVP effects. An

additional modulation of saccade program duration by intended

saccade length was used to reproduce IOVP for the first of two

fixations.

Costs for skipping. The SWIFT model reproduces the main

features of data pattern in skipping costs. From a careful analysis

of experiments, Kliegl and Engbert (2005) reported skipping ben-

efits for short words and skipping costs for long words, respec-

tively: Fixations prior to skipped words were shorter for short or

high-frequency words and longer for long or low-frequency words

compared with nonskipped controls. These results were not repro-

duced by our simulations, which indicated global skipping costs;

however, the model could reproduce a linear increase of skipping

costs with the length of the skipped word, which was found in

experimental data.

Lag effects. Nonlocal effects of word properties (e.g., word

length and word frequency) are not surprising in a model of

spatially distributed processing. We checked two effects to inves-

tigate whether SWIFT makes realistic predictions about these

effects. The lag effect, the influence of the word length and word

frequency of the previously fixated word on the currently fixated

word, is reproduced qualitatively by two underlying mechanisms

in SWIFT. First, when the previous word is a long word, there has

been less preview on the current word than in the case of a short

successor word, which will lead to an increase in fixation duration.

Second, foveal inhibition is time delayed, so that the word recog-

nition loop can modulate fixation duration only with a time delay.

Further problems. There were and still are numerous data

patterns hidden in the Potsdam Sentence Corpus that challenged

the model and will continue to do so. For example, in its current

version, the model still tends to overestimate the effect of word

length and to underestimate the effect of word frequency (see

Figures 11 and 18). We also had considered it plausible that lag

effects should be found in SWIFT simulations once we had dis-

covered the pattern in the experimental data. Unfortunately, this

was not the case for the simulation results. The solution was to

delay the inhibition of saccade programs by foveal activation (see

Equation 13). It is a physiologically highly plausible generalization

32 Sentences with regressions are regularly excluded from modeling in

E-Z Reader.
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of our foveal inhibition mechanism to introduce a time delay for

the control of fixation durations by word-recognition processes.

Moreover, this modification of the model did not interfere with

other successful simulation results despite the nonlinearities in the

model. The bottom line is that obviously the model can still be

falsified by experimental data, probably in many ways. And, of

course, we will look for modifications that accommodate these

results without compromising the core set of theoretical principles.

From Parallel to Serial Processing of Words

In SWIFT, several words are active at a time and lexical

completion of words is not strictly tied to their serial order in the

sentences. This is sometimes advanced as an argument against

parallel models, because in SAS models, words become available

in the order of appearance in the text, just like in spoken language.

Of course, we could simply “delegate” the task of serialization in

SWIFT to higher order structures such as Baddeley’s (2000)

episodic buffer or Ericsson and Kintsch’s (1995) long-term work-

ing memory. Indeed, experimental results about failures to notice

missing function words or to overlook their repetition suggest that

reading may not be as strictly serial as envisioned by SAS propo-

nents. Koriat, Greenberg, and Kreiner (2002) argued that, for

example, function words such as the become available earlier and

serve to generate a sentence structure into which meanings of

content words are then integrated (see also Kennedy, 2000a, for a

collection of arguments why reading is not like listening; Deubel,

O’Regan, & Radach, 2000; Inhoff, Radach, Starr, & Greenberg,

2000). The failures associated with function words mentioned

above are assumed to arise from a faster decay of activation

compared with content words (conceptually compatible with

SWIFT).

There is good evidence that silent reading activates phonologi-

cal representations (e.g., Pollatsek, Lesch, Morris, & Rayner,

1992; Van Orden, 1987). At first glance this may even appear to

support the assumption of sequential lexical access, as enforced,

for example, in E-Z Reader. We note, however, that oral reading is

characterized by a strikingly unserial sequence of fixations, with

the eye running ahead of the voice, but also frequent regressions to

briefly synchronize voice and eye (Buswell, 1920). Oral reading

behavior appears to be in better agreement with SWIFT’s assump-

tions. Modeling such dynamics of eye and voice will provide new

constraints for the coupling between ocular and attentional move-

ments; it certainly represents a challenge of generalizability for

computational models of silent reading such as SWIFT and E-Z

Reader.

