
February 2013

EPL, 101 (2013) 44008 www.epljournal.org

doi: 10.1209/0295-5075/101/44008

Swimming active droplet: A theoretical analysis
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PACS 47.20.Dr – Surface-tension-driven instability
PACS 47.55.D- – Drops and bubbles
PACS 47.55.pf – Marangoni convection

Abstract – Recently, an active microswimmer was constructed where a micron-sized droplet of
bromine water was placed into a surfactant-laden oil phase. Due to a bromination reaction of the
surfactant at the interface, the surface tension locally increases and becomes non-uniform. This
drives a Marangoni flow which propels the squirming droplet forward. We develop a diffusion-
advection-reaction equation for the order parameter of the surfactant mixture at the droplet
interface using a mixing free energy. Numerical solutions reveal a stable swimming regime above a
critical Marangoni numberM but also stopping and oscillating states whenM is increased further.
The swimming droplet is identified as a pusher whereas in the oscillating state it oscillates between
being a puller and a pusher.

Copyright c EPLA, 2013

Introduction. – A rigorous understanding of swim-
ming on the micron scale is crucial for developing microflu-
idic devices such as a lab-on-a-chip [1]. This understanding
comes from watching nature, i.e., by studying the loco-
motion of living organisms such as bacteria or algae [2]
but also from designing artificial microswimmers, used for
example as medical microrobots [3]. Both, real live cells
and man-made microswimmers, have thoroughly been
used to study interaction between swimmers [4], interac-
tion with walls [5,6], or swarming [7]. One possible design
of an artificial swimmer is an active droplet. Here, we
think of a droplet with a surface where a chemical reac-
tion occurs. Alternatively, droplets or bubbles can be made
active by having an internal heat source [8]. Droplets
are particularly interesting systems to study since they
are used extensively in microfluidic devices as microre-
actors in which chemical or biological reactions take
place [9]. In the following we give an example of an active
droplet and investigate in detail its propulsion mechanism.
Self-propelled active droplets have been studied in vari-
ous experiments both on interfaces [10] and in a bulk
fluid [11–13] including droplets coupled to a chemical
wave [14]. Theoretical treatments for droplets in a bulk
fluid include a model of droplet motion in a chemi-
cally reacting fluid [15], studies of the stability of a rest-
ing droplet against translational motion [16] (for resting
droplets on a solid substrate see, for example [17]), and
simulations of contractile droplets [18] as well as droplets
driven by nonlinear chemical kinetics [19].

The swimming active droplet we consider in the follow-
ing is a solution of water and bromine which is placed
in a surfactant-rich oil phase [12]. The resulting water
droplet has a typical radius of 80µm. In order to lower the
surface tension and thus the total energy of the system,
the surfactants in the oil phase form a dense monolayer at
the droplet interface, giving the droplet the structure of an
inverse micelle. The observed directed swimming motion
of the droplet with a typical swimming speed of 15µm/s
can be understood as follows [12].
The bromine within the droplet chemically reacts with

the surfactants in the interface which results in a weaker
surfactant. Hence, the “bromination” reaction locally
leads to a higher surface tension in the interface. As a
consequence local gradients in surface tension will lead to
a fluid flow at the interface and in the adjacent fluid inside
and outside of the droplet in the direction of increasing
surface tension. This effect is called Marangoni effect. The
fluid flow then leads in turn to advection of surfactants
at the interface. As a result gradients in surface tension
are enhanced. Thus, the resting state becomes unstable
and the droplet starts to move. Additionally, brominated
surfactants are constantly replaced by non-brominated
surfactants from the oil phase by means of desorption
and adsorption. The droplet stops to swim when either
the bromine or the non-brominated surfactants in the oil
phase are exhausted. This was also observed in the experi-
ments [12]. Note, that the swimming droplet was found to
remain in a spherical shape in good approximation [20].
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The active droplet is an interesting realization of the
“squirmer” [21] which has been introduced to model the
locomotion of micro-organisms. Often they propel them-
selves by a carpet of beating short filaments called cilia on
their surfaces. Instead of modeling each cilium separately,
one prescribes the fluid flow at the surface initiated by
the beating cilia which then drags the squirmer through
the fluid. Here, for the active droplet the surface flow is
generated by the Marangoni effect.
The swimming active droplet crucially depends on the

