
PAPER www.rsc.org/softmatter | Soft Matter

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
O

X
FO

R
D

  o
n 

24
 A

ug
us

t 2
01

0
Pu

bl
is

he
d 

on
 0

1 
Ju

ly
 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
00

16
4C

View Online
Swimmer-tracer scattering at low Reynolds number
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Understanding the stochastic dynamics of tracer particles in active fluids is important for identifying

the physical properties of flow generating objects such as colloids, bacteria or algae. Here, we study

both analytically and numerically the scattering of a tracer particle in different types of time-dependent,

hydrodynamic flow fields. Specifically, we compare the tracer motion induced by an externally driven

colloid with the one generated by various self-motile, multi-sphere swimmers. Our results suggest that

force-free swimmers generically induce loop-shaped tracer trajectories. The specific topological

structure of these loops is determined by the hydrodynamic properties of the microswimmer.

Quantitative estimates for typical experimental conditions imply that the loops survive on average even

if Brownian motion effects are taken into account.
I. Introduction

Scattering processes are ubiquitous in Nature, ranging from

elementary particle collisions at subatomic scales to gravitational

encounters in galactic clusters. Traditionally, scattering experi-

ments have played an important role in elucidating the inter-

actions between ‘non-living’ physical objects. Nowadays,

modern experimental techniques allow us to track the motion of

individual microorganisms,1–4 as beautifully illustrated by recent

high-speed microscopy observations of Volvox5 and Chlamydo-

monas reinhardtii.6,7 These and similar experiments on colloidal

systems8 suggest that it should be possible in the near future to

systematically study the effective hydrodynamic interaction

forces generated by algae, bacteria or artificial micro-

swimmers9,10 through suitably designed biophysical scattering

experiments.

Additional motivation for studying swimmer-tracer scattering

comes from recent experiments by Leptos et al.,6 who observed

that a passive tracer particle exhibits non-Gaussian diffusion

when surrounded by a dilute suspension of self-motile Chlamy-

domonas reinhardtii algae. Qualitatively, the anomalous diffusive

behavior arises because the algae modify the velocity field of the

fluid, thereby occasionally accelerating the tracer particle to

relatively large velocities. A satisfactory quantitative explanation

for this phenomenon is still missing, and a better understanding

of the underlying elementary scattering processes is a key step

en route to deriving the corresponding generalized diffusion

equation.

The present paper aims to identify generic features that should

be observable when a small colloidal tracer particle is scattered

by an artificial or natural microswimmer. Specifically, we address

the following problems: How does the tracer dynamics differ

depending on whether a swimmer’s motion is externally forced or

internally generated? Is it sufficient to consider an effective time-

averaged description in order to correctly predict the tracer

trajectories – or is it necessary to use a time-resolved model that
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captures the details of the swimming stroke? How does Brownian

motion, which plays a non-neglible role for (sub-)micron-sized

colloidal particles, affect the tracer dynamics? To answer these

questions, we will compare both analytically and numerically the

dynamics of a tracer in the presence of various simplified model

swimmers.

The first part of our discussion focusses on deterministic

scattering processes. In order to clarify how the effective inter-

action range determines the asymptotic state of the tracer, we

shall consider a simplified power-law interaction model and, as

a more realistic example, tracer displacement due to an exter-

nally driven colloid. The main part of the paper is dedicated to

the scattering of a tracer by 2-sphere and 3-sphere swimmers

that generate predominantly dipolar and quadrupolar flow

fields, respectively. We show that, asymptotically, the tracer

motion in the presence of a self-motile, force-free swimmer

converges to a closed loop. The shape and direction of the loops

is a signature of the specific properties of a given swimmer. For

experimentally accessible parameters, Brownian motion effects

may dominate the trajectories of an individual tracer particle. In

the last part of the paper, we will demonstrate that, after

averaging over a few hundred to thousand samples, the mean

tracer trajectories look very similar to those obtained in the

deterministic limit.
II. Mathematical model

We consider the motion x(t) of a passive, colloidal tracer particle

in a fluid due to the presence of an active object (‘swimmer’). The

latter, which may be an externally forced colloid, an artificial

microswimmer or a micororganism (e.g., an alga or a bacterium),

is described by a phase space coordinate vector G(t). For

example, for a spherical colloid with position vector X(t) and

velocity Ẋ(t): ¼ dX(t)/dt, G(t) is simply given by G(t) ¼
(X(t),Ẋ(t)). For more complex objects, such as multi-sphere

swimmers,11–13 G comprises all the coordinates necessary to

uniquely specify the motion of the swimmer. Throughout, we

shall assume that, in good approximation, the tracer particle

does not affect the swimmer motion, i.e., G(t) is taken to be

independent of x(t).
This journal is ª The Royal Society of Chemistry 2010
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Fig. 1 Swimmer-tracer scattering. The swimmer (S) starts at X0 ¼ (X0,

Y0, 0) and moves with velocity V ¼ (V, 0, 0) parallel to the x-axis. The

trajectory of the tracer (T), initially located at x(0)¼ (0, 0, 0), depends on

the flow field generated by the swimmer.
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A. Langevin dynamics of the tracer

In principle, when studying the scattering of a tracer particle by

a self-swimming object, one can distinguish (at least) two

different approaches:

(i) analyzing the approximate mean motion of the tracer

particle in the time-averaged (or stroke-averaged) effective flow

field of the swimmer.

(ii) computing the exact, time-resolved motion of the tracer

particle in the full oscillatory flow field of the swimmer.

Below we will compare results from both methods for multi-

sphere swimmer models.12,13 We will start from the time-averaged

description (i) which is less accurate, but allows us to obtain

analytical estimates. When adopting this coarse-grained

approach, the swimmer state is approximated by G(t) ¼
(X(t),Ẋ(t)), and the swimmer is assumed to move at constant

velocity Ẋ(t)^V along the straight line

X(t) ¼ X0 + tV. (1)

The effective stroke-averaged swimmer velocity V results from

the microscopic swimmer dynamics.