Finally, at the other end of conscious control during reading,

mindless reading constitutes evidence prima facie for a loose

coupling between ocular and attentional control (Rayner & Fi-

scher, 1996; Vitu, O’Regan, Inhoff, & Topolski, 1995). Readers

frequently find themselves at a location in the text without any

awareness about how they got there or any awareness about what

they just read. Clearly, in this situation their thoughts strayed off

the text and accessed “meanings” different from the ones written

about in the text. We think this situation is analogous to the

experience of walking while carrying out an intensive conversa-

tion. One’s movements are clearly guided by environmental cues

but there is little awareness of this behavior. The two systems must

be coupled at some level, but, in our opinion, a strict coupling is

not very plausible.

A conceptual advantage of SWIFT as a parallel model of

word processing is that we can include serial processing as a

special case. Furthermore, by implementing a tuning parameter,

we showed that the dichotomy of serial versus parallel process-

ing can be replaced by a continuum of models. There are two

different versions of the restriction to serial processing. In the

first version, we restricted all processing (i.e., preprocessing

and lexical completion), whereas in the second version, we

restricted lexical completion only (i.e., preprocessing is still

fully parallel). For the first version, we were able to demon-

strate by numerical simulations that SWIFT can be restricted to

process words serially. A signature of strictly serial processing

was that there is only one word activated at a time. In the

second version, based on the relaxed assumption on serial

processing that preprocessing is still parallel but lexical com-

pletion is serial, we showed that the distribution of activations

over words was even broader than in the original model. Thus,

the SWIFT model may prove to be very useful to further

explore the transition from serial to parallel processing in future

research.

Comparison With the E-Z Reader Model

A possible classification of models of eye-movement control

in reading categorizes the approaches into POC, models based

on the principle of GAG, and models driven by SAS. Several

computational models have been developed in each of the three

categories. Because most models focus only on a very special

aspect of eye-movement control (e.g., oculomotor theories do

not account for effects of word frequency) or have not been

implemented on a computer to generate data for quantitative

evaluation, we will compare the SWIFT-II model as a viable

implementation of GAG with the E-Z Reader model in its latest

version (Reichle et al., 2003) as the most advanced model of

SAS. Both SWIFT and E-Z Reader reproduce a comparable

number of experimentally observed phenomena, but are based

on very different principles, parallel word processing in SWIFT

and serial word processing in E-Z Reader. We point out, how-

ever, that we adopted a few of E-Z Reader’s principles: that

lexical difficulty is related to word frequency and predictability,

the concept of two-stage lexical processing, and the two-level

programming of saccades. Moreover, both models adopted the

concept of systematic and random errors of saccades (Mc-

Conkie et al., 1988).

The evaluation of different theoretical explanations is among

the central problems of research, in particular in mathematical

modeling of experimental data (e.g., Myung, Forster, &

Browne, 2000). To guide the evaluation and comparison of

different models, a number of criteria were proposed by Jacobs

and Grainger (1994). Here we discuss the following criteria: (a)

plausibility, (b) interpretability, (c) generalizability, and (d)

complexity. Note that the relative importance of these criteria

might depend strongly on the types of models discussed and the

research field.

(a) Plausibility and explanatory adequacy. To check the

plausibility and explanatory adequacy of the models, we ask

whether the theoretical explanation the models offer are biologi-
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cally and psychologically plausible and consistent with the knowl-

edge in the corresponding field of research.

The E-Z Reader model is motivated by SAS driving eye move-

ments in reading.33 The mechanism of SAS was introduced first by

Morrison (1984), motivated by the attentional “spotlight” metaphor

from attentional cuing experiments (Posner, 1980). Basic research on

the relation between attention shifts and saccade programming re-

sulted in the observation that attentional shifts precede saccades

obligatorily (e.g., Deubel & Schneider, 1996; Kowler et al., 1995). In

the E-Z Reader model, however, the basic mechanism for starting a

saccade program is a preliminary stage of word processing called the

familiarity check. Thus, the attentional shift occurs after the start of

the eye-movement program. In an analysis of the E-Z Reader model,

Deubel et al. (2000, p. 357) argued that “the assumption that saccades

can be programmed without an obligatory, preceding shift of attention

is certainly in conflict with most of the more recent investigations on

the relation of attention and saccade control.” From these consider-

ations, one of the basic assumptions of the E-Z Reader model seems

questionable.

An alternative view on the role of attention shifts for eye-

movement control during reading has been discussed recently

(Reichle, Pollatsek, & Rayner, in press). According to these argu-

ments, visual processing is not sufficient for word identification,

which requires, in addition, that attention be focused on the word.