dynamics of the mixture of non-brominated and bromi-
nated surfactants at the interface. In this article we
model it by means of a diffusion-advection-reaction equa-
tion based on a free energy functional for the surfactant
mixture. Numerical solutions then show that in a certain
parameter range the resting state of the droplet becomes
unstable and the droplet starts to move. The solutions
reach a stationary state corresponding to a swimming
motion and confirm that the droplet is a pusher [2], as
found in the experiments [12]. In addition, we identify
further patterns of motion. We find that the droplet stops
after an initial motion or that it oscillates back and forth.

Model. – In order to model the droplet propulsion we
set up a dynamic equation for the surfactant mixture at
the droplet interface that includes all processes mentioned
before. We assume that the surfactant completely covers
the droplet interface without any intervening solvent. We
also assume that the area of both types of surfactant
molecules (brominated and non-brominated) is the same.
Denoting the brominated surfactant density by c1 and the
non-brominated density by c2, we can therefore set c1+
c2 = 1. We then take the concentration difference between
brominated and non-brominated surfactants as an order
parameter φ= c1− c2. In other words φ= 1 corresponds
to fully brominated and φ=−1 to fully non-brominated
and c1 = (1+φ)/2 and c2 = (1−φ)/2. Finally, we choose
a constant droplet radius R.

Diffusion-advection-reaction equation. The dynamics
of φ is governed by a diffusion-advection-reaction equation
at the two-dimensional droplet interface:

φ̇=−∇ · (jD + jA)− τ−1R (φ−φeq) , (1)

with diffusive current jD and advective current jA due
to the Marangoni effect. The third term on the right-
hand side of eq. (1) is the simplest approximation for
the reaction term. It describes the bromination reaction
as well as desorption of brominated and adsorption of
non-brominated surfactants to and from the outer fluid.
For simplicity, we assume the reaction term to be inde-
pendent of variations in the bromine and surfactant
concentration close to the droplet interface. τR is the
time scale on which these processes happen and φeq sets
the equilibrium coverage of φ. In other words, ad- and
desorption dominates for φeq < 0, while bromination dom-
inates for φeq > 0. Imagine for instance the case φeq = 1,

i.e., a droplet with bromination but without ad- and
desorption of surfactants. The reaction term would then
always be positive, therefore driving the droplet to a
completely brominated state φ= 1.
The general mechanism of eq. (1) is as follows. The

diffusive current always points “downhill”, jD ∝−∇φ.
However, we will show below that the opposite is true
for jA since approximately jA ∝∇φ. Thus, apart from the
reaction term, jD and jA are competing and as soon as jA
dominates over jD, φ experiences “uphill” diffusion, i.e.,
phase separation. As a result the resting state will become
instable and the droplet will start to move. We will now
present a careful derivation of jD and jA from a free energy
approach. This shows that the diffusive and advective
currents in eq. (1) are in general non-linear functions of φ.

Diffusive current. The basis for the following is a
free energy density f for the droplet interface, which we
write down as a function of concentrations c1 and c2. In
formulating the free energy density f , we follow the Flory-
Huggins approach [22]. Accordingly, f is composed of the
mixing entropy plus terms mimicking lateral attractive
interaction between surfactants:

f =
kBT

A

�

c1 ln c1+ c2 ln c2− b1c
2
1− b2c

2
2− b12c1c2

�

, (2)

where A denotes the area of a surfactant in the interface
and b1 (b2) is a dimensionless parameter characterizing
the interaction between brominated (non-brominated)
surfactants and b12 the interaction between different kind
of surfactants. In terms of the order parameter φ we
obtain:

f(φ) =
kBT

A

�

1+φ

2
ln
1+φ

2
+
1−φ

2
ln
1−φ

2

−
1

4
(b1+ b2+ b12)−

φ

2
(b1−b2)−

φ2

4
(b1+ b2−b12)

�

.