Let us assume we know the velocity field v(x|G(t)) that is

generated by a given swimmer configuration G(t). In this case, we

can model the motion of a micron-sized tracer particle by the

overdamped Langevin equation

ẋ(t) ¼ v(x(t)|G(t)) + (2D0)1/2z(t). (2a)

This equation is valid in the Stokes (zero Reynolds number)

regime, which is realized to good approximation under typical

experimental conditions.5–7 The second contribution on the rhs

of eqn (2a) is Gaussian white noise z(t) ¼ (zi(t)), which describes

thermal fluctuations in the fluid and is characterized by

hzi(t)i ¼ 0, hzi(t)zj(s)i ¼ dijd(t � s). (2b)

For a spherical tracer particle of radius a0, the thermal diffu-

sion constant D0 is given by the Stokes formula

D0¼ kT/g0 ¼ kT/(6pha0) (2c)

where a0 is the tracer radius and g0 the Stokes friction coefficient.

For example, considering a0 ¼ 1mm and water at room temper-

ature T ¼ 25 �C with viscosity h ¼ 10�3kg m�1s�1 and kT ¼ 4.11

� 10�21kg m2s�2, we have D0 ¼ 0.22mm2s�1.

B. Initial conditions

We intend to analyze swimmer-tracer scattering processes for

well-defined, reproducible initial conditions. For this purpose,

we choose the coordinate system such that the spherical tracer

particle is initially located at the origin, x(0) ¼ 0. The swimmer

(characteristic length scale A) starts at X0¼ (X0, Y0, 0) with |Y0| >

a0 + A and moves in the (z ¼ 0)-plane with an average velocity V

¼ (V, 0, 0) parallel to the x-axis, see Fig. 1.

III. Tracer scattering in time-dependent flow fields

Our main objective is to understand the motion of the tracer in

the velocity field v(x|G(t)) of an externally driven or self-motile
This journal is ª The Royal Society of Chemistry 2010
object. In order to simplify the notation, it is convenient to define

the distance vector between tracer and swimmer by

r(t) ¼ x(t) – X(t) (3a)

and to introduce two unit vectors

r̂ðtÞ ¼ rðtÞ
jrðtÞj ; n̂ ¼ V

jV j (3b)

with n̂(t) characterizing the orientation of the swimmer motion.

In the examples considered below, the effective hydrodynamic

interaction between swimmer and tracer is mediated by non-

diagonal tensors H ¼ H(|r|,r̂,n̂) ¼ (Hij), which relate the fluid

velocity at the position x(t) to the velocity V of the swimmer

through

v ¼ HV. (4)

The exact structure of H encodes the details of the propulsion

mechanism. For example, consider an externally forced colloid

of radius A that is pulled at constant velocity V. If the colloid

passes the tracer particle at a sufficiently large distance

|r(t)|:¼|x(t)�X(t)| [ A + a0, then H is given by the Oseen tensor

Hij ¼
3A

4jrj
�
dij þ r̂i r̂j

�
(5)

By contrast, the effective velocity field generated by a self-

swimming microorganism usually decays more rapidly as |r|�a,

a $ 2. In Sections IIIB, IIIC and IIID we shall compare the

scattering of tracers by externally forced colloids and multi-

sphere swimmers. However, in order to demonstrate how the

effective interaction range a affects the scattering process, it is

instructive to analyze a simplified power law interaction model

first.
A. Simplified power law interaction (a-model)

Let us assume that a hypothetical ‘swimmer’ of radius A gener-

ates a fluid velocity field of the simple power law form

vðxjXðtÞ;VÞ ¼ kV

�
A

jrðtÞj

�a

(6)

The dimensionless parameter k quantifies the interaction

strength. In order to understand the basic dynamics of a tracer in

this field, we will focus on the deterministic limit D0 ¼ 0 in the

Langevin eqn (2a). Brownian motion effects (corresponding D0 >

0) will be discussed later for more realistic flow fields.
Soft Matter, 2010, 6, 4268–4276 | 4269
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Adopting the initial conditions V ¼ (V, 0, 0), X(0) ¼ (X0, Y0,

0), and x(0) ¼ 0 as depicted in Fig. 1, the swimmer moves in the

x-direction and its x-position at time t is given by X(t)¼ X0 + tV.

The isotropic power law model (6) corresponds to the diagonal

tensor Hij¼ k (A/|r|)adij, which implies that the tracer particle also

moves along the x-axis, i.e., x(t) ¼ (x(t), 0, 0) where

_xðtÞ ¼ kV
An

½X ðtÞ � xðtÞ�2þY 2
0

o1=2

0
B@

1
CA

a

(7)

It is possible to find exact, implicit solutions of eqn (7) for a ¼
1, 2, . by transforming to the comoving swimmer frame. For

example, for long-range interactions with a¼ 1, we obtain, in the

original coordinate system,

xðtÞ ¼ kA

(
log

XðtÞ � xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½X ðtÞ � xðtÞ�2þY 2

0

q
X0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
0
@

1
A

� kAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

0 � k2A2
p

"
arctan

 
kAX0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
0 þ Y 2

0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

0 � k2A2
p

!

� arctan
kA½XðtÞ � xðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½X ðtÞ � xðtÞ�2þY 2
0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

0 � k2A2
p

0
B@

1
CA

þ arctan
X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
0 � k2A2

p
 !

� arctan
X ðtÞ � xðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
0 � k2A2

p
 !#)

(8a)

whereas for shorter range interactions with a ¼ 2

xðtÞ ¼ kA2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

0 � kA2
p

"
arctan

 
X ðtÞ � xðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
0 � kA2

p
!