This hypothesis is based on findings that attention is essential for

“binding” together features of visual objects for encoding single,

unified representations (Treisman & Gelade, 1980; Treisman &

Souther, 1986; Wheeler & Treisman, 2002; Wolfe, 1994; Wolfe &

Bennett, 1996). From this line of evidence, Reichle et al. (in press)

further argued that attention must be allocated to each word

“object” so that it can be identified. Obviously, the role of these

processes for word recognition in a continuous task such as read-

ing, in particular with respect to the time lines involved for

attention shifts, remains an open research problem.

The separation into “where” and “when” pathways for spatial

and temporal control of saccade programs, respectively, is one of

the key findings in basic research about the oculomotor system

(e.g., Wurtz, 1996). The SWIFT model is built around this prin-

ciple, requiring a dynamically changing activation field for sac-

cade target selection (dynamic field theory; Erlhagen & Schöner,

2002, see below). Using this concept, the allocation of visual

attention is specified by a gradient function in the SWIFT model.

Furthermore, there is no direct coupling between attentional and

oculomotor systems, inasmuch as attention is not necessarily

word-based in SWIFT. Thus, the time course of attentional shifts

in E-Z Reader is in contrast with the less explicit Gaussian-

distributed attention in SWIFT.

(b) Interpretability. Both SWIFT and E-Z Reader have a

number of parameters that can be interpreted psychologically

and/or neurophysiologically. As a consequence, these models are

ideal tools for testing alternative assumptions through the evalua-

tion of obtained parameter values. As an example, we fit the labile

and nonlabile saccade latency parameters to check whether the

numerical values obtained by parameter estimation are plausible. It

turned out that the corresponding values are in good agreement

with results from basic oculomotor research. We suspect that such

a test would be very interesting for the E-Z Reader model, as the

SAS mechanisms might exert strong constraints on the durations

of saccade program stages.

(c) Generalizability. When we consider visual tasks different

from reading, many of the involved cognitive and oculomotor sub-

systems overlap or are even the same. Whereas the tremendous

variability of stimuli in general scene perception currently precludes a

fully quantitative approach for models of eye-movement control,

visual search tasks that include eye movements (e.g., Gilchrist &

Harvey, 2000; Hooge & Erkelens, 1998) are good candidate para-

digms for extending and/or generalizing mathematical models.

The most important complication is that in a visual search task,

eye movements must be controlled in two dimensions. Reading,

however, is effectively a one-dimensional task, because return

sweeps from one line of text to the next are not dominating the

reading process. Using the concept of an evolving activation field

in combination with Gaussian-distributed attention, it is straight-

forward to generalize the SWIFT model to two-dimensional tasks

(for a visual search task see Trukenbrod & Engbert, 2005). In E-Z

Reader, attention must be directed to the next item by a random

process, because simultaneous preprocessing of several items is

prohibited in the SAS framework. Whereas we speculate that there

might be an advantage for the SWIFT model, the details of how

computational models of eye-movement control perform in visual

search tasks involving eye movements must be worked out in

future research, of course.

(d) Complexity. A general principle in the design of mathe-

matical models is to keep the model’s complexity low. There is,

however, no general theory of complexity or even of model com-

plexity (see Badii & Politi, 1997).34 Although an analysis of model

complexity might unveil new insights into the underlying princi-

ples of the models, currently it does not seem appropriate to

compare models quantitatively using concepts of complexity.

The SWIFT model generates all types of saccades within a

coherent framework, the dynamic field theory of movement prep-

aration (Erlhagen & Schöner, 2002). Thus, we proposed a single

mechanism for forward saccades, word skippings, refixations, and

regressions, whereas in the E-Z Reader model, forward saccades

and word skippings are naturally explained by the SAS mecha-

nism. The generation of refixations is added to the model by

assuming an additional refixation program to each of the model’s

internal state, which increases the number of states from 8 to 14

(Reichle et al., 1998).35

The number of model parameters is comparable between

SWIFT and E-Z Reader. Whereas for E-Z Reader, dependent

measures were averaged over classes of word frequency, the fitting

procedure proposed here is word-based. As a consequence, the

relation of number of free parameters to number of data points is

much smaller for SWIFT. Therefore, besides offering a viable

alternative to the highly successful E-Z Reader model, we pro-

33 The relationship between attention and eye movements was first noted

by Rayner, McConkie, and Ehrlich (1978).
34 A quantitative approach to estimating model complexity has been

developed recently based on the concept of minimum description length

(Pitt, Myung, & Zhang, 2002). This approach, however, was applied to

simple models rather than to more complicated computational models such

as SWIFT and E-Z Reader.
35 In E-Z Reader 7, the internal states of the model are no longer described,

but we speculate that the number is much greater than 14.
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posed a new approach for model fitting, which permits the analysis

of computational models to much greater detail, and more reliably.