(3)

The total free energy is then given by the functional

F [φ] =

�

f(φ) dA . (4)

For a conserved order parameter field the diffusive current
is proportional to the gradient of the variation in F with
respect to φ [23]:

jD =−λ∇
δF

δφ
=−λf ′′(φ)∇φ (5)

= −
λkBT

A

�

1

1−φ2
−
1

2
(b1+ b2− b12)

�

∇φ , (6)

with positive mobility λ. Substituting jD into eq. (1)
yields a Cahn-Hilliard type equation [24]. Note that the
diffusion constant in eq. (6) decreases with increasing
interaction energy. In fact, the condition jD ∝−∇φ is only
fulfilled for a convex free energy with f ′′(φ)> 0, i.e., if
b1+ b2− b12 < 2. In addition, the diffusion coefficient in
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jD is smallest for φ= 0. It increases with |φ| and diverges
at |φ|= 1 due to the divergence of the driving force δF/δφ.
An alternative approach of deriving diffusion currents in
mixtures is presented in [25].

Advective current. The advective current for the order
parameter φ is given by

jA = φu , (7)

where u is the velocity of the surfactants at the interface1.
Since we are studying the active droplet in an axisymmet-
ric geometry, we assume φ= φ(θ) and u= uθ(θ)eθ, where
the front of the droplet is at θ= 0, see inset of fig. 1(b). For
this geometry there exists a solution of the Stokes equa-
tion for the fluid flow field inside and outside of the droplet
as well as the fluid velocity at the interface [26,27]. The
solution at the interface is given in terms of the surface
tension gradient:

uθ|r=R =

∞
�

n=2

n(n− 1)

2η

�
� π

0

C−1/2n (z′)
dσ

dθ′
dθ′
�

C
−1/2
n (z)

sin θ
,

(8)

where z = cos(θ). η= ηi+ ηo is the sum of the viscosi-

ties inside and outside of the droplet and C
−1/2
n are

Gegenbauer polynomials. They are related to Legendre

polynomials by Pn(z) =−
d

dzC
−1/2
n+1 (z). Equation (8) is

nothing but a representation of the the Marangoni effect.
It essentially states u∝∇σ, i.e., a fluid flow in the direc-
tion of ∇σ.
Thus, in order to calculate uθ, we need an expression

for dσ/dθ, which can be found by deriving an equation
of state for the surface tension σ. The surface tension σ
is the thermodynamic force conjugate to the surface area.
This gives

σ= f −
∂f

∂c1
c1−

∂f

∂c2
c2 , (9)

which we identify as the Legendre transform of the free
energy (2) to the chemical potentials µi =

∂f
∂ci
. Hence,

σ= kBT
A

�

b1c
2
1+ b2c

2
2+ b12c1c2

�

, or in terms of φ:

σ(φ) =
kBT

4A
[(b1+ b2+ b12)+ 2(b1− b2)φ

+(b1+ b2− b12)φ
2
�

. (10)

In order to obtain the proper behavior of the equation of
state, i.e., an increasing surface tension with increasing
φ, we need to assure that σ′(φ)> 0. This holds if b1 > b2,
meaning that the interaction energy between brominated
surfactants has to be higher than between the non-
brominated ones. Note that in the limit of φ→ 0 the
equation of state becomes linear in φ. The gradient of σ is
given by

dσ

dθ
= σ′(φ)

dφ

dθ
=

kBT

2A
(b1− b2)

�

1+
b1+ b2− b12

b1− b2
φ

�

dφ

dθ
.

(11)

1Let the advective currents of the two types of surfactants be
j1A = c1u1 and j

2

A = c2u2. Under the assumption that the individual
velocities are identical u1 = u2 = u, one obtains jA = j

1

A− j
2

A = φu.
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Fig. 1: (Color online) (a) Stationary order parameter profiles
after 106 time steps for φeq = 0.5 and several Marangoni
numbers M . Gray solid line: initial condition. (b) Correspond-
ing interface velocity profiles. Inset: droplet geometry which is
axisymmetric about the z-axis.

By substituting this into eq. (8), one can calculate the
advective current (7) for a given φ(θ).
Equations (8) and (11) essentially state that u∝∇φ.

Therefore, when φ > 0, the advective current jA = φu
apparently always points “uphill”, i.e., in the opposite
direction compared to jD. On the other hand, when φ < 0,
the advective current acts “downhill”, i.e., in the same
direction as jD. As a consequence, the Marangoni flow
will only drive the droplet when φ > 0. This is the case
when there are more brominated surfactants than non-
brominated ones.
Together with (6) and (7), eq. (1) becomes a closed

equation for φ. Writing gradients in units of R−1 and time
in units of the diffusion time scale τD =R2A(λkBT )−1

yields

φ̇=−∇ · (jD +Mφu)−κ(φ−φeq) , (12)

where the currents jD and jA =Mφu are now dimension-
less and

M =
(b1− b2)R

λη
, (13)

is called Marangoni number. This number compares the
advective current due to the Marangoni effect, which
scales as kBT (b1− b2)(RAη)−1, to the diffusive current.
Accordingly, κ= τDτ−1R is the ratio between diffusion and
reaction time scale.
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Fig. 2: (Color online) (a) Droplet swimming velocity vD
for swimming, stopping, and oscillating droplets. Parameters
are the same as in fig. 1 and case 4 belongs to M = 10.5.
(b) Depiction of the chemical wave of case 4 in a φ(θ, t) plot.
Same time scale as in (a).

Results. – We numerically solve the diffusion-
advection-reaction equation for φ with the initial
condition φ(θ) = φeq + δφ(θ), where δφ(θ) is a small
perturbation (solid line in fig. 1(a)). The boundary
conditions at θ= 0, π are given by a vanishing current,
jD +Mφu= 0. We keep κ fixed to a value of 0.1 for all
numerical solutions and comment later on the impact of κ
on the results. Therefore, we are left with the Marangoni
number M and φeq as the crucial parameters. In the
following we assume for simplicity b12 = (b1+ b2)/2 and
to assure a convex free energy, we set b1+ b2 = 3. The
series in eq. (8) is cut off at n= 40, which assures that
the numerical solutions do not depend on n.

Order parameter and velocity profiles. Figure 1(a)
shows examples of the stationary order parameter pro-
file for φeq = 0.5 and different values of M together with
the corresponding interface velocity profiles in fig. 1(b).
Starting with a small Marangoni number of M = 2.5, the
order parameter relaxes into the homogeneous trivial solu-
tion φ= φeq of eq. (1), thus the droplet rests. Increasing
the Marangoni number, the order parameter evolves to a
stationary inhomogeneous profile, as fig. 1 shows forM=3.
In parallel, the droplet velocity vD depicted in fig. 2(a)
saturates on a non-zero value. The droplet swimming
speed is given by vD = (6ηi+4ηo)

−1
� π

0
sin2 θ dσ

dθ dθ [26].
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Fig. 3: (Color online) Phase diagram of the active droplet in the
(φeq,M) parameter space. Examples for the order parameter
profiles at the positions marked with numbers are given in
fig. 1(a) (regime 1–3) and fig. 2(b) (regime 4).

Since C
−1/2
2 (cos(θ)) = sin2(θ)/2, vD is determined by the

first coefficient of the sum in (8) and thus vD =
8

π
ηi+ηo
6ηi+4ηo

� π

0
sin θuθdθ. Note that in our approach vD

reaches a stationary value without having to introduce
a “backward” Marangoni stress, as suggested in [12].
Further increasing the Marangoni number to M = 4.5,
the droplet starts to swim but then stops rapidly. The
stationary order parameter profile becomes symmetric
around θ= π/2 and swimming is not possible. Finally,
the droplet reaches an oscillating state for even higher
Marangoni numbers where it oscillates back and forth as
the droplet swimming speed in fig. 2(a) demonstrates. In
this case the order parameter φ(θ, t) resembles a chemical
wave that travels back and forward between θ= 0 and
θ= π. The wave is depicted in fig. 2(b). Note that the
frequency of the oscillation increