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Abstract

Background: There is growing interest in using machine learning approaches to priority rank studies and reduce
human burden in screening literature when conducting systematic reviews. In addition, identifying addressable
questions during the problem formulation phase of systematic review can be challenging, especially for topics having
a large literature base. Here, we assess the performance of the SWIFT-Review priority ranking algorithm for identifying
studies relevant to a given research question. We also explore the use of SWIFT-Review during problem formulation to
identify, categorize, and visualize research areas that are data rich/data poor within a large literature corpus.

Methods: Twenty case studies, including 15 public data sets, representing a range of complexity and size, were used
to assess the priority ranking performance of SWIFT-Review. For each study, seed sets of manually annotated included
and excluded titles and abstracts were used for machine training. The remaining references were then ranked for
relevance using an algorithm that considers term frequency and latent Dirichlet allocation (LDA) topic modeling. This
ranking was evaluated with respect to (1) the number of studies screened in order to identify 95 % of known relevant
studies and (2) the “Work Saved over Sampling” (WSS) performance metric. To assess SWIFT-Review for use in problem
formulation, PubMed literature search results for 171 chemicals implicated as EDCs were uploaded into SWIFT-Review
(264,588 studies) and categorized based on evidence stream and health outcome. Patterns of search results were
surveyed and visualized using a variety of interactive graphics.

Results: Compared with the reported performance of other tools using the same datasets, the SWIFT-Review ranking
procedure obtained the highest scores on 11 out of 15 of the public datasets. Overall, these results suggest that using
machine learning to triage documents for screening has the potential to save, on average, more than 50 % of the
screening effort ordinarily required when using un-ordered document lists. In addition, the tagging and annotation
capabilities of SWIFT-Review can be useful during the activities of scoping and problem formulation.

Conclusions: Text-mining and machine learning software such as SWIFT-Review can be valuable tools to reduce the
human screening burden and assist in problem formulation.
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Background

In almost every field of scientific inquiry, the current

rate of scientific publication is greatly outpacing scien-

tists’ ability to read and assimilate the information. It has

been estimated that every year, more than 4000 system-

atic reviews are conducted and published, each with the

goal of summarizing the current state of knowledge rele-

vant to a specific research question [1]. On average, the

amount of time required to conduct a single systematic

review is at least 6 months to a year [2], and a consider-

able portion of this time is often spent on formulating the

problem and identifying the relevant literature. For this

reason, a large number of topics that would benefit from

systematic review are waiting in queue and many system-

atic reviews are out of date by the time they are published.

Various methods taken from the fields of text-mining,

machine learning, and information retrieval have the poten-

tial to greatly reduce the amount of time it takes to conduct

a systematic review and to minimize bias in identifying
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relevant studies [3, 4]. These methods have much potential

to reduce the human burden in screening studies for rele-

vance and to produce “scoping reports” or “scoping stud-

ies,” a type of knowledge synthesis undertaken to guide the

direction of future research priorities or to help with prob-

lem formulation when conducting a systematic review [5].

However, to date, few software systems have been deployed

that automate these methodologies, and usage of many of

the reported methods requires the assistance of a data sci-

entist having a detailed understanding of statistics and/or

the skills necessary to program in statistical programming

languages such as R, Python, or Matlab [4]. These factors

limit the ability of many systematic review teams to take

advantage of these tools and restrict efforts to perform the

validation against manual methods that will be required to

support routine use.

Objective and specific aims

Here, we introduce “SWIFT-Review” (SWIFT is an acro-

nym for “Sciome Workbench for Interactive computer-

Facilitated Text-mining”), a freely available, interactive

workbench that provides numerous tools to assist with

problem formulation and literature prioritization. SWIFT-

Review can be used to search, categorize, and visualize

patterns in literature search results. The software utilizes

recently developed statistical modeling and machine learn-

ing methods that allow users to identify over-represented

topics within the literature corpus and to rank-order titles

and abstracts for manual screening.

Specific aims

� Describe the methods used by SWIFT-Review to

conduct topic modeling, categorization of studies,

and priority ranking for relevance.

� Present performance benchmarks for priority ranking

based on a comparison of SWIFT-Review to manual

review for 20 data sets of various size and complexity.

Fifteen of the 20 data sets are public datasets that have

been used to evaluate the performance of other text-

mining software tools [6].

� Present an example of how SWIFT-Review can be

used to prepare a scoping report on an example

topic (endocrine-disrupting chemicals; EDCs)

selected because of the large size of its literature

base and for its complexity in terms of number of

chemicals, range of health effects, and types of

evidence (human, animal, in vitro).

Methods

Document import and search

SWIFT-Review allows users to upload bibliographic re-

cords or “documents” (titles and abstracts, plus associated

bibliographic data and Medical Subject Heading (MeSH)

annotations) either in the form of a file containing a list of

PubMed IDs (PMIDs) or the XML resulting from a

PubMed search. Although the current version of SWIFT-

Review is restricted to data originating from PubMed, the

methods described herein are compatible with biblio-

graphic data from other sources. After records have been

imported to SWIFT-Review, the application utilizes the

Apache Lucene open-source software to provide a search

engine and query language which includes Boolean opera-

tors, wildcards, and the capability to perform proximity

searches to find sets of words occurring near each other in

a text, fielded searches to search within specific document

sections or by tags, and ranged queries to limit searches on

numeric fields to values within a certain range (lucene.apa-

che.org). These features can be used to interactively explore

and filter documents using both custom and built-in

searches.

Bag-of-words model to characterize document features

For the purposes of statistical modeling, uploaded docu-

ments are represented internally using term frequencies

(“bag-of-words” model), where “terms” include both in-

dividual words as well as 2- and 3-grams (contiguous

sequences of 2 or 3 terms). Separate term counts are

maintained for words that occur in a document’s title,

abstract, and MeSH headings. For example, if the term

“human” occurs in the title, abstract, and as a MeSH

heading for a particular document, separate counts are

recorded for title:human, abstract:human, and MeSH:-

human. We also initially considered combining counts

for titles and abstracts, but found that this was not help-

ful (data not shown). All terms in the title and abstract

are stemmed using the Porter stemming algorithm [7];

English stop words (a small set of high frequency, low

information words including “the,” “of,” “all,” etc.) are

removed from the set of individual terms, but not from

2- and 3-gram word phrases.

Raw word counts in each document are converted to

length-normalized term frequency-inverse document fre-

quency (TF-IDF) scores [8]. This increases the salience of

words that have high frequency in a particular document

as compared to the background frequency of that term in

the corpus as a whole. For a given document, d, let TFt,d
denote the term frequency of term t in that document;

here, TFt,d is simply the raw word count for term t in

document d. The document frequency DFt is the total

number of documents in which TFt,d > 0—i.e., the number

of documents where term t is seen. The inverse document

frequency is defined as:

IDFt ¼ log10
N

DFt

where N is the total number of documents under consider-

ation (in this scenario, the number of documents initially
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uploaded into SWIFT-Review). Using these components,

the TF-IDFt,d score is defined as:

TF‐IDFt;d ¼ TFt;d � IDFt

Hence, words that occur many times in a given docu-

ment increase its score, but words that occur commonly

(i.e., in many different documents) have lower weights.

For notational convenience, each document, d, can be

represented by a length |T| vector, Xd , where T is the set

of unique terms found in the full set of documents con-

sidered. For a given term, t∈T ,

Xd
t ¼ TF‐IDFt;d

To ensure that documents having many words are not

given more importance than documents with fewer words,

we normalize Xd to have length 1:

Xd
norm ¼

Xd

Xd
�

�

�

�

For notational simplicity, in the following we will use

Xd to denote Xd
norm.

Topic modeling

Topic modeling is a statistical method used to automatic-

ally cluster related documents in a collection of unlabeled

texts and to discover computationally derived themes

common among those documents. The latent Dirichlet al-

location (LDA) topic modeling approach [9, 10] was used

to probabilistically assign documents to topics. Under this

framework, “topics” are conceptualized as probability dis-

tributions over a vocabulary. Given the set of topics for a

particular document, each term in the document’s bag of

words is assumed to have been generated sequentially

by first randomly selecting one of the document’s topics

(according to its membership probabilities) and then

randomly selecting a word according to that topic’s

word distribution. Parameters of this model were esti-

mated using the Mallet LDA package [11]. The result is

a set of K topics and weighted assignments of each docu-

ment in the collection to one or more of these topics,

where K is a parameter that can be set by the user. In the

following, the resulting topic membership probabilities are

denoted by Z Xd
� �

, a length K vector whose ith element,

and Z Xd
� �

i
is the probability that document Xd originated

from the topic i.

Document prioritization

Given a training set, which includes examples of manually

identified “relevant” and “not relevant” documents in the

corpus, SWIFT-Review builds a statistical log-linear model

(presented below) to describe the conditional probability

that a given document is relevant. This model is then used

to estimate the probability that an unlabeled document is

relevant. After training the log-linear model, documents

are ranked according to their estimated conditional rele-

vance probabilities, Pr Y ¼ 1jXd
; v

� �

.

Log-linear model

A log-linear model is used for classification. Using the

binary variable Y∈ 0; 1f g to denote the relevance (0 = not

relevant; 1 = relevant) of document, d, our model takes

the form

Pr Y ¼ yjXd
; v

� �

¼
ev⋅f Xd

;yð Þ

ev⋅f Xd
;0ð Þ þ ev⋅f Xd

;1ð Þ

In the above notation, f Xd
; y

� �

is a vector of real num-

bers, the ith component of which is determined by the

ith feature function f i X
d
; y

� �

; which maps a given (docu-

ment, label) pair to a real number. Under this general

framework, feature functions can take a huge variety of

forms; here, we use the following two types of features:

1. Word score features: f i X
d
; y

� �

¼ Xd
i (i.e., the

normalized TF-IDF score for term i).

2. Topic weight features: f Tj jþi X
d
; y

� �

¼ Z Xd
� �

i
(i.e.,

the probability the document belongs to topic i∈

1; ::;Kf g.

Hence, f Xd
; y

� �

, is a length |T| + K vector of real

numbers.

The weight vector, v, is used to quantify the “strength”

of each feature in determining the relationship between

features and the conditional probability. Weights are esti-

mated by maximum likelihood using the labeled training

data. Under the above model, the (log) likelihood function

over n training documents is as follows:

L vð Þ ¼
X

n

d¼1

v⋅f Xd
; ;Y d

� �

−

X

n

d¼1

log
X

y∈ 0;1f g

ev⋅f Xd
;yð Þ

In order to avoid over-fitting the parameter vector, we

include a regularization penalty, 1
2 λ

P Tj jþK
i¼1 v2i , where λ is

a parameter that controls the size of the penalty. With

this modification, the regularized likelihood function

becomes

L vð Þ ¼
X

n

d¼1

v⋅f Xd
;Y d

� �

−

X

n

d¼1

log
X

y∈ 0;1f g

ev⋅f Xd
;yð Þ

0

@

1

A−

1

2
λ

X

Tj jþK

i¼1

v2i

The likelihood equation is maximized using the limited

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-

rithm, a gradient-based optimization procedure designed

for high-dimensional parameter spaces [12].
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Assessing document prioritization performance

Datasets

Prioritization methods were tested on 20 datasets that

were previously curated manually by reviewers (Table 1).

