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ABSTRACT

Flow cytometry (FC) is a powerful technology for rapid multivariate

analysis and functional discrimination of cells. Current FC platforms

generate large, high-dimensional datasets which pose a significant

challenge for traditional manual bivariate analysis. Automated mul-

tivariate clustering, though highly desirable, is also stymied by the

critical requirement of identifying rare populations that form rather

small clusters, in addition to the computational challenges posed by

the large size and dimensionality of the datasets. In this paper, we ad-

dress these twin challenges by developing a two-stage scalable mul-

tivariate parametric clustering algorithm. In the first stage, we model

the data as a mixture of Gaussians and use an iterative weighted sam-

pling technique to estimate the mixture components successively in

order of decreasing size. In the second stage, we apply a graph-

based hierarchical merging technique to combine Gaussian compo-

nents with significant overlaps into the final number of desired clus-

ters. The resulting algorithm offers a reduction in complexity over

conventional mixture modeling while simultaneously allowing for

better detection of small populations. We demonstrate the effective-

ness of our method both on simulated data and actual flow cytometry

datasets.

Index Terms— Flow cytometry, clustering, Gaussian mixture

model, sampling, expectation-maximization

1. INTRODUCTION

Flow cytometry (FC) has recently emerged as a high throughput

technology with a wide variety of biological applications. We fo-

cus here on immunophenotyping where the presence of antigens in

blood cells is detected by fluorescently labeled antigen-specific an-

tibodies. The fluorophores bound to each cell are recorded using

laser excited fluorescence with detectors matched to the wavelengths

emitted by the individual fluorophores. Thus the technology enables

measurement of the relative amount of each antigen within a cell.

FC has proven useful for the diagnosis and monitoring of different

types of acute leukemias, chronic lymphoproliferative disease, HIV

infections, and malignant lymphomas [1].

The goal of the FC data analysis is to identify populations that

express similar behaviors in the measured variables. Traditional

analysis is done by manually drawing gates or regions of interest on

bivariate plots and sequentially filtering the data until homogeneous

cell populations are identified. This approach, known as bivariate

gating, is subjective, labor intensive, and scales poorly with increas-

ing number of dimensions. Moreover, many high dimensional fea-

tures may not be perceptible in lower dimensional (bivariate) projec-
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tions. So it is highly desirable to use automated multivariate cluster-

ing instead of bivariate manual gating. However automated multi-

variate clustering comes with many challenges. The FC datasets can

be very large (∼ 1 million cells) with high dimensionality (∼ 20
dimensions). For many clustering algorithms, this size and dimen-

sionality are prohibitively expensive both in terms of computation

and memory. Also there exist overlapping, non-spherical clusters

that are heterogeneous in size, shape and orientation. Moreover, FC

datasets tend to have few sparse and rare populations of interest (few

hundred cells or less). Finding these rare populations out of millions

of cells is extremely difficult for the existing clustering methods. Re-

cently several methods were suggested for clustering FC data [2–4]

and all of them are based on mixture model [5] clustering and the

Expectation Maximization (EM) algorithm [6]. Thus far, however,

these methods have only been applied to small datasets and not scal-

able to large datasets and tend to miss small sparse populations in

the presence of other large clusters.

In our work, we address two main issues with the existing meth-

ods, the issue of scalability and the identification of rare populations.

We propose an iterative sampling framework that is based on mixture

model fitting to random samples drawn from the dataset and proba-

bilistically “damp” the well explained larger clusters iteratively. This

method can yield higher performance and scalability and at the same

time increase the probability of finding the smaller clusters which

may not be correctly estimated in the presence of the larger clus-

ters. Our experiments show that, the proposed method can find some

very small populations that the standard EM algorithm (working on

full datasets) often fails to find in the presence of larger partially

overlapping populations. Previously sampling based methods have

been proposed to scale EM algorithm to large datasets [7–9]. Our

method is different in that, it is driven by the goal of finding the

rare small populations which are highly significant in FC. We pro-

pose a novel posterior-probability based iterative weighted resam-

pling technique to “damp” the already well-explained larger clus-

ters. We focus mainly on Gaussian Mixture model based cluster-

ing because of its analytic closed form and computational efficiency.

However, our framework can easily be extended to accommodate

mixture of t or skewed t-distributions. Finally, we propose a hierar-

chical merging method to merge overlapping Gaussian components

that may represent a single non-Gaussian cluster.