� arctan

 
X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
0 � kA2

p
!#

(8b)

The exact results (8) are transcendental equations for x(t)

which can be numerically inverted for a given value t > 0 to give

the trajectory of the tracer particle. In particular, these equations

cover both the near- and far-field scattering behavior. However,

to gain additional analytic insights, it is useful to consider

in more detail the far-field scattering, corresponding to
Fig. 2 Deterministic tracer trajectories for three different model interaction

a function of time t for the simplified a-model with k ¼ 1 and the Oseen inter

range interactions that scale with distance as |r|�1 the tracer is dragged to infin

interactions with |r|�a, a $ 2 the maximal tracer displacement remains finite,

dashed lines to the approximate far-field result (9). The symbols were obtained

D0 ¼ 0 using a simulation time step Dt ¼ 2.2 � 10�7s. Parameters: swimmer

impact parameter Y0 ¼ 10A, initial swimmer position X0 ¼ � 25A.
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|x(t)| � max{|Y0|,|X(t)|} and k3�aA2�Y2
0. In this limit one

obtains, for a ¼ 1, the approximate result

xðtÞxkAlog
X ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðtÞ2þY 2

0

q
X0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
2
4

3
5: (9a)

Inserting X(t) ¼ X0 + tV, we see that asymptotically (for

t / N)

xðtÞxkAlog

"
2tV

X0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
#
: (9b)

Thus, for v f |r|�1 the solution is logarithmically divergent in

time, implying that the tracer particle is slowly dragged away to

infinity. Defining the asymptotic displacement as a function of

a by

ðDxÞNa :¼ lim
t/N
½xðtÞ � xð0Þ�; (10)

the divergence implies (Dx)N
1¼N. Performing a similar analysis

for a ¼ 2 yields

xðtÞxkA

�
A

jY0j

��
arctan

�
X ðtÞ
jY0j

�
� arctan

�
X0

jY0j

��
; (11a)

and thus, in the limit t / N,

ðDxÞN2 ¼ kA

�
A

jY0j

��
p

2
� arctan

�
X0

jY0j

��
(11b)

i.e., for a ¼ 2 the tracer particle comes to rest after a finite

distance (Dx)N
2. Analogous results can be obtained for arbitrary

values a $ 2. For example, for a ¼ 3

xðtÞxkA

�
A

jY0j

�2
XðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðtÞ2þY 2
0

q � X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
2
64

3
75; (12a)

yielding the maximal displacement

ðDxÞN3 ¼ kA

�
A

jY0j

�2
 

1� X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
!
: (12b)

To briefly summarize, for long-range hydrodynamic interac-

tions with v f |r|�1 the tracer experiences an infinite displace-

ment, whereas for shorter range interactions with v f |r|�a, a $ 2
s. (a) Tracer displacement in the direction of the swimmer’s motion as

action. (b) Tracer trajectories in the (x, y)-plane. For colloidal-type long-

ity - the divergence is logarithmic in time. By contrast, for shorter range

see red curve/triangles. Solid lines correspond to the exact result (8), and

by numerically integrating the deterministic equations of motion (2a) with

velocity V ¼ 100m/s, swimmer radius A ¼ 10mm, tracer radius a ¼ 1mm,

This journal is ª The Royal Society of Chemistry 2010
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the displacement is finite. These results are illustrated graphically

in Fig. 2.

The simple power law model (6) is useful for illustrating how

the range of the effective hydrodynamic interactions affects the

asymptotic state of the tracer particle. However, this truncated

model neglects fluid velocity components that act perpendicular

to the swimmer’s direction of motion. In the remainder, we will

focus on more physical models that account for these effects. As

the first example, we consider the scattering of a tracer by

a driven colloid.
Fig. 3 Simple multi-sphere swimmer models. (a) The 2-sphere swimmer

with variable radius spheres generates a dipolar net flow field that can be

either extensile or contractile with respect to the swimmer axis, see Fig. 4.

(b) The 3-sphere swimmer12 generates a flow field that is essentially

quadrupolar,13 see Fig. 7. Consequently, the trajectories of tracer parti-

cles are qualitatively different when scattered by the two swimmers.
b Externally forced colloid

Consider a spherical colloid (radius A) dragged at constant

velocity V past a smaller tracer particle (e.g., by a movable laser

trap). If the distance between tracer and colloid is sufficiently

large, |r(t)|[A + a0, the velocity field components vi ¼ HijVj

experienced by the tracer are determined by the Oseen tensor (5)

and we can approximate r(t) x X(t). Considering the deter-

ministic limit D0¼ 0 and the same initial conditions as before, we

then find that the trajectory of the tracer particle in the (z ¼ 0)-

plane is determined by the differential equation�
x_
y_

�
¼ kV

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðtÞ2þY 2

0

q
"�

1
0

�
þ X ðtÞ

X ðtÞ2þY 2
0

�
XðtÞ
Y0

�#
(13)

Owing to the non-vanishing off-diagonal components of the

Oseen tensor, the tracer experiences a transverse force (velocity

field) component in the y-direction. Eqn (13) can be directly

integrated, yielding

xðtÞ ¼ kA

(
2log

"
XðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðtÞ2þY 2

0

q
X0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
#
þ X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
0 þ Y 2

0

p
� XðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XðtÞ2þY 2
0

q
)

(14a)

yðtÞ ¼ kA

"
Y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
0 þ Y 2

0

p � Y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðtÞ2þY 2

0

q
#

(14b)

where X(t) ¼ X0 + tV. Letting t / N, we find that asymptoti-

cally

xðtÞx2kAlog

"
2tV

X0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

0 þ Y 2
0

p
#

(15a)

yðtÞ/kA

"
Y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
0 þ Y 2

0

p
#

(15b)

Note that the logarithmic divergence predicted by eqn (15a) is

in agreement with the earlier result (11a), i.e. the tracer particle

slowly follows the colloid to infinity.

The deterministic result (14) can be expected to correctly

describe a single tracer trajectory only if Brownian fluctuations

are negligible corresponding to the low-temperature, high-

viscosity regime. For a micron-sized tracer particle in water at
This journal is ª The Royal Society of Chemistry 2010
room temperature, Brownian motion effects can become relevant

if the speed V of the ‘swimmer’ colloid is too low and/or the

distance between tracer and swimmer colloid becomes too large.

In this case, eqn (14) provides an approximate description of the

ensemble mean when the scattering experiment is repeated using

identical (i.e., deterministic) initial conditions. The statistical

fluctuations around the mean trajectory (14) can be estimated byffiffiffiffiffiffiffiffiffiffi
2D0t
p

, where D0x0.22mm2/s for a micron-sized tracer. This

suggests that for the parameters and initial conditions used in

Fig. 2, the characteristic features of the solution (14) should

remain observable even for a single tracer trajectory.

Having discussed the scattering of a tracer by an externally

driven colloid, we shall focus on self-motile swimmers in the

remainder of the paper.14–17 In particular, we would like to

identify characteristic features of the tracer trajectories that

provide a signature of truly self-swimming objects, which do not

generate a net force during a swimming stroke. Specifically, we

are interested in understanding how the tracer trajectories differ

depending on

(i) whether a force-free swimmer is extensile (‘pusher’) or

contractile (‘puller’);

(ii) whether a force-free swimmer generates a dipolar or

a quadrupolar flow field.

For this purpose, we will study simple multi-sphere swimmers

that are analytically tractable and can be easily tuned from

extensile to contractile. An additional advantage of the simplified

models is that the underlying microscopic swimming mechanisms

can be implemented numerically using the methods described in

ref. [16,17]. This allows us to compare analytic estimates, which

are based on a time-averaged description, with numerical results

for the exact time-resolved dynamics.
C. Dipolar two-sphere swimmer

As the first example of tracer scattering by a self-motile object,

we consider a slender 2-sphere swimmer consisting of two beads

(radii A1,2) at positions X1,2(t) that are connected by an oscil-

lating leg of length

L(t)¼l+xsin(ut + q), l[x>0 (16)
Soft Matter, 2010, 6, 4268–4276 | 4271
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Fig. 4 Dipolar fluid flows generated by 2-sphere swimmer.– The diagrams

show the stroke-averaged fluid velocity field (20) for two different

swimmer setups: (a) extensile pusher with k2 > 0 and (b) contractile puller

with k2 < 0. In both cases the swimmer is located at the origin, points

along the x-axis, and swims in the positive x-direction. Swimmer

parameters: l ¼ 20mm, x ¼ A ¼ 0.1l, l ¼ 0.1A, u ¼ 5 � 102s�1 with Df ¼
Dq ¼ p/4 for extensile swimmers and Df ¼ 3p/4, Dq ¼ p/4 in the

contractile case, yielding V x 14.7mm/s and k2¼� 8.8. The flow fields are

rotationally invariant about the x-axis. Arrows indicate the local direc-

tion v̂ : ¼ v/|v| of the stroke-averaged flow (20). Dark (bright) areas show

the projection (r̂ v̂ ), corresponding to regions where the mean flow points

towards (away from) the swimmer.
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see Fig. 3 (a). The orientation vector of the swimmer is defined by

n̂ðtÞ :¼ X2ðtÞ � X1ðtÞ
jX2ðtÞ � X1ðtÞj

(17)

If the sphere radii A1 and A2 are constant then this 2-sphere

swimmer reduces to an oscillating dumbbell,14,15,17 which is pre-

vented from swimming by the scallop theorem.15,18 A simple, self-

motile 2-sphere swimmer can be obtained if the size of the

spheres changes periodically in time according to

A1(t) ¼ A + lsin(ut + f1),

A2(t) ¼ A + lsin(ut + f2), A[l > 0 (18)

For simplicity, we neglect secondary flow contributions

produced by the expansion and shrinkage of the spheres by

assuming that (to good approximation) they merely change their

hydrodynamic resistance in a manner consistent with a changed

radius. Considering the limit l,x�A,l and averaging over

a stroke-period [t, t + 2p/u], one can show that the 2-swimmer

moves at an average velocity V ¼ Vn̂, where

V ¼ 1

4
ul

�
x

A

��
1� 3A

2l

��1

sinðDfÞcosðDqÞ (19a)

and

Df :¼ 1

2
ðf1 � f2Þ ; Dq :¼ 1

2
ðf1 þ f2Þ � q (19b)

The derivation of eqn (19) is analogous to those for other

multi-sphere swimmers.13,19 By choosing the phase parameters

f1, f2, and q such that Df ˛ (0, p) and Dq ˛ (– p/2, p/2), we have

V > 0, i.e., the swimmer moves in the direction of positive n̂.

The stroke-averaged velocity field generated by the swimmer

at large distances is obtained by summing the Stokeslets of the

two spheres, performing a far-field Taylor (multipole) expansion

and averaging the leading far-field contributions over a swim-

ming stroke (13). By means of this procedure, one finds that the

averaged far-field fluid flow generated by the swimmer is dipolar,

vðxðtÞjXðtÞ;VÞ ¼ k2V

�
A

jrðtÞj

�2h
3
	

n̂r̂

2

�1
i
r̂ (20a)

with unit vectors n̂ and r̂ as defined in eqn (3b) and

k2 ¼
3

4

�
l

A

��
1� 3A

2l

��1
tanðDqÞ
tanðDfÞ (20b)

Note that, depending on the choice of Df and Dq, the coeffi-

cient k2 can be either negative or positive for a swimmer with V >

0. Swimmers with k2 > 0 are extensile ‘pushers’, whereas negative

values k2 < 0 correspond to contractile ‘pullers’. In our simula-

tions, we used q ¼ 0, Df ¼ Dq ¼ p/4 to realize an extensile

swimmer and q ¼ 0, Df ¼ 3p/4, Dq ¼ p/4 in the contractile case.

The structure of the dipolar flow fields (20) for these parameter

values is illustrated in Fig. 4. The arrows show the normalized

velocity field v̂ :¼ v/|v|. The color shading indicates the projection

(r̂ v̂ ), i.e., dark (bright) areas correspond to regions where the

mean flow points towards (away from) the swimmer.

Tracer motion in the deterministic limit.– Based on eqn (20), it is

possible to obtain an analytic estimate for the mean tracer

trajectory in the deterministic, far-field limit. To this end, we
4272 | Soft Matter, 2010, 6, 4268–4276
consider initial conditions with n̂ ¼ (1,0,0) as depicted in Fig. 1

and approximate

rðtÞxXðtÞ ; n̂ r̂x
X ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ðtÞ2þY 2
0

q (21)

with X(t) ¼ X0 + tV denoting the swimmer’s x-coordinate. The

approximations (21) hold in the far-field scattering limit where

eqn (20) is valid. Integrating the equations of motion (2a) for D0

¼ 0 yields the trajectory x(t) ¼ (x(t), y(t), 0) of the tracer particle

in the (z ¼ 0)-plane

xðtÞx� k2A
A
�
2X 2

0 þ Y 2
0

�
�
X 2

0 þ Y 2
0

�3=2
�

A
�
2XðtÞ2þY 2

0

�
�
XðtÞ2þY 2

0

�3=2

8<
:

9=
; (22a)

yðtÞx� k2A
AX0Y0�

X 2
0 þ Y 2

0

�3=2
� AX ðtÞY0h

XðtÞ2þY 2
0

i3=2

8><
>:

9>=
>; (22a)

Letting t / N, we see that asymptotically

xðtÞ/� k2A

"
A
�
2X 2

0 þ Y 2
0

�
�
X 2

0 þ Y 2
0

�3=2

#
(23a)

yðtÞ/� k2A

"
AX0Y0�

X 2
0 þ Y 2

0

�3=2

#
(23b)

According to eqn (23), the tracer particle is displaced by a finite

distance reflecting the fact that the effective interaction is short-

range a $ 2. Furthermore, eqn (23) predicts that, if the swimmer

starts very far away, corresponding to the limit X0 / �N, the

tracer returns to its initial condition x(0) ¼ 0, thus forming

a closed loop in the (z ¼ 0)-plane.

This is illustrated in Fig. 5, which shows tracer trajectories in

the (x, y)-plane. The dotted lines in both diagrams indicate the
This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 Deterministic tracer scattering by a dipolar 2-sphere swimmer. In

the limit D0 ¼ 0 the tracer trajectories converge to closed loops if the

force-free 2-sphere swimmer starts sufficiently far away from the tracer

(arrows indicate how the loop is traversed). The dotted lines in either

diagram indicate the analytic estimate from eqn (22). (a) Results for the

stroke-averaged dynamics. Symbols were obtained by numerically

integrating eqn (2a) for D0 ¼ 0 for the dipolar flow field (20) using the

same parameters as in Fig. 4. (b) Results for the time-resolved dynamics.

Symbols were obtained from numerical simulations of the tracer

trajectories as described in Sec. IV. The inset shows the details of the

oscillatory motion of the tracer particle near the turning point at the

top-right corner of the extensile (right hand) path. The plots are based

on initial conditions X0 ¼ � 350A, Y0 ¼ 10A for the swimmer and x(0)

¼ 0 for the tracer. The tracer trajectories are depicted for the time

interval [0, 100s]. The swimmer parameters are the same as those in

Fig. 4. Tracer radius: a0 ¼ 1mm. Simulation time step: Dt ¼ 2.2 � 10�7s.

A comparison of the two diagrams implies that the stroke-averaged

description is able to capture the main features of the mean particle

trajectory.

Fig. 6 Brownian tracer scattering by a dipolar 2-sphere swimmer. For D0

> 0 loop-like scattering patterns can be recovered by averaging over

many sample trajectories with identical initial conditions x(0) ¼ 0. (a)

Results for the stroke-averaged dynamics obtained by numerically

integrating eqn (2a) with D0 ¼ 0.22mm2/s. (b) Results from the corre-

sponding time-resolved simulations. The filled symbols in both figures

were obtained by averaging over 1000 sample trajectories and dotted

lines represent the analytic estimate from eqn (22). Statistical error bars

correspond to the sample standard deviation, divided by 10�
ffiffi
t
p

for

better visibility. Prior to rescaling the length of the error bars agreed

with the theoretically expected value
ffiffiffiffiffiffiffiffiffiffi
2D0t
p

. Compared to Fig. 5, we

used the same swimmer parameters but the swimmer was started nearer

to the tracer at X0 ¼ � 10A and sample trajectories were recorded for

the shorter interval t ˛ [0, 10s]. This explains why the loops are not fully

closed.
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analytic estimates from eqn (22). Symbols in Fig. 5 (a) were

obtained by numerically integrating eqn (2a) for D0 ¼ 0 for the

time-averaged dipolar velocity field (20) using the same swimmer

parameters as in Fig. 4. For comparison, we also plot in Fig. 5 (b)

the result from simulations that resolve the microscopic

dynamics of the swimmer (details of the numerical implement-

ation are given in Sec. 4). In the latter case, one finds that the

tracer particle performs a small oscillator motion around its

mean trajectory. Hence, by comparing Fig. 5 (a) and (b), one

readily observes that the stroke-averaged description is able to

capture the main features of the mean particle trajectory.

Brownian motion effects.– As exemplified by eqn (20), the

effective hydrodynamic flow fields of self-swimming objects

decay more rapidly with distance than those of externally forced

colloids. Hence, the hydrodynamic displacement of a tracer

particle in the far-field flow of a force-free swimmer will, in

general, be smaller, so that thermal Brownian motion of the

tracer becomes more relevant. This raises the question as to

whether loop-like structures could actually be observed under

typical experimental conditions, e.g., similar to those considered

by Leptos et al.6 who tracked the motions of algae in water at

room temperature. In order to estimate how Brownian effects

may affect the loop-like structures, we numerically integrated

the stochastic equations of motions (2a) for both the time-

averaged flow field (20) and the time-resolved swimmer

dynamics, using a diffusion constant D0 ¼ 0.22mm2/s corre-

sponding to a tracer particle of radius a0 ¼ 1mm and water at

room temperature.

Fig. 6 (a) depicts the mean tracer trajectories obtained

numerically for the time-averaged model for an extensile (red

triangles) and a contractile swimmer (blue circles). Fig. 6 (b)

shows the corresponding results for the time-resolved swimmer

dynamics. The numerical data points (filled symbols) in Fig. 6
This journal is ª The Royal Society of Chemistry 2010
were obtained by averaging over 1000 sample trajectories with

identical initial conditions. In both cases, we used the same

swimmer parameters as in Fig. 5, but the swimmer was started

closer to the tracer at X0 ¼ � 35A. The simulation time per run

was limited to 10s. For comparison, isolated Chlamydomonas

algae typically swim on an almost straight line for about 5 – 10s

before changing their directions due to tumbling and rotational

Brownian motion.7 The statistical error bars in Fig. 6 corre-

spond to the sample standard deviation and were divided by

10�
ffiffi
t
p

for better visibility. Prior to this rescaling the length of

the error bars agrees well with the theoretically expected valueffiffiffiffiffiffiffiffiffiffi
2D0t
p

.

To summarize, the diagrams in Fig. 6 suggest that after aver-

aging over a sufficiently large sample size the loop-like patterns

can be recovered. Individual trajectories may however look very

different due to Brownian motion.
D. (Quasi-)quadrupolar three-sphere swimmer

As the final example, we consider the scattering of a tracer by

a linear 3-sphere swimmer,12,13 as illustrated in Fig. 3 (b). The

main difference when compared to the 2-sphere swimmer occurs

because the flow field of this swimmer is essentially quadrupolar,

see Fig. 7. The lengths of the rear leg (R) and the front leg (F) of

the 3-sphere swimmer vary in time as

LF,R(t) ¼ l + xF,Rsin(ut + fF,R),

l[xR,F>0, l[A>0 (24)

where l is the mean leg length and xR, F denotes the oscillation

amplitude. If the initial phases fR, F are chosen such that

Df: ¼ fR – fF > 0 (25)

then the swimmer moves with stroke-averaged speed
Soft Matter, 2010, 6, 4268–4276 | 4273
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Fig. 7 Quasi-quadrupolar fluid flows generated by 3-sphere swimmers. Structure of the stroke-averaged flow field (27) for three different parameter sets:

(a) extensile pusher with 0.2l ¼ xR > xF ¼ 0.1l, (b) symmetric swimmer with xR ¼ xF ¼
ffiffiffiffiffiffiffiffiffi
0:02
p

l, and (c) contractile puller with 0.1l ¼ xR < xF ¼ 0.2l. In

all three cases, the swimmer is located at the origin, points along the x-axis, and swims in the positive x-direction. The flow fields are rotationally

invariant about the x-axis. Arrows indicate the local direction v̂ : ¼ v/|v| of the stroke-averaged flow field (27). Dark (bright) areas show the projection

(r̂ v̂ ), corresponding to regions where the mean flow points towards (away from) the swimmer. Note that in all three cases the quadrupolar contribution

dominates at intermediate distances. Swimmer parameters: l ¼ 10mm, A ¼ 0.2l, u ¼ 103s�1, Df ¼ p/2, corresponding to V x 12mm/s.

Fig. 8 Deterministic tracer scattering by a (quasi-)quadrupolar 3-sphere

swimmer. In the deterministic limit D0¼ 0, the tracer trajectories converge

to closed loops if the force-free 3-sphere swimmer starts sufficiently far

away from the tracer, X0 / � N. The dotted lines in either diagram

represent the analytical estimate from eqn (29). (a) Results from the

stroke-averaged dynamics for the time interval [0, 55s]. The tracer particle

starts at x(0) ¼ 0 and the swimmer at X0 ¼ � 150A, Y0 ¼ 10A. Symbols

were obtained by numerically integrating eqn (2a) for D0 ¼ 0 using the

averaged flow field (27). (b) Results from the corresponding time-resolved

simulation for the same time interval and same initial conditions for the

geometric center of the swimmer. The tracer oscillates due to the peri-

odicity of the swimming stroke. Swimmer parameters: l ¼ 10mm, A ¼
0.2l, u¼ 103s�1, Df¼p/2, which results in V x 12mm/s, k2 x�0.04, k3 x
22. Tracer radius: a0 ¼ 1mm. Simulation time step: Dt ¼ 2.2 � 10�7s.
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V ¼ 7

24
Au sinðDfÞ

�
xF xR

l2

�
(26)

in the direction of the front leg. The time averaged flow field at

distances far away from the 3-sphere swimmer is13

vðxðtÞjXðtÞ;VÞ ¼ k2V
	 A

jrðtÞj

�2�
3
�
n̂r̂
�2�1

�
r̂þ

k3V
	 A

jrðtÞj

�3�
15
�
n̂r̂
�3�9

�
n̂r̂
��

r̂�
�
3
�
n̂r̂
�2�1

�
n̂

� (27)

with unit vectors n̂ and r̂ as defined in eqn (3b). The constants

k2,3 are determined by the swimmer’s geometry and read

k2 ¼
9

32

x2
R � x2

F

Al
; k3 ¼

51

56

�
l

A

�2

(28)

The quadrupole coefficient is always positive, k3 > 0, but we

can have either k2 > 0 (extensile ‘pusher’), k2 ¼ 0 (symmetric

quadrupolar swimmer) or k2 < 0 (contractile ‘puller’), depending

on the choice of the oscillation amplitudes xR, F. It is important to

note, however, that the geometric restriction l > 2A + xR + xF

implies that k2 � k3. Consequently, the quadrupolar k3-term

effectively dominates the flow field (27) unless one considers

unreasonably large distances.13 This is illustrated in Fig. 7 which

shows the normalized flow field v̂ : ¼ v/|v| from eqn (27) and also

its projection onto the unit vector r̂ (t) for k2 > 0, k2 ¼ 0, and k2 <

0, respectively.

Tracer motion in the deterministic limit.– Based on eqn (27) it is

again possible to derive an analytic estimate for the mean tracer

trajectory. To this end, we consider initial conditions with n̂ ¼
(1,0,0) as depicted in Fig. 1 and make use of the approximation

(21), which holds in the far-field scattering limit where eqn (27) is

valid. Integrating the equations of motion (2a) for D0 ¼ 0, we

find that the trajectory of the tracer particle in the (z¼ 0)-plane is

given by x(t) ¼ (x(t), y(t), 0), where

xðtÞx� k2A

(
A
�
2X 2

0 þ Y 2
0

�
�
X 2

0 þ Y 2
0

�3=2
�

A
�
2XðtÞ2þY 2

0

�
�
XðtÞ2þY 2

0

�3=2

)

þ k3A

(
A2X0

�
2X 2

0 � Y 2
0

�
�
X 2

0 þ Y 2
0

�5=2
�

A2XðtÞ
�
2X ðtÞ2�Y 2

0

�
�
X ðtÞ2þY 2

0

�5=2

)
(29a)
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yðtÞx� k2A

(
AX0Y0�

X 2
0 þ Y 2

0

�3=2
� AXðtÞY0�

X ðtÞ2þY 2
0

�3=2

)

þ k3A

(
A2
�
2X 2

0 � Y 2
0

�
Y0�

X 2
0 þ Y 2

0

�5=2
�

A2
�
2X ðtÞ2�Y 2

0

�
Y0�

X ðtÞ2þY 2
0

�5=2

)
(29b)

Note that the dipolar k2-contributions are formally equivalent

to the result (22) for the 2-sphere swimmer, but with V and k2

now determined by the geometry of the 3-sphere swimmer.

Letting t / N we find that asymptotically

xðtÞ/ � k2A

"
A
�
2X 2

0 þ Y 2
0

�
�
X 2

0 þ Y 2
0

�3=2

#
þ k3A

"
A2X0

�
2X 2

0 � Y 2
0

�
�
X 2

0 þ Y 2
0

�5=2

#
; (30a)

yðtÞ / � k2A

"
AX0Y0�

X 2
0 þ Y 2

0

�3=2

#
þ k3A

"
A2
�
2X 2

0 � Y 2
0

�
Y0�

X 2
0 þ Y 2

0

�5=2

#
(30b)
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which implies that the tracer particle is displaced by a finite

distance due to the effective short-range interaction with a $ 2.

Eqn (30) predict that, if the swimmer starts very far away, cor-

responding to the limit X0 /�N, the tracer returns to its initial

condition x(0) ¼ 0, thus forming a closed loop in the (z ¼ 0)-

plane. This is similar to our previous result (23) for the 2-sphere

dipolar swimmer. However, comparing with Fig. 5 (a), the shape

of the loop in Fig. 8 (a) differs significantly, because the flow field

(27) of the 3-sphere swimmer is dominated by the quadrupolar

k3-contribution (for the initial conditions considered).

The analytical estimate (29) is based on the stroke-averaged

field and it is interesting to compare with simulations for the

corresponding time-resolved swimmer. The results for the latter

case are depicted in Fig. 8 (b). Due to the oscillations of the

swimmer’s legs, the tracer particle performs an oscillatory

motion around its mean trajectory. The relative magnitude of the

oscillations is bigger than in the dipolar 2-sphere swimmer case,

since the effective quadrupolar flow field of the 3-sphere

swimmer decays more rapidly, resulting in a smaller absolute

loop-size at similar initial conditions and swimmer speeds. As

evident from Fig. 8, the stroke-averaged result (29) captures the

main features of the mean tracer motion in the time-resolved flow

field but there is a quantitative difference of about 20 to 30

percent. However, we observe that, asymptotically, the time-

resolved tracer trajectory approximately returns to its initial

position, if the swimmer starts sufficiently far away from the

tracer particle.

Brownian motion effects.– When Brownian motion is taken

into account, corresponding to D0 > 0 in eqn (2a), individual

tracer trajectories may differ strongly from each other. As for the

2-sphere dipolar swimmer, loop-shaped scattering patterns can

be reconstructed by averaging over a tracer ensemble with

identical initial conditions. Fig. 9 (a) and (b) show mean tracer

trajectories obtained by averaging over 1000 sample trajectories.

We used the same swimmer parameters as in Fig. 8, but the

swimmer was started closer to the tracer at X0 ¼ � 10A. The
Fig. 9 Brownian tracer scattering by a (quasi-)quadrupolar 3-sphere

swimmer. For D0 > 0 loop-like scattering patterns can be recovered by

averaging over many sample trajectories with identical initial conditions

x(0) ¼ 0. (a) Results for the stroke-averaged dynamics obtained by

numerically integrating eqn (2a) with D0¼ 0.22mm2/s. (b) Results from the

corresponding time-resolved simulations. The filled symbols in both

figures were obtained by averaging over 1000 sample trajectories, unfilled

symbols show the results of simulations with D0 ¼ 0, and dotted lines

represent the analytic estimate from eqn (29). Statistical error bars

correspond to the sample standard deviation, divided by 10�
ffiffi
t
p

for

better visibility. Prior to rescaling the length of the error bars agreed with

the theoretically expected value
ffiffiffiffiffiffiffiffiffiffi
2D0t
p

. Compared to Fig. 8, we used the

same swimmer parameters but the swimmer was started nearer to the

tracer at X0¼� 10A and sample trajectories were recorded for the shorter

interval t ˛ [0, 11s]. This explains why the loops are not fully closed.

This journal is ª The Royal Society of Chemistry 2010
simulation time per run was limited to 11s, as this corresponds

roughly to the time scale during which an isolated alga performs

a quasilinear motion.7 The statistical error bars in Fig. 9 illustrate

the sample standard deviation and were divided by 10�
ffiffi
t
p

for

better visibility. Prior to this rescaling the length of the error bars

agreed well with the value
ffiffiffiffiffiffiffiffiffiffi
2D0t
p

expected theoretically. In both

Fig. 9 (a) and (b), we notice a small, systematic drift of the mean

Brownian trajectories compared to the corresponding deter-

ministic trajectories (unfilled symbols) and the analytic estimate

(dotted lines). The shift occurs in the direction of the swimmer

motion and is probably caused by a noise-induced Stokes drift20

and an additional, noise-induced bias due to the gradients of the

flow field.

IV. Numerical methods

One of our objectives was to compare the tracer dynamics in the

stroke-averaged and explicitly time-dependent flow fields of

dipolar and quadrupolar model swimmers. For this purpose, we

focussed on multi-sphere swimmer models that can be imple-

mented numerically in Brownian dynamics simulations.16,17,21,22

The time-resolved, ‘microscopic’ dynamics of the 2-sphere

swimmer was computed numerically by using a spring-based

model.17 Within this approach, the two spheres are linked by

a harmonic spring (stiffness k0) with periodically varying equi-

librium length L(t) determined by eqn (16). Compared to the

implementation in ref. [17], the only technical difference arises

because our dipolar 2-sphere swimmer is characterized by an

oscillating sphere radius, leading to time-dependent Stokes fric-

tion coefficients gi(t) ¼ 6phAi(t), i ¼ 1, 2. If the stiffness

parameter k0 of the spring model is chosen large enough, the

swimmer essentially behaves like a shape-driven swimmer (in our

simulations we fixed k0 ¼ 0.001 kg/s2).

The time-resolved microscopic dynamics of the linear 3-sphere

swimmer can be implemented in a similar manner.16 Analogous

to the 2-sphere swimmer case, two neighboring spheres (constant

radius A) are connected by a time-dependent harmonic spring

(the ‘leg’) with the same value of the stiffness parameter k0 as

above. Each spring has an oscillating equilibrium length given by

eqn (24). The velocity field acting on the tracer and the hydro-

dynamic interactions between the spheres were calculated using

the Rotne-Prager-Yamakawa-Mazur tensor.23–27

Upon adopting the same swimmer parameters for both the

microscopic and the averaged model, one finds that the average

swimmer speed measured in the microscopic simulations agrees

well with the analytical estimates from eqn (19) and (26),

respectively. We also compared the Lagrangian net fluid flow,

which was obtained from the time-resolved simulations by

tracking a grid of non-interacting tracer particles over a stroke

period [t, t + 2p/u]. The dipolar and quadrupolar flow field

structures obtained by this method were found to be identical to

those from eqn (20) and (27) depicted in Fig. 4 and 7.

The equations of motion for both swimmer and tracer were

numerically integrated with a two-step Heun integrator using

Nvidia’s CUDA toolkit. The simulations for the time-resolved

model were performed on a consumer-level GTX 275 GPU

embedded in an Intel i860 PC running Gentoo Linux. The GPU-

based parallel computation of sample trajectories in the case of

Brownian tracer particles leads to a considerable speed-up (up to
Soft Matter, 2010, 6, 4268–4276 | 4275
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a factor of a few hundreds) compared with a conventional

un-parallelized CPU-based implementation.28

V. Summary & discussion

We have studied the hydrodynamic scattering of a tracer particle

by different types of model swimmers. We showed, both

analytically and numerically, that scattering by a force-free

swimmer may lead to quasi-closed, loop-shaped tracer trajecto-

ries. The shapes and orientations of the loops are a signature of

the properties of the stroke-averaged flow field. A detailed

comparison with the time-resolved scattering dynamics implies

that a time-averaged description is sufficient to capture the main

features of swimmer-tracer scattering. Our analysis has focussed

on two specific 2-sphere and 3-sphere swimmer models that are

analytically tractable and can be implemented numerically.

However, the result (29) is generic; it holds for the large class of

low Reynolds number swimmers that generate a dipolar or

quadrupolar flow as given in eqn (27).

We have also compared the scattering due to swimmers to that

resulting when a colloid is pulled past a tracer. This allowed us to

demonstrate the role played by the range of the interactions

between the scatterer and the tracer. For interactions decaying as

� |r|�a, the tracer is slowly dragged to infinity by the particle for

the colloidal case a ¼ 1 (within the zero Reynolds number

approximation), whereas its displacement remains finite for

scattering by a force-free swimmer with a $ 2.

We conclude the paper by addressing potential experimental

realizations and by commenting on generalizations. The 3-sphere

swimmer considered in the last part of the paper could possibly

be realized in practice by adapting the experimental setup of

Leoni et al.,8 who constructed a colloidal linear 3-sphere pump

using optical tweezers, to mimic a self-motile, force-free

swimmer. With regard to hydrodynamic scattering experiments,

an advantage of artificially created colloidal microswimmers lies

in the fact that one could tune the fluid viscosity to suppress

Brownian motion effects in the tracer dynamics. In the case of

a colloidal 3-sphere swimmer one should expect to observe loops

that are shaped similar to those in Fig. 8.

In general, Brownian motion can obscure individual tracer

trajectories, but our analysis shows that averaging over many

trajectories may allow one to reconstruct the loops even from

noisy data. This suggests that such patterns could also be studied

in biophysical experiments similar to those of Leptos et al.6 These

authors investigated how the diffusion of (an ensemble of) tracer

particles in water is affected by the presence of self-motile

unicellular Chlamydomonas reinhardtii algae. Indeed loop-sha-

ped tracer trajectories (or, at least, segments thereof) have

already been observed in their experiments, see inset of Fig. 1(c)

in ref. [6]. By systematically analyzing the trajectories of indi-

vidual tracer particles in a sufficiently large, dilute suspension of

algae, one could achieve the required sample size to reconstruct

the exact structure of the loops and thus infer details about the

fluid flow generated by the microorganisms.

Lastly it is plausible to assume that an improved under-

standing of the underlying, elementary swimmer-tracer scat-

tering processes may eventually help to model quantitatively the
4276 | Soft Matter, 2010, 6, 4268–4276
anomalous diffusive behavior of tracer particles in dilute, active

suspensions.6 The aim would be to derive an analytic expression

for the time-dependent position probability density function of

a tracer particle by averaging a representative trajectory, result-

ing from a superposition of the flow field contributions from

many algae, over a set of suitably chosen random initial config-

urations. However, the averaging procedure is both mathemat-

ically and computationally demanding; we hope to tackle this

problem in future work.
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