Data sets were selected to allow comparison with other

text-mining software and represent a range of size (~300

to ~49,000) and complexity, including both focused lit-

erature topics and broad literature topics. Four datasets

(Additional file 1) were generated by the National Toxicol-

ogy Program (NTP) Office of Health Assessment and

Translation (OHAT), one dataset (Additional file 2) was

provided by the Edinburgh CAMARADES group (www.ca

marades.info), and the remaining 15 datasets are public

data sets that have been used to assess the performance of

other priority-ranking methods [6]. Eighteen of the 20 data

sets used PubMed records (titles, abstracts, and MeSH

terms) as the input and 2 used titles and abstracts identi-

fied from a search of multiple databases.

Performance metrics

The “Work Saved over Sampling” (WSS) performance

metric [6] and percentage of documents screened were

used to evaluate the prioritization procedure described

above. The WSS defines, for a specific level of recall, the

percent reduction in effort achieved by a ranking method

as compared to a random ordering of the documents.

Specifically,

WSS@R ¼
TN þ FN

N
− 1:0−Rð Þ

where TN denotes true negatives, FN denotes false nega-

tives, N denotes the total size of the data set, and R is

the desired level of recall (R ¼ TP
TPþFN , with TP denoting

true positives). For example, WSS@:95 ¼ TNþFN
N

� :05.

The maximum possible WSS score is 1, indicating a

100 % reduction in screening burden. A WSS score of 0

or less indicates that random ordering would be just as

effective or more effective than priority ranking. In a

plot of recall as a function of the number of ranked

documents screened, the WSS at a specific level of re-

call is simply the distance from a straight line with

slope = 1 (Fig. 1).

The percentage of documents screened (to obtain the

desired recall) is related to WSS@R as follows:

Table 1 Summary of datasets used to assess priority ranking performance

Data set Source Database (inputs) Records from
search

Included Excluded Comments

PFOA/PFOS and immunotoxicity NIEHS PubMed (PMIDs) 6331 95 (1.5 %) 6236 (98.5 %) Targeted topica

Bisphenol A (BPA) and obesity NIEHS PubMed (PMIDs) 7700 111 (1.4 %) 7589 (98.6 %) Targeted topic

Transgenerational inheritance
of health effects

NIEHS PubMed (PMIDs) 48,638 765 (1.6 %) 47,873 (98.4 %) Untargeted topic

Fluoride and neurotoxicity in
animal models

NIEHS Multiple (titles + abstracts) 4479 51 (1.1 %) 4428 (98.9 %) Targeted topic

Neuropathic pain CAMARADES Multiple (titles + abstracts) 29,207 5011 (17.2 %) 24,196 (82.8 %) Semi-targeted topic

Skeletal muscle relaxants [6] PubMed (PMIDs) 1643 9 (0.6 %) 1634 (99.4 %) Public dataset

Opioids [6] PubMed (PMIDs) 1915 15 (0.8 %) 1900 (99.2 %) Public dataset

Antihistamines [6] PubMed (PMIDs) 310 16 (5.2 %) 294 (94.8 %) Public dataset

ADHD [6] PubMed (PMIDs) 851 20 (2.4 %) 831 (97.6 %) Public dataset

Triptans [6] PubMed (PMIDs) 671 24 (3.6 %) 647 (96.4 %) Public dataset

Urinary Incontinence [6] PubMed (PMIDs) 327 40 (12.2 %) 287 (87.8 %) Public dataset

Ace Inhibitors [6] PubMed (PMIDs) 2544 41 (1.6 %) 2503 (98.4 %) Public dataset

Nonsteroidal anti-inflammatory [6] PubMed (PMIDs) 393 41 (10.4 %) 352 (89.6 %) Public dataset

Beta blockers [6] PubMed (PMIDs) 2072 42 (2.0 %) 2030 (98.0 %) Public dataset

Proton pump inhibitors [6] PubMed (PMIDs) 1333 51 (3.8 %) 1282 (96.2 %) Public dataset

Estrogens [6] PubMed (PMIDs) 368 80 (21.7 %) 288 (78.3 %) Public dataset

Statins [6] PubMed (PMIDs) 3465 85 (2.5 %) 3380 (97.5 %) Public dataset

Calcium-channel blockers [6] PubMed (PMIDs) 1218 100 (8.2 %) 1118 (91.8 %) Public dataset

Oral hypoglycemics [6] PubMed (PMIDs) 503 136 (27.0 %) 367 (73.0 %) Public dataset

Atypical antipsychotics [6] PubMed (PMIDs) 1120 146 (13.0 %) 974 (87.0 %) Public dataset

aTargeted topics refers to examples where a specific exposure and health outcome were identified (e.g., bisphenol A and obesity); for untargeted topics, one or

both of these parameters were not defined, e.g., the topic transgenerational inheritance of health effect focused on a particular study design and was not

restricted to a specific type of exposure or health outcome
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Percentage screened ¼
TPþ FP

N
¼ 1−

TNþ FN

N
¼ R−WSS@R

Test procedure

To make our results comparable with other published re-

sults obtained using the Cohen benchmark datasets [6], we

applied the following testing procedure. First, after random

shuffling, each dataset was divided such that half of the

entire dataset was used for training and the remainder for

testing. Similar to Cohen (2008/2011), we used stratified

sampling to ensure that the test and training sets had the

same percentage of relevant documents. The following

algorithmic parameters were chosen by cross-validation on

the training sets: K, λ, inclusion/exclusion of MeSH terms,

and inclusion/exclusion of 2- and 3-grams. For each data-

set, the WSS@95 was computed using the test set and

averaged over 25 trials.

Document tagging for problem formulation

When documents are loaded into SWIFT-Review, each

record is automatically associated with various “tags” which

are used to label documents according to meaningful cat-

egories. Users can then interactively filter the imported

documents according to these tags by using the SWIFT-

Review “Tag Browser” (Figs. 2 and 7). SWIFT-Review tags

may include various imported meta-data such as MeSH

Terms and MeSH Supplementary Concept Records, vari-

ous entities or topics automatically extracted from docu-

ments, and any other label applied manually by the user. In

addition, SWIFT-Review includes several built-in Lucene

search filters that can be used to automatically tag docu-

ments such as health outcome, evidence stream (human,

animal, in vitro), or chemical treatment. These search fil-

ters, which are described below, are included in SWIFT-

Review by default because the initial development work

was done to address literature-mining needs in environ-

mental and occupational health, but users can also inte-

grate their own custom search strategies which can be

used to tag documents according to the specific require-

ments for a given project.

Evidence stream

A customized search filter was developed to identify and

tag human studies with no restriction on study design

(i.e., randomized clinical trial or case report would both

be identified.) A search strategy to identify animal models

was created by modifying a strategy for identifying animal

research from [13]. In brief, the modifications entailed

consolidating the search term list to focus on animal

models most relevant to environmental health studies

by removing those animals of less interest; e.g., bison,

panda, sable. Also, the Hooijmans et al. strategy only

searches for animal terms in the title and abstract fields

if the PubMed record has not been indexed with MeSH.

The SWIFT-Review search strategy does not have that

limitation. The query used to identify and tag in vitro

studies was based on MeSH headings as well as text

words for specific cell lines. The search strategies de-

scribed above for human, animal, and in vitro studies

are available in Additional file 3.

Fig. 1 “Work Saved over Sampling” (WSS) performance metric. The dotted black line illustrates the expected recall achieved when traversing a randomly
ordered list. Similarly, the blue line shows the recall obtained when traversing a (hypothetical) ranked list. The length of the dotted red line indicates the

percent reduction in effort achieved by ranking and corresponds to the WSS at 95 % recall, in this case, approximately 15 % (95–80 %)
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Health outcomes

The top level PubMed MeSH disease codes (C01, C02,

C03, …, C26) and mental disorder codes (F03.075, F03.080,

F03.087, …, F03.900) are used to tag health outcomes in

the imported documents. In addition, in order to automat-

ically highlight relevant words and phrases in these tagged

documents within the SWIFT-Review user interface (Fig. 2),

we have also employed a semi-automated approach to

“mine” PubMed and find relevant terms that are enriched

for each of these MeSH codes. For each top level MeSH

code, we randomly selected 5,000 documents from

PubMed that were previously labeled with that code by

National Center for Biotechnology Information (NCBI)

annotators. After computing the �X norm , averaged over the

selected documents for each top level code, we then sorted

the resulting term lists by their normalized TF-IDF scores

and retained the top 500 most salient terms for each

category. Finally, each list was manually reviewed to re-

move high scoring terms that were deemed to still lack

specificity. For example, in the case of MeSH code C08

“Respiratory Tract Diseases”, we removed the terms “title:-

obstruct,” “title:cancer,” and “abstract:niv.” Table 2 contains

the top 25 terms in the list of 456 terms selected to repre-

sent MeSH code C08. The resulting set of keywords is used

by SWIFT-Review to automatically highlight terms associ-

ated with each health outcome (Fig. 2).

Chemical exposure or treatment

Tox21 chemicals Toxicology Testing in the 21st Cen-

tury (Tox21) is a pooling of US federal resources and ex-

pertise from the National Institutes of Environmental

Health Sciences/National Toxicology Program (NIEHS/

NTP), US Environmental Protection Agency (EPA), Na-

tional Institutes of Health/National Center for Advan-

cing Translational Sciences (NIH/NCATS), and the US

Food and Drug Administration (FDA) to use robotics

technology to screen thousands of chemicals for potential

toxicity, use screening data to predict the potential toxicity

of chemicals, and develop cost-effective approaches for

prioritizing the thousands of chemicals that need toxicity

testing [14]. Currently, 8186 unique chemicals are being

screened, including a diverse set of environmental chemi-

cals, pharmaceuticals, and endogenous compounds. Using

the complete list of unique Tox21 chemicals downloaded

from the EPA website [15], SWIFT-Review automatically

scans the title, abstract and MeSH headings for each

document to find occurrences of these chemicals within

documents. Literature search strategies for identifying and

tagging Tox21 chemicals were automatically constructed

by using (1) the common name for the chemical as pre-

sented in the source reports listed above, (2) the Chemical

Abstract Services Registry Number (CASRN), and (3) and

Fig. 2 SWIFT-Review user interface and tag browser. The SWIFT-Review Tag Browser allows users to interactively filter a literature set by selecting various
combinations of “tags” that have been automatically and/or manually applied to the corpus. In this case, the user has selected for investigation research
articles in the “Neoplasms” health outcome category; terms in each abstract that are related to these tags are highlighted automatically in the Document

Preview panel
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retrieval of synonyms from the ChemIDPlus database

which currently contains chemical names and synonyms

for over 400,000 chemicals [16]. In total, there are more

than 2.7 million names in the ChemIDPlus database; how-

ever, many of these synonyms are ambiguous and could

lead to false positives. Most of these ambiguous terms are

(1) short alphanumeric sequences that could be confused

with arbitrary acronyms or abbreviations (e.g., “2VP” for

“2-vinylpyridine”), (2) English words that have been used

as industrial trade names, street drug slang, etc., or (3)

chemical formulas that do not unambiguously define a

chemical. Hence, to avoid false positives, the list was

filtered as follows:

� Excluded all names of type “DisplayFormula” (i.e.,

chemical formulas like “H20”).

� Obtained a set of 109,582 English words from SIL

International Linguistics [17]. Any chemical terms

that appeared in this list and were not the exact

name of a Tox21 chemical (i.e., a synonym and not

the original name) were removed. This removed

ambiguous terms like “stuff” and “impact” but not

“ethanol” or “toluene.”

� Removed all terms with fewer than five letters (most

of the ambiguous abbreviations).

� Removed non-English chemical names.

� Removed inverted chemical names.

On average, the Tox21 chemicals have a mean of 20

synonyms and a median of 16 synonyms. The full list of

Tox21 names and synonyms (156,304 terms) is available

in Additional file 4.

To identify the literature relevant to endocrine disrupt-

ing chemicals, the resulting sets of chemical synonyms

were also used to create PubMed queries of the form:

“CHEMICAL_NAME”[tiab] OR “CASRN”[rn] OR “S1”

OR “S2” … OR “Sn” where “CHEMICAL_NAME” is the

original chemical name, “CASRN” is the corresponding

CAS number, and S1 through Sn are the synonyms from

ChemIDPlus. When the chemical name had an exact

match to a MeSH term or supplementary concept, we also

included those terms in conjunction with the PubMed

[mh_noexp] and/or [supplementary concept] fields. In

order to make the published queries more readable, we

used PubMed’s “search details” and “quoted phrase not

found” features, which provide details about which query

terms are not found in the database, to eliminate syno-

nyms that resulted in no hits from PubMed.

Broad categories of exposure Targeted literature search

strategies were manually developed to allow SWIFT-

Review to tag (Additional file 5) documents under the

following broad categories of exposure: air pollution, aller-

gens, diet and nutrition, endocrine disruptors, flame retar-

dants, heavy metals, ionizing radiation, miscellaneous,

occupational, pesticides, phthalates, polycyclic aromatic

hydrocarbons, solvents, stress, and general environmental

exposures.

Dataset used to assess document tagging and annotation

features: Endocrine-disrupting chemicals

Specific chemicals used to establish literature corpus

SWIFT-Review document tagging and annotation were

used to assess the extent and nature of the literature dur-

ing the last 10 years for 171 chemicals implicated as endo-

crine disruptors in the 2012 World Health Organization

(WHO)/United Nations Environment Programme (UNEP)

report “The State-of-the-Science of Endocrine Disrupting

Chemicals” [18]. Endocrine disrupting chemicals are sub-

stances that may mimic or interfere with the function of

hormones in the body. As a result, EDCs may turn on,

shut off, or modify signals that hormones carry, which

can affect the normal functions of a broad range of

Table 2 The 25 top-scoring terms for MeSH code C08
“Respiratory Tract Diseases”

Word Type TF DF TF_IDF
score

Pulmonari Title 708 1777 0.372008

Lung Title 715 1623 0.362747

Lung neoplasms MESH 746 2003 0.269274

Lung Abstract 2459 3131 0.266611

Tuberculosis, pulmonary MESH 324 940 0.211322

Lung cancer Title 2-gram 241 474 0.209402

Pulmonari Abstract 1564 2571 0.204265

Asthma Title 281 889 0.1953

Asthma MESH 486 1675 0.193189

Respiratori Title 292 1024 0.175736

Lung diseases MESH 304 910 0.16359

Asthma Abstract 1045 1163 0.158508

Tuberculosi Title 233 1053 0.153724

Lung cancer Abstract 2-gram 588 689 0.145245

Pneumonia Title 178 547 0.139709

Bronchial Title 139 327 0.13054

Pulmonari tuberculosi Title 2-gram 86 236 0.112054

Small cell lung Title 3-gram 92 174 0.110415

Cell lung cancer Title 3-gram 87 161 0.10728

Pulmonari diseas Title 2-gram 74 146 0.105468

Pulmonari hypertens Title 2-gram 67 118 0.100461

Chronic obstruct Title 2-gram 71 124 0.098575

Chronic obstruct pulmonari Title 3-gram 56 99 0.095042

Obstruct pulmonari diseas Title 3-gram 55 99 0.093811

Pulmonari embol Title 2-gram 52 94 0.090121
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tissues and organs [19]. Many of these substances have

been linked with developmental, reproductive, neural,

immune, and other problems in humans, wildlife, and

laboratory animals.

In brief, literature search strategies for the 171 chemicals

were automatically constructed using the approach de-

scribed above (“Tox21 chemicals”) and the automated

search results were manually proof-read to remove other

terminology likely to result in retrieval of irrelevant docu-

ments. Search strategies for each chemical are presented

in Additional file 6. The searches were run in PubMed

and the results were uploaded into the software, which

automatically applied the tagging procedures described

above. Using SWIFT-Review’s interactive tag browser, we

further refined the literature corpus, using the MeSH pub-

lication type filter to identify and eliminate non-research

articles and the SWIFT evidence stream filter to identify

and eliminate plant studies. The remaining documents

were categorized and visualized according to health out-

come, evidence stream, and chemical name.

Results
Performance of prioritization algorithm

We report the WSS@95 scores obtained for each of the

20 datasets in Table 3. Compared with the reported per-

formance of other tools using the same datasets, the

SWIFT-Review ranking procedure obtained the highest

scores on 11 out of 15 of the public datasets [6]. Cohen’s

SVM classifier [6] achieved the highest scores on the

remaining four datasets. In general, the priority ranking

performance was better for the datasets from NIEHS and

CAMARADES; the mean WSS@95 score was 48.8 % for

the 15 previously published datasets and 76.6 % for the 5

new datasets introduced here. Figure 3 shows how the

performance on each dataset changes as a function of the

number of training items (assuming a balanced training

set with equal number of positive and negative instances).

In all cases, as expected, performance appears to be an in-

creasing function of training set size. In addition, Fig. 4

shows the recall achieved on the 5 new datasets as a func-

tion of the total documents screened, after training the al-

gorithm with a seed size of 50 included and 50 excluded

documents.

We also assessed the effects of three major feature

types: MeSH terms, N-Grams, and topic model member-

ship (Fig. 5). The estimates were obtained by observing

the effect of systematically removing those feature types

and comparing the results to the original results ob-

tained using all features. As shown in Fig. 5, availability

of MeSH annotations is not critical for success of the

procedure. In fact, inclusion of MeSH annotations only

improved performance by an increase of 1 % WSS@95

(on average) and actually harmed the performance for

some individual tests. Similarly, the overall effect of

including n-grams was also negligible when the other

features were available. Topic modeling, on the other

hand, provided an average increase of about 4.4 %

WSS@95. To characterize the features and feature types

that contributed maximally to each classifier, we surveyed

the most highly weighted features for the four NIEHS data-

sets (Additional file 7). In most cases, the highly weighted

features appear to be sensible. For example, the features

with the most highly negative weights (i.e., most indicative

of the excluded class) for the bisphenol A (BPA) obesity

dataset include several topics related to dental procedures.

Many of the documents in this dataset were retrieved

because BPA is commonly used in dental sealants, but

these were excluded as not being relevant to the research

question studied.

EDC case study: use of SWIFT-Review document tagging

and annotation

We utilized SWIFT-Review’s document tagging and anno-

tation capabilities to perform a scoping exercise on a set

of EDC chemicals; the study flow diagram for the analysis

of 171 UNEP EDC chemicals is displayed in Fig. 6. The

initial PubMed search yielded 709,573 hits in total. By lim-

iting the search to PubMed results from the last 10 years,

the literature corpus was reduced to 264,588 records. This

allowed us to focus on recent research trends. These cita-

tions were uploaded into SWIFT-Review, which was then

used to filter out non-research articles (e.g., reviews or

commentaries), reducing the size of the corpus to 221,898

documents (Fig. 6).

During the import, SWIFT-Review automatically an-

notated the uploaded documents using tags relevant to

the environmental health sciences, including chemical

exposure, evidence stream (human, animal, in vitro), and

health outcome. These tags can then be used to inter-

actively explore and “drill-down” to investigate specific as-

pects of the literature corpus (Figs. 7 and 8), moving from

a visualization of bodies of evidence by chemical, or health

outcome to the actual studies reporting data. The docu-

ment prioritization capabilities of SWIFT-Review can then

be applied to specific areas of interest in the corpus (e.g.,

association of a particular EDC with a specific health out-

come such as arsenic and neoplasms) providing users with

strategies to conduct survey-level analyses of a topic and

identify the number of potentially relevant studies for sub-

sequent systematic review. The list of studies supporting

each health outcome or evidence stream can be rapidly

accessed by clicking on the interactive figure, and users

can pull up the abstract and full study details for individ-

ual studies within the areas of interest.

In addition, various visualizations (e.g., Figs. 9 and 10)

are provided which can be helpful during the processes of

scoping and problem formulation in which one seeks to

assess the current state of the science, identify questions
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for which the literature base is data rich or data poor, and

discover interesting “pockets” of literature relevant to a

particular research topic. LDA topic modeling can also

be used during these endeavors to automatically iden-

tify potentially important “themes” in a bibliographic

corpus because those themes are over-represented and

to browse the documents within those topics. For ex-

ample, Fig. 10 shows several of the subjects automatic-

ally identified in the EDC dataset. As shown in the

figure, topics can be characterized using the set of auto-

matically identified words with the highest conditional

probability; in most cases, after cursory examination,

these topics can then be assigned meaningful short

names. For example, the topics shown here include

analytical methods used to measure levels of EDCs

(e.g., topic 23), measures of exposure (e.g., topic 31 on

lead and arsenic or topic 1 on polycyclic aromatic hy-

drocarbons (PAHs)), and health outcome topic group-

ings (e.g., topic 26—breast and prostate cancer and

topic 15—thyroid disease).

Discussion

Document prioritization

Here, we have tested automated document prioritization

on 20 previously conducted systematic review datasets,

and the results presented clearly suggest that using ma-

chine learning to triage documents for screening has the

potential to save, on average, more than 50 % of the

screening effort ordinarily required when using un-ordered

document lists (Table 3). To the best of our knowledge, the

performance benchmarking of SWIFT-Review for use in

the screening phase of systematic review reported here is

the most extensive conducted to date. Compared to other

algorithms previously tested on 15 of the datasets, our pro-

cedure performs favorably and obtains the best WSS@95

scores on the majority of the datasets (11 out of 15). We

have also introduced five new systematic review datasets

(Additional files 1 and 2), which can be used, in the future,

to benchmark further developments in the field. Compared

to other datasets available for benchmarking, these five

new datasets are much larger (range from 4479 to 48,638

Table 3 Summary of SWIFT performance ranking metrics

Cohen (2006) [6] Matwin (2010) [28] Cohen (2008/11) [29, 30] SWIFT-Review (25 trials)

WSS@95 [proportion of studies screened to achieve 95 % recall]

PFOA/PFOS and immunotoxicity N/A N/A N/A 0.805 [0.145]

Bisphenol A (BPA) and obesity N/A N/A N/A 0.752 [0.198]

Transgenerational inheritance of health effects N/A N/A N/A 0.714 [0.236]

Fluoride and neurotoxicity in animal models N/A N/A N/A 0.870 [0.080]

Neuropathic pain N/A N/A N/A 0.691 [0.259]

SWIFT-Review mean 0.766 [0.184]

Skeletal muscle relaxants 0.000 [0.950] 0.265 [0.685] 0.374 [0.576] 0.556 [0.394]

Opioids 0.133 [0.817] 0.554 [0.396] 0.364 [0.586] 0.826 [0.124]

Antihistamines 0.000 [0.950] 0.149 [0.801] 0.236 [0.714] 0.137 [0.813]

ADHD 0.680 [0.270] 0.622 [0.328] 0.526 [0.424] 0.793 [0.157]

Triptans 0.034 [0.916] 0.274 [0.676] 0.346 [0.604] 0.412 [0.538]

Urinary incontinence 0.261 [0.689] 0.296 [0.654] 0.432 [0.518] 0.530 [0.420]

Ace inhibitors 0.566 [0.384] 0.523 [0.427] 0.733 [0.217] 0.801 [0.149]