2. PROPOSED METHOD

We propose a two-stage method for automated multivariate cluster-

ing of FC data. The presence of overlapping non-spherical clusters,

background noise and near Gaussian distribution of different clusters

in FC data motivated the use of Gaussian mixture model clustering.

In the first stage, we fit a k-component Gaussian mixture model to
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the data. Many clusters in flow cytometry data are distinctly skewed

and are not well-approximated by Gaussian distributions. We ad-

dress this issue by representing these with two or more Gaussian

components and adding a second stage for combining components

that overlap to form the final set of clusters.

The EM algorithm is typically used for fitting Gaussian mixture

models to data. Since the EM algorithm is inefficient on large data

sets and we are particularly interested in small sparse clusters, we

use a modified EM algorithm that uses weighted iterative sampling.

This is described in Section 2.1. Since the input to our algorithm is

the number of clusters and not the number of Gaussian components,

we determine the appropriate number of Gaussian components to fit

to the data using the Bayesian Information criterion (BIC) [5] which

has been previously reported to provide good estimates [10].

In the second stage, we apply a graph-based hierarchical merg-

ing technique to combine overlapping Gaussian components that

may represent a single non-Gaussian cluster. This is described in

Section 2.2.

Let X = {X(i)}N
i=1 be a set of N d-dimensional vectors de-

scribing N cells in terms of the d FC measurements per cell. The

probability density function of a k-component Gaussian mixture dis-

tribution can be written as:

p(X(i)|θ) =

k
X

j=1

πj N (X(i)|μj , Σj) (1)

where N (.) denotes the normal distribution, and πj , μj and Σj

are respectively the mixing coefficient (fraction of points belong-

ing to each cluster), mean and covariance of the j-th component.

These are known as the parameters (θ) of the Gaussian Mixture

model. The goal of Gaussian mixture model clustering is to estimate

the parameters θ that maximize the log-likelihood of the given data

X. Once the parameters (θ) are estimated, the cluster assignment

is performed using the posterior probabilities γ
(i)
j , the probability

of the i-th datavector (X(i))) belonging to the j-th cluster where

i = 1, . . . , N and j = 1, . . . , k. Specifically,

γ
(i)
j =

πjN (X(i)|μj , Σj)
Pk

l=1 πlN (X(i)|μl, Σl)
(2)

and each datavector is associated with the component for which the

posterior probability is the largest.

2.1. Iterative weighted sampling for complexity reduction

Our algorithm, summarized as Algorithm 1, is designed to itera-

tively identify large dense clusters and perform weighted resampling

from the dataset that will select the remaining datapoints (not be-

longing to those large cluster) with higher probability. We improve

both efficiency and the ability to find small, sparse clusters by work-

ing with the weighted random samples taken from the data set. The

basic intuition is that a random sample represents the large, dense

populations with reasonable fidelity, but may miss the sparse, small

populations. Thus, the large clusters detected in a random sample

are likely to be found in the original data set. In each iteration of

our algorithm (steps 5-12), we fix the parameters of the p most pop-

ulous clusters and perform the weighted resampling that will select

the points belonging to the remaining smaller clusters with higher

probablity. In the M-step (step 9) we re-estimate all parameters ex-

cept those that are already fixed. We continue this process iteratively

until all the cluster parameters are fixed. After explaining the larger

populations and reducing their weights while resampling, the proba-

bility of discovering smaller population increases.

The weighted resampling is not straightforward in the presence

of overlapping clusters. After fixing the parameters of the largest

clusters in each iteration, we resample points from the dataset based

on their posterior probabilities of not belonging to those fixed clus-

ters. Let F be the set of Gaussian components whose parameters

have already been fixed. In the next iteration, we resample accord-

ing to a weighted distribution where the probability of selecting each

point X(i) is as follows:

p(X(i) is selected) = 1 −
X

l∈F

γ
(i)
l (3)

This resampling technique helps us to reject points belonging to the

largest fixed cluster without distorting the distributions of other over-

lapping smaller clusters. For example, points near the centroid of the

largest cluster have a posterior probability of nearly 1.0 to belong to

this cluster and are therefore almost certainly rejected in our next

resampling. On the other hand, points near a Gaussian tail that over-

laps with another Gaussian have lower posterior probabilities and

are less likely to be rejected. This posterior probability based re-

sampling technique is a novel aspect of our algorithm. Previously a

threshold based approach was proposed that excludes only the high

confidence regions of the fitted Gaussian using a threshold on prob-

ability density or outcomes of a statistical test [8]. However, that

approach leaves behind the tails of the excluded Gaussian and thus

introduces inaccuracy in the subsequent iterations.

Input: X, k, n, p
X: sequence of N data vectors {X(i)}N

i=1

k: Number of Gaussian mixture components

n: Sample size

p: Number of components to fix at a time

Output: θ: Parameters of Gaussian mixture model

Obtain set S of n random samples drawn from X.1

Estimate parameters θS using EM on S2

Estimate posterior probabilities γ
(i)
j via an E-step on X3

using parameters θS

Let F be the set of Gaussian components whose4

parameters have been fixed. Initialize F ← ∅
repeat5

Determine F1 = { The p most populous Gaussian6

components �∈ F} for the current model θS

Fix the parameters of components ∈ F1. Set7

F ← F ∪ F1

Resample a set of n points S from X with a weighted8

distribution where each point is selected with

probability (1 −
P

l∈F
γ

(i)
l )

Apply modified EM algorithm on S that does not9

update the parameters of already fixed components.

In the M step, update only components �∈ F

Normalize the mixing probabilities πj , j �∈ F,10

computed in the M step to (1 −
P

l�∈F
πl)

Perform a single E-step on X to recalculate the11

posteriors γ
(i)
j

until all the components are fixed12

θ ← parameters of all the components ∈ F13

Algorithm 1: Iterative sampling based EM
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As expected, the computational complexity is significantly re-

duced by the iterative sampling approach. For N data points with

dimensionality d, the computational cost of finding k clusters us-

ing the traditional EM algorithm is O(Nkd2) per iteration. On the

other hand, for sample size n, the cost of each EM iteration of the

proposed method is O(nkd2).

2.2. Hierarchical merging of clusters

As mentioned, the proposed method merges highly overlapping

Gaussian components to get clusters. For deciding which compo-

nents to merge, we use the symmetric KL divergence as the distance

measure between two components [11].

Ds [p, q] = DKL(p, q) + DKL(q, p) (4)

For Gaussian distribution,

Ds [N (x|μi, Σi),N (x|μj , Σj)] =
1

2
Tr

ˆ

Σ−1
i Σj + Σ−1

j Σi

˜

+
1

2
(μi − μj)

T
ˆ

Σ−1
i + Σ−1

j

˜

(μi − μj) (5)

Our merging algorithm, summarized as Algorithm 2, is graph-

based, and similar in spirit to the ‘multiclustering’ algorithm by

Ashlock et al [12] with two key differences, 1) we use EM based

mixture modeling instead of K-means for identification of the clus-

ters and 2) we use (symmetric) KL divergence instead of the cluster

coherence metric as the distance between clusters as in [12].

The algorithm runs in time O(k4) since the number of edges |E|
is Θ(k2) and for the number of connected components can be found

using a depth-first search, which runs in time O(k2).

Input: θ, k, m

θ: The estimated Gaussian Mixture parameters

k: Number of Gaussian mixture components

m: The final number of clusters after merging

Output: mergedClusterList

Represent each of the k components as a vertex of a Graph.1

Initially assume the graph is fully connected. Let the weight2

of each edges between two vertices be equal to the symmetric

KL divergence between the associated componets.

repeat3

Remove the next maximum weighted edge from the4

current graph.

Compute the connected components in the graph.5

until Number of connected components is m6

Algorithm 2: Hierarchical cluster merging

3. EXPERIMENTAL RESULTS

In this section, we demonstrate that the proposed method works well

on both synthetic data and FC data. Synthetic data allows us to com-

pare against the ground truth and against other algorithms. We note

that these comparisons are with smaller datasets since memory and

speed limitations do not allow these existing algorithms to be used

on typical full size FC datasets. For the actual FC data, we compare

our automated clustering results against the manual gating process

that is typically employed by biologists. Since this process does not

identify an exhaustive set of clusters and because objective criteria

for clustering of FC data are difficult to define, our comparison ex-

plores the agreement between collections of clusters and populations

of interest identified in the manual gating process.

3.1. Experiments on synthetic data

The goal of this experiment is to compare the proposed method with

the traditional EM algorithm with respect to speed and the ability

to find the smaller clusters. We created synthetic data from a mix-

ture of four bivariate Gaussians with wide variations in their popula-

tion size, viz., 150,000, 100,000, 50,000 and 150 points respectively.

Note that the smallest cluster is 1000 times smaller compared to the

largest cluster. We applied the traditional EM and the proposed al-

gorithm on the same dataset. While the proposed sampling based

method correctly estimated the parameters of the smallest cluster

(see Figure 1), the traditional EM algorithm (running on the full

dataset) fails to estimate the parameters correctly. Table 1 presents

quantitative comparison results for these algorithms (average over

the 20 independent runs) in terms of the average KL divergence be-

tween the true and estimated parameters for all clusters and the crit-

ical smallest cluster.

(a) Proposed Method (b) Traditional EM (on full dataset)

Fig. 1. Clusters found by the proposed method and the EM algorithm

Table 1. Comparison with traditional EM algorithm.

Proposed Method Traditional EM

Avg Runtime 41.18 sec 155.08 sec

Avg KL divergence 0.1194 0.3699

Avg KL divergence 0.3584 1.3065

(smallest cluster)

Next, we verified that the proposed method works well when

clusters are non-Gaussian. Due to space constraints, we only present

results on a synthetic data set that has two clusters that are are

strongly non-Gaussian and non-convex (Figure 2). After fitting 10

Gaussian components and then merging them down to two clusters

using the hierarchical merging method of Algorithm 2, the two

clusters can be detected accurately.

3.2. Experiments on flow cytometry data

For our first evaluation on FC data we used the publicly avail-

able FICCS test dataset ‘FACSAria’ (available at http://www.

ficcs.org). This dataset contains 1 million cells with 20 recorded
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(b) After merging down to 2 clusters

Fig. 2. Clustering horse-shoe dataset with two non-convex clusters
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Fig. 3. Density plot for two variables, FSC-H and SSC-H

(a) Fitted 16 Gaussians (b) After merging

Fig. 4. Clusters produced by the proposed method

variables per cell. Due to space limitations and challenges with high

dimensional data visualization, we present the results of the pro-

posed method in a 2D view with respect to two size variables, viz.,

forward scatter (FSC-H) and side scatter (SSC-H). Figure 3 shows

the density of data in these two variables.
Using BIC, we chose to fit 16 Gaussian components to the data.

Note the presence of relatively sparse cluster on the left and a very

small cluster in the bottom part of the density plot (Figure 3). Even

though the method correctly estimated most of the dense elliptic

clusters (Figure 4(a)), the uniform background and a non-Gaussian

cluster in the middle are divided into multiple clusters. After ap-

plying the hierarchical merging (down to 10 clusters), most of the

overlapping clusters are merged (Figure 4(b)) and we can see strong

visual correspondences between the clusters and the dense regions

in Figure 3.

Next we validate the proposed method against manual FC gating

performed by a biologist. We have tested with 3 PBMC blood sam-

ple datasets among which, one is unstimulated and the other two are

stimulated with SEB and the Flu vaccine respectively. Each of these

datsets contain 23 dimensions and on average 450,000 cells descrip-

tions. For all the three datasets, the biologist successively gated the

FC data using 3 bivariate axes views (of the 23-D data) that corre-

Table 2. Comparison of proposed method with manual gating on

PBMC blood samples with different stimulations.

Stimulation
Live-Dead- CD3+ CD14- CD4+ CD8-

Ca% Ga% Ca% Ga% Ca% Ga%

None 92.80 93.02 87.24 89.42 88.52 91.14

SEB 95.8 97.03 93.65 97.94 90.93 89.79

Flu Vaccine 93.64 93.73 90.78 91.11 87.14 84.13

sponded to, 1) The live cells that express negative response to the

stain Live-Dead, 2) The CD3+ CD14- cells and 3) The CD4+ CD8-

cells. In order to assess the consistency between the manual gat-

ing and the proposed automated clustering, the population, selected

by each gate or sequence of gates (G) is compared against a union

of clusters (C) that have significant (50% or higher) overlaps with

the corresponding gated population. To quantify the agreement be-

tween the manual gating process and automated clustering, we use

two metrics, Ca =| C ∩ G | /| C | and Ga =| C ∩ G | / | G | that

corresponds roughly to the sensitivity and specificity, respectively.

The results are shown in Table 2 and validate that the clustering is in

good agreement with the manual selection process.

4. CONCLUSION

In this paper, we propose a scalable algorithm for clustering flow

cytometry data. Unlike most existing methods, our algorithm scales

to the large data sets typical in Flow cytometry applications. Using

both simulated and real data, we demonstrated that the proposed al-

gorithm is able to identify small, sparse clusters in the presence of

heterogeneity of cluster sizes, shapes and densities - a situation that

is commonly encountered in typical FC applications.
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