Summary

The control of eye movements during reading requires the

coordination of information processing and action selection on

many different cognitive levels. The SWIFT model represents a

psychologically and neurophysiologically plausible computational

model of how this coordination could be achieved in a unifying

framework for almost all types of eye movements observed in

reading experiments: forward saccades, refixations, word skip-

pings, and regressions. The model can reproduce a number of

well-established measures of eye-movement control during read-

ing, average fixation durations and fixation probabilities, distribu-

tions of within-word landing positions, and interword regressions.

Finally, the SWIFT model can explain the IOVP effect of fixation

durations based on error correction of mislocated fixations.
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Y. Mori (Eds.), Handbook of computational statistics (pp. 169–197).

Berlin: Springer.

Sparks, D. L. (2002). The brainstem control of saccadic eye movements.

Nature Reviews Neuroscience, 3, 952–964.

Starr, M. S., & Rayner, K. (2001). Eye movements during reading: Some

current controversies. Trends in Cognitive Sciences, 4, 158–163.

Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading, MA:

Perseus Books.

Treisman, A. M., & Gelade, G. (1980). Feature-integration theory of

attention. Cognitive Psychology, 12, 97–136.

Treisman, A., & Souther, J. (1986). Illusory words: The roles of attention and

of top-down constraints in conjoining letters to form words. Journal of

Experimental Psychology: Human Perception and Performance, 12, 3–17.

Trukenbrod, H. A., & Engbert, R. (2005). Eye movements in visual search:

Experiment and computational modeling. Manuscript in preparation.

Van Gisbergen, J. A. M., Gielen, S., Cox, H., Bruijns, J., & Kleine Schaars,

H. (1981). Relation between metrics of saccades and stimulus trajectory

in visual target tracking; Implications for models of the saccadic system.

In A. F. Fuchs & W. Becker (Eds.), Progress in oculomotor research

(pp. 19–27). New York: Elsevier/North Holland.

Van Orden, G. C. (1987). A ROWS is a ROSE: Spelling, sound, and

reading. Memory & Cognition, 15, 181–198.

Vitu, F., & McConkie, G. W. (2000). Regressive saccades and word

perception in adult reading. In A. Kennedy, R. Radach, D. Heller, & J.

Pynte (Eds.), Reading as a perceptual process (pp. 301–326). Amster-

dam: Elsevier.

Vitu, F., McConkie, G. W., Kerr, P., & O’Regan, J. K. (2001). Fixation

location effects on fixation durations during reading: An inverted opti-

mal viewing position effect. Vision Research, 41, 3513–3533.

Vitu, F., O’Regan, J. K., Inhoff, A. W., & Topolski, R. (1995). Mindless

reading: Eye movement characteristics are similar in scanning letter

strings and reading texts. Perception & Psychophysics, 57, 352–364.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual

memory. Journal of Experimental Psychology: General, 131, 48–64.

Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search.

Psychonomic Bulletin & Review, 1, 202–238.

Wolfe, J. M., & Bennett, S. C. (1996). Preattentive object files: Shapeless

bundles of basic features. Vision Research, 37, 25–43.

Wurtz, R. H. (1996). Vision for the control of movement. Investigative

Ophthalmology and Visual Science, 37, 2131–2145.

Wyman, D., & Steinman, R. M. (1973). Latency characteristics of small

saccades. Vision Research, 13, 2173–2175.

Yang, S.-N., & McConkie, G. W. (2001). Eye movements during reading:

A theory of saccade initiation time. Vision Research, 41, 3567–3585.

Yang, S.-N., & McConkie, G. W. (2004). Saccade generation during

reading: Are words necessary? European Journal of Cognitive Psychol-

ogy, 16, 226–261.

(Appendixes follow)

807THE SWIFT MODEL



Appendix A

Fitting Model Parameters

For the estimation of model parameters, we used a genetic algorithm

approach. This method turned out to be very efficient for the type of

optimization problems we face here. The method was developed and

successfully applied to SWIFT-I (Engbert et al., 2002) and to a three-

state SAS model (Engbert & Kliegl, 2001). For each sentence, 200

model realizations were run with a new set of pseudorandom numbers.

For all 850 words, eight statistical measures were computed from these

runs.

Genetic Algorithm Procedure

For the genetic algorithm (Goldberg, 1989; Holland, 1975; Spall,

2004), we started with a population of 50 combinations (chromosomes)

of parameter values, which were chosen randomly from the specified

range for each parameter (Table 3). The individual ranges of para-

meters were chosen in advance according to mathematical or plausibil-

ity considerations. As an example, the predictability coefficient � in

Equation 1 is naturally restricted to the interval between 0 and 1. For

parameters defined on an unlimited range, we chose a plausible

range of values (e.g., a range from 100 ms to 300 ms for the random

timer).

Using selection, mutation, and recombination (crossover) for the

temporal evolution of the population of genes, we iterated the popula-

tion for several 1,000 generations. A reduction of the parameter vari-

ance over the best 50 chromosomes of the population indicated con-

vergence of the estimates of model parameters. Also, we calcu-

lated errors of the parameter estimates from these 50 chromo-

somes (Table 3).A1 The number of iterations of Equation 20 necessary

for this procedure of parameter fitting can be estimated as 103 itera-

tions � 102 sentences � 102 runs (virtual participants) � 103 genera-

tions in the genetic algorithm, which gives the order of 1010 iterations.

Numerical simulations were run on a cluster of 12 Apple G5 (dual

processor) computers, which performed these computations in less than

48 hr.

The performance of the model is defined as mean squared normalized

errors of fixation durations and fixation probabilities per word. Fixation

durations obtained from model simulations are denoted by T n
j , where

the subscript denotes the word (n � 1, 2, 3, . . . , 850) and the super-

script indicates the type of measure: first fixation duration (j � 1),

second fixation duration (j � 2), single fixation duration (j � 3), and

total reading time (j � 4).A2 Next, we compute the deviation from the

experimentally observed value, T� k
j ,


T � �
j�1

4 �
k�1

850 �T k
j � T� k

j

	�T k
j �
� 2

, (A1)

where 	(T k
j ) denotes the standard deviation of the simulated fixation

durations.

The four different measures of fixation probabilities P k
j —skipping prob-

ability (j � 1), probability for two fixations (j � 2), probability for three

or more fixations (j � 3), and regression probability (j � 4)—were

evaluated analogously to measures of fixation durations,


P � �
j�1

4 �
k�1

850 �P k
j � P� k

j

	�P k
j �
� 2

, (A2)

where 	(P k
j ) represents the standard deviations of the probabilities.

In order to fit the distributions of fixation durations, we com-

puted the deviation of the simulated distribution of fixation dura-

tions from the corresponding distributions obtained from experi-

mental data. Distributions of average fixation durations were calculated sep-

arately for the four measures of fixation durations from 500 bins ranging from

0 to 500 ms in steps of 1 ms. The corresponding values were denoted by D k
j ,

with the subscript indicating the bin (k � 1, 2, 3, . . . , 500) and the superscript

indicating the fixation duration measure (as for T k
j , see above). Thus, we

obtain a third measure of deviation,


D � �
j�1

4 �
k�1

500 �Dk
j � D� k

j

D� k
j � 1

� 2

, (A3)

where N F
j is the total number of fixations in each measure j.

To fit the IOVP effects for first and single fixation durations, we

included an additional deviation measure. Let us denote the average

first and single fixation duration on a word of length k with a fixation

position on letter j as Ik
1(j) and Ik

2(j), respectively. To reduce noise in the

empirical data, we considered only words of lengths 4 to 8, that is,


 I,v � 1000 �
k�4

8 �
j�0

k � I k
v�j� � �I k

v�j�

�I k
v�j�

� 2

, (A4)

where v � 1 and v � 2 represent first and single fixation durations,

respectively. Because single fixations represent the majority of all fixa-

tions, we doubled the weight for 
I,2, that is,


 I � 
I,1 � 2
I,2. (A5)

Finally, we combined the above four mean squared error measures in a

single deviation measure,


 � 
T � 
P � 
D � 
I. (A6)

Because all realizations of the model simulations are stochastic, the devi-

ation measures (Equation A6) fluctuate as well. Five runs of the model

(using 200 virtual participants) resulted in the following numerical values:


 � 6921 � 47, where 
T � 4223 � 52, 
P � 1744 � 27, 
D � 390 �

13, and 
I � 565 � 27.

Parameter Sensitivity and Model Stability

Using the genetic algorithm procedure, we were able to analyze the

evolution of parameters and errors over the iteration of generations

(Figure A1). First, the complicated time course of the best parameter values

over time indicated the presence of nonlinear correlations between model

parameters. Second, the noise level seen in parameter uncertainty de-

creased over the evolution of the population of chromosomes. The relative

strength of parameter errors varied considerably across parameters. We

used the errors of parameters to simulate interindividual differences (see

section on model parameters).

A1 To further check the reliability of the optimization procedure, we

carried out several runs of the genetic algorithm procedure, which repro-

duced the results within the error bars obtained from one simulation.
A2 If one of the measures was not computable (e.g., for a word never

fixated or never fixated more than once), we excluded the specific word

from this analysis.
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Appendix B

Incremental Test of Model Improvement

A direct comparison of SWIFT-II with the originally proposed model

SWIFT-I (Engbert et al., 2002) is not useful because of the larger

number of qualitative improvements introduced in SWIFT-II. First, in

SWIFT-I we wanted to test the assumption of parallel processing as an

alternative to SAS models. The model did not include a physical

representation of space, so that words were idealized as equally ex-

tended objects on a discrete chain. Because a more realistic attentional

gradient was precluded by this approach, we used a discrete four-word

processing window consisting of the fixated word, the two words to the

right, and the word to the left of the fixated word, that is, an asymmetric

perceptual span. As a consequence, SWIFT-I did not account for effects

(Appendixes continue)

Figure A1. Evolution of parameter values in the optimization procedure by the genetic algorithm. The best

value in each generation is indicated by the bold line, whereas errors are represented by the shaded area. The

shrinkage of errors indicates the convergence of parameter values in the population of chromosomes.

Table B1

Incremental Test of Model Improvement

Error statistic Model A Model B SWIFT-II

Fixation durations 
T 5,218 4,457 4,130
Fixation probabilities 
P 2,894 2,291 1,937

IOVP (first fixations) � � �
IOVP (single fixations) � � �

Note. IOVP � inverted optimal viewing position.
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of word length, variations of within-word viewing positions, and ocu-

lomotor errors. Second, the model was implemented using an English

text corpus by Schilling, Rayner, and Chumbley (1998) with a rather

limited data basis (average fixation durations and fixation probabilities

for classes of word frequency). Taken together, a comparison of

SWIFT-II and its predecessor SWIFT-I is neither useful nor achievable

in a straightforward way.

To demonstrate the power of some of our model’s principles, how-

ever, we performed an incremental model comparison using two sim-

plified versions of SWIFT-II. In Model A, we did not include Principles

6 (error correction of mislocated fixations) and 7 (saccade latency

modulation), whereas in Model B we removed only the saccade latency

modulation (Principle 7). Both model versions A and B were fitted to

experimental data by the same techniques as SWIFT-II, described in

Appendix A.B1

Using the optimal sets of parameters for all three models, we per-

formed a separate run to generate data for an analysis of goodness of fit

on measures for fixation durations and fixation probabilities (see Ap-

pendix A). Goodness of fit decreases (i.e., 
T and 
P increase) in the

reduced Models A and B (see Table B1). Generally, we expected costs

(in terms of a poorer fit) if we implemented mechanisms for the

explanation of IOVP effects, which were not compatible with the

implicit pattern in the experimental data. Because goodness of fit

increased both with respect to fixation durations, 
T , and with respect

to fixation probabilities, 
P , the additional Principles 6 and 7 are

compatible with the experimental data.

Next, we investigated the performance of each of the models on the

IOVP effect qualitatively. To determine the form of the curves for

average fixation durations as a function of within-word fixation posi-

tions, we estimated coefficients for a second-order polynomial for a plot

of IOVP effects for both first and single fixation durations (e.g., Figure

15). The resulting polynomial fits are plotted in Figure B1. Although

Model A fails to reproduce any of the inverted U-shaped curves, the

additional mechanism of error correction of mislocated fixations (Prin-

ciple 6) in Model B can explain the inverted U shape in the IOVP effect

for single fixation durations (see Figure B1a). Thus, these simulations

illustrate that the additional value of the latency modulation (Principle

7) in the full model, SWIFT-II, is to reproduce the IOVP effect for first

fixation durations (see Figure B1b).

In summary, our simulations of the SWIFT model suggest that the

IOVP effect of single fixation durations is generated by a mechanism of

error correction of mislocated fixations (Principle 6), whereas for first

fixation durations it seems necessary to include a latency modulation of

saccade programming (Principle 7) to reproduce the IOVP effect. These

findings can also explain the discrepancies between experimental data

and simulation results obtained from a “toy” model (based on Principle

6) of the IOVP effect discussed in a recent article (Nuthmann et al.,

2005).

B1 Because the IOVP effect cannot be explained by Models A and B,

however, the deviation measures for the IOVP effects of first and single

fixation duration were not included in the parameter estimation procedure

(see Appendix A, Equation A6).

Figure B1. Average inverted optimal viewing position (IOVP) curves in different model versions. (a) Results

for single fixation durations. The IOVP effect is generated by SWIFT and Model B (without latency modulation),

whereas Model A (without error correction of mislocated fixations) cannot reproduce the inverted form of the

curve. (b) Results for first fixation durations. The inverted form of the fixation duration as a function of

within-word fixation position is reproduced by SWIFT, whereas the reduced Models A and B fail to explain the

IOVP effect.
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Appendix C

Dynamical Analysis of SWIFT

The SWIFT model is a (stochastic) nonlinear dynamical system with

time delay, a class of models that can generate very rich behavior (Glass &

Mackey, 1988). Although the complexity of behavior generated by our

model is qualitatively as rich as the experimentally observed eye move-

ments, the mathematical analysis of model simulations provides new

insight into the underlying principles of eye-movement control. Our anal-

ysis is based on concepts developed in the theory of dynamical systems

(Guckenheimer & Holmes, 1983; Kaplan & Glass, 1995; Strogatz, 1994).

The SWIFT model is based on the set of Nw lexical activations {an(t)},

where Nw is the number of words in a given sentence. Thus, the dynamical

behavior can be represented in an Nw-dimensional state space.C1 Here, we

show that the dynamical behavior can actually be approximated by a

simpler system in two dimensions during each fixation. Analyses of this

type may prove very useful for comparing computational models of eye-

movement control in reading with respect to underlying model complexity.

The two main sources of stochasticity are related to saccade timing and

saccade target selection, because the temporal control of fixation duration is

performed by an autonomous saccade generator, which produces stochastic

intervals, and the spatial control of fixation position is performed by a sto-

chastic target selection mechanism (Equation 10) and additional oculomotor

noise. During fixations, the temporal evolution of the set of activations (Equa-

tion 7), is a system of ordinary differential equations, which will generate

deterministic behavior, although this system is perturbed by noise, because

word processing is implemented as a random walk. Because SWIFT combines

properties of stochastic and deterministic dynamical systems, we investigate

the degree of determinism of the dynamics.

In the first step of our analysis, we compare several runs of the model in

the same plot of the set of activations {an(t)} over time t (see Figure C1).

Although the time evolutions of activations are rather similar across runs

for the first words of the sentence, the plot indicates that there is a fast

divergence of the trajectories between different model runs toward the end

of the sentence. Thus, we cannot directly compute the variance of trajec-

tories from a simple plot of activations over time.

One solution to this problem is to trace the time evolution of determin-

istic dynamical systems in a vector space, called the phase space. The

phase space is important for uniquely defining the dynamical state of the

model, which permits (short-term) predictions of its future temporal evo-

lution. In SWIFT, the change of activation during fixation can be visual-

ized in a vector space with as many dimensions as there are words in a

given sentence (i.e., the phase space is Nw-dimensional). During fixation of

word n, however, the activation for most of the words is close to zero (see

Figure C1). This is reflected by the observation that the most frequent

saccades are (one-word) forward saccades (54%), word skippings (two-

words forward, 19%), and refixations (16%). Thus, activations an(t),

an�1(t), and an�2(t) capture the dynamics in 89% of all saccades. There-

fore, we introduce the locally reduced phase space for fixation on word n

as the vector space (an(t), an�1(t), an�2(t)).

A further reduction of the dimension of the locally reduced phase space

is obtained by the mapping from activations {an(t)} to probabilities {�n(t)}

(see Equation 10). The fact that saccades targeting words n, n � 1, and n �

2 represent 89% of all saccades is reflected by the observation that �n(t) �

�n�1(t) � �n�2(t) � 1 for all t. As a consequence, we can eliminate �n(t)

as a dynamical variable (i.e., the dimension is further reduced by 1).

Therefore, we use the two-dimensional locally reduced phase space � �

[�n�1(t), �n�2(t)] (during fixation of word n) for the analysis of SWIFT

(Figure C2a). For each run of the model we obtain a trajectory in phase

space. Because �n�1(t) � �n�2(t) � 1 for all t, trajectories are bounded to

the left triangle of the panels. A glance at the plot in Figure C2a shows that

the trajectories are rather erratic.

C1 For the representation of a dynamical system, we use the more

rigorous concept of the phase space as described below.

Figure C1. Temporal evolution of activations {an(t)} for N � 20 runs of the SWIFT model using Sentence 17

of the Potsdam Sentence Corpus. The temporal evolution of the model induces a fast separation of activations

between different runs.

(Appendixes continue)
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To extract the phase flow generated by the SWIFT model, we

compute average directional vectors from many runs of the model in a

coarse-grained version of the locally reduced phase space � (Kaplan &

Glass, 1992).C2 The phase space � is coarse-grained into a 20 � 20

grid. Each pass k of a trajectory through box j generates a vector of unit

length, called the trajectory vector v�kj. After simulation of 200 trajec-

tories, we calculate the resultant vector from the vector addition of all

passes through the box

V� j �
1

nj
�
k�1

nj

v�kj, (C1)

where nj is the number of passes through box j. The result is a coarse-

grained estimate of the vector field of the model (see Figure C2b).

To describe the time evolution qualitatively, we use the illustration in

Figure C3. Trajectories enter the plane when fixation on word n starts; that

is, an(t) dominates the set of activations. Therefore, trajectories start with

small values �n�1 � �n�2, because word n � 1 typically received more

preview than word n � 2. Because lexical processing rate will be higher for

C2 This method was originally proposed for the analysis of experimental

data.

Figure C2. Visualization of SWIFT’s temporal evolution in reduced phase space. (a) Plot of probabilities

�n�2(t) versus �n�1(t) during fixation of word n for 20 runs of the model. (b) Phase flow estimated by average

directional vectors in a coarse-grained version of the locally reduced phase space � from 200 runs.
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word n � 1 than for word n � 2, the trajectory will show a slope �1

initially. Whenever point F is reached, a forward saccade will occur with

probability 1, because �n�1 � 1 and �n�2 � 0. Alternatively, the skipping

point S can be reached by the trajectory, which results in a skipping,

because �n�1 � 0 and �n�2 � 1. For infinitely long fixation durations on

word n, both word n � 1 and word n � 2 will be completely processed; that

is, the origin of the plane is globally absorbing.

The qualitative analysis demonstrates that the time evolution of the set of

lexical activations shows clear properties of a deterministic dynamical system.

This is a qualitative difference to SAS models, which are based on stochastic

transition rules for a finite number of internal states (Engbert & Kliegl, 2001;

Reichle et al., 1998). Furthermore, the dynamics are low-dimensional and can

be described by the two variables �n�1 and �n�2. The Nw-dimensional phase

space collapses onto a two-dimensional subspace, where the dynamical be-

havior of the model unfolds. Thus, whereas the SWIFT model can potentially

generate high-dimensional behavior (i.e., parallel processing of many words),

the dynamical behavior is low-dimensional, with three words typically acti-

vated at a time.

Appendix D

Results on Gaze Duration

An important measure of eye-movement behavior during reading is gaze

duration, which is defined as the sum of the duration of the first fixation

and the durations of all direct refixations. We argued that gaze duration

might be not a good measure of fixation duration for model fitting, because

it represents a processing measure from a variety of different eye trajec-

tories. For the same reason, we used an alternative definition of first

fixation duration: First fixation duration is the average of the durations of

all first fixations, which are followed by at least a second fixation. This

definition explicitly excludes cases of single fixations.

To complement the simulation results, however, we present the results

on gaze duration and on the traditional measure of first fixation duration

(including single fixations) in Figure D1.

Finally, we note that there is no single measure of fixation duration

that gives a comprehensive characterization of processing time. This

fact is adequately reflected in Rayner’s (1998, p. 377) statement that “It

thus appears that any single measure of processing time per word is a

pale reflection of the reality of cognitive processing.”
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Figure D1. Results for gaze duration and traditionally defined first fixation duration. (a) Fixation duration as

a function of word-frequency class. (b) Fixation duration as a function of word length.

Figure C3. Schematic illustration of the phase flow in locally reduced

phase space � during fixation of word n.
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