Nonsteroidal anti-inflammatory 0.497 [0.453] 0.528 [0.422] 0.672 [0.278] 0.730 [0.220]

Beta blockers 0.284 [0.666] 0.367 [0.583] 0.465 [0.485] 0.428 [0.522]

Proton pump inhibitors 0.277 [0.773] 0.229 [0.721] 0.328 [0.622] 0.378 [0.572]

Estrogens 0.183 [0.767] 0.375 [0.575] 0.414 [0.536] 0.471 [0.479]

Statins 0.247 [0.803] 0.315 [0.635] 0.491 [0.459] 0.436 [0.514]

Calcium-channel blockers 0.122 [0.828] 0.234 [0.716] 0.430 [0.520] 0.448 [0.502]

Oral hypoglycemics 0.090 [0.860] 0.085 [0.865] 0.136 [0.814] 0.117 [0.833]

Atypical antipsychotics 0.141 [0.809] 0.206 [0.744] 0.170 [0.780] 0.251 [0.699]

Mean (Cohen benchmark) 0.234 [0.716] 0.335 [0.615] 0.408 [0.542] 0.488 [0.462]

SWIFT-Review grand mean 0.540 [0.410]

Metrics shown are the WSS@95 and (in brackets) the proportion of studies screened to achieve 95 % recall. When applicable, bold text indicates the method with

the highest performance (highest WSS) for each dataset
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studies) and more complex with respect to the type of

study considered relevant (e.g., relevance is based on a

specific study design for transgenerational and evidence

from human, animal, and in vitro studies were considered

relevant for BPA and PFOS/PFOA). One fundamental dif-

ference between the various datasets may be the search

procedure used to obtain the initial corpus. For example,

compared to some of the other datasets, the NIEHS litera-

ture searches may place more emphasis on recall over

precision, potentially leading to more “low hanging fruit”

for the classification algorithm to eliminate. Similarly, the

observed performance on the transgenerational data was

Fig. 4 Performance of ranking algorithm on five datasets: Transgenerational, BPA, PFOS/PFOA, Neuropain: N= 100 [50 included; 50 excluded.]; Fluoride:
N= 60 [30 Included; 30 Excluded.]) In all cases, the ranking algorithm results in a substantial potential reduction in screening effort compared to random

ordering, with WSS@95 scores ranging from about 60 % (neuropain) to 90 % (fluoride)

Fig. 3 Learning curves. The graphs above show that, as expected, performance of the prioritization method on each dataset is an increasing function of
training set size. Since the total number of available positive instances varies significantly between datasets, not all sizes could be tested for each dataset
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worse than performance on the more targeted topics such

as the PFOS/PFOA and BPA datasets because of the lack of

consistency in defining the concept of translational inherit-

ance in the literature and the broad range of literature con-

sidered relevant, i.e., relevance was based on utilization of a

certain study design with no restriction on type of exposure

or health outcome (see protocol for the transgenerational

inheritance systematic review for more detail [20]).

Although most of the data sets (18 of 20) used in the

current analysis are based on PubMed searches, the

ranking methodology available in SWIFT-Review is ap-

plicable to any set of scientific titles and abstracts, in-

cluding those derived from non-PubMed bibliographic

sources. The inclusion of PubMed-specific MeSH terms

was found to result in only a minor improvement to

ranking performance. In fact, in this study, the data set

with the highest WSS@95 score was fluoride, one of the

two datasets for which MeSH terms were unavailable.

In a recent related work [21], it was noted that LDA topic

modeling resulted in performance inferior to simple alpha-

numeric features on a similar classification task. However,

in that instance, topic models were used instead of alpha-

numeric features; here, we use topic models in addition to

the bag of words model. We observed that adding LDA

features increased the overall performance by an average of

+4.4 % WSS@95. The two datasets that benefitted most

from LDA were the two datasets with the smallest number

of positive instances available for training: skeletal muscle

relaxants and opioids. For these two datasets, adding LDA

features increased the performance by +16.4 % and +26.8 %

WSS@95, respectively. Since LDA is an unsupervised

algorithm, it is expected that it may confer the largest

benefit when the total number of labeled documents is

small, but when many unlabeled documents are available.

For these reasons, the prioritization module available in

SWIFT-Review automatically computes and includes these

features.

Fig. 6 Study Flow diagram for the analysis of 171 UNEP EDC chemicals.
The literature search identified 221,898 recent research articles out of

the total 709,573 EDC articles retrieved from searching PubMed

Fig. 5 Observed changes in WSS@95 attributable to three feature types. a LDA, b MeSH terms, and c N-grams on 20 SR datasets. Mean changes
in WSS@95 were 4.4 % (LDA), 1 % (MeSH), and −0. 4 % (NGrams). In each case, performance was measured on each of the 20 datasets both with

and without the specified feature type. The resulting WSS@95 differences for each dataset were averaged over 25 trials. As shown in a, adding LDA features
to the ranking algorithm can result in significant performance increases, whereas inclusion of the MeSH and NGram features (b and c) were not found to
result in large additional benefits when the remaining feature types were also included
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It should be noted that the testing procedure used to

compare ranking performance to previous work assumes

that one half of the total available data is available for

training. While this may be obtainable in practice for

scenarios where the task is to update an existing review,

for new reviews, the number of seed documents will

most likely be much smaller. As shown in Fig. 3, ranking

performance is an increasing function of training set

size. On the other hand, we have observed excellent per-

formance using our models in several cases even when

the training sets are very small.

Finally, we also note that our prioritization method is

very fast, generally requiring, at most, only a few mi-

nutes for training. The most time-consuming parts are

loading the data and computing the topic model, but

these are actually performed only once when the project

is first created.

Document tagging

The tagging and annotation capabilities of SWIFT-

Review can be useful during the activities of scoping and

problem formulation. Together, they can be employed to

more quickly assess the extent of available evidence,

prioritize health outcomes and chemical exposures for

systematic review, and understand the degree of evi-

dence integration that may be required. In addition, the

resulting visualizations and reports can help to identify

topics that have been extensively studied as well as emer-

ging areas of research. Topic modeling results can also be

used to automatically uncover important themes found in

a literature corpus and can help to identify “seed studies”

for the purpose of training a machine-learning model that

priority ranks relevant studies in focused areas.

Additional work is required to validate the accuracy of

the tagging against manual review. We envision that re-

finements will be made to the current search filters used

to classify health outcomes and evidence streams to im-

prove accuracy based on results of validation work. How-

ever, we have presented a realistic case study for the use of

SWIFT-Review for problem formulation and found that

the tagging capabilities of SWIFT Review are useful to

understand the relative data rich and data poor aspects of

a topic of interest, for example the most studied health

outcomes for a particular chemical or the relative propor-

tion of evidence that is animal-based. Also, by interactively

and iteratively exploring, tagging, and filtering the corpus,

it is possible to use SWIFT-Review to efficiently enrich the

corpus and bring promising research topics into clearer

focus. Current practice at the NTP is to use the tagging

features during problem formulation (or “scoping”) but to

rely on manual tagging when implementing the formal sys-

tematic review. With respect to creating automatic search

Fig. 7 Interactively exploring arsenic in the EDC scoping report in SWIFT-Review. This example shows a pie chart survey of health outcomes represented
among the 2400 studies on arsenic with a MeSH disease code. In this pie chart, studies lacking a MeSH disease code are not displayed (9553 of the 11,953

documents retrieved for arsenic) and documents may appear in multiple health outcome categories. Below the pie-chart is a list of 1342 documents
relevant to “arsenic and neoplasms”. Inset Using the interactive browser, users can “drill down” to further explore documents in a specific area,
e.g., arsenic and neoplasms, based on other tags such as evidence stream (human, animal, in vitro)
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Fig. 9 Excerpt of a heat map displaying search results for the 171 EDC chemicals categorized by health outcomes. The numbers displayed indicate the
number of SWIFT-Review records matching each combination of chemical (rows) and health outcomes (columns). “Pockets” with larger numbers of

matching records are displayed in red color

Fig. 8 Survey of types of chemicals associated with female urogenital disease and pregnancy. The current example uses a pie chart graphic to survey

the types of stressors (e.g., pesticides, drugs of abuse, diet and nutrition) associated with the health outcome of female urogenital disease and pregnancy.
Below the pie chart is a list of 611 documents retrieved as part of the “pesticides” filter within SWIFT-Review and a bar chart of the most common Tox21

chemicals referenced in the pesticides cluster. Note that bisphenol A is not a pesticide but appears on this list because it was frequently mentioned in
the pesticide studies
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strategies for Tox21 and other chemicals, we find that

automation greatly reduces the amount of time required to

create draft search strategies (especially for topics that in-

volve many chemicals) but that manual review of the auto-

mated search strategy is recommended. For example, by

interactively and iteratively exploring, tagging, and filtering

the corpus, it is possible to use SWIFT-Review to effi-

ciently enrich the corpus and bring promising research

topics into clearer focus.

Limitations and future developments

One barrier for widespread uptake of priority-ranking

methods like SWIFT-Review is the current inability to

provide users with feedback on when to stop screening

to achieve a desired percentage recall. This is an area we

are actively investigating. Like related approaches

[22–24], our method of detecting this stopping threshold

may involve some amount of random sampling, a tactic

which appears to work well, but will come at a cost in

terms of WSS. Another barrier is that seed studies need

to be identified to train the models, which can present

an additional human screening burden. To address these

issues, we and others [23, 25–27] are moving toward ac-

tive learning and models that can be initialized without

seed studies and then continuously updated during the

screening process. Under this active learning framework,

it also becomes more natural to implement sampling

methods that can utilize feedback from the user in

order to estimate at what point they can stop screen-

ing with confidence that a desired level of recall has

been achieved for a particular data set. With some

additional modifications, the prioritization method we

have presented here can be modified to accommodate

these improvements.

The public version of SWIFT-Review currently works

with PubMed records only. Future developments will in-

clude the ability to upload non-PubMed records directly

from an EndNote library, flat file, etc., as well as options to

import full-text documents and enhancements to the auto-

mated tagging functions such as support for gene names,

new chemical lists, MeSH-on-demand, etc. In addition, in

order to extend health outcome tagging to documents

originating from alternate bibliographic databases as well

as abstracts that have not yet been indexed by MeSH, we

are currently preparing search strategies that can be used

to tag documents according to the following broad

categories of health outcome: body weight/growth, cancer,

cardiovascular, dermatological, developmental, endocrine,

gastrointestinal, hematological, immunological, hepatic,

renal, metabolic, musculoskeletal, neurological, sensory,

reproductive, and respiratory. These features will appear in

future updates of the software.

Fig. 10 Topic models bar chart from the EDC scoping report. Topic modeling is an unsupervised clustering technique that can often automatically
“discover” the main themes in an unlabeled literature corpus. For example, in the case of the EDC literature set, several interesting topics are shown
above including topics related to BPA exposure during pregnancy (topic 13), analytical methods used to measure levels of EDCs (topic 23), estrogen,

expression, and receptors (topic 7), lead and arsenic exposure (topic 31), breast and prostate cancer (topic 26), and thyroid disease (topic 15). Within
SWIFT-Review, users can select any of these topics to interactively browse the associated documents
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Conclusions
Text-mining and machine learning programs such as

SWIFT-Review can be valuable tools to reduce the human

screening burden and assist in problem formulation. The

freely available SWIFT-Review software is currently being

used by researchers in government, academic, non-profit,

and for-profit organizations and is under ongoing devel-

opment, with several new features planned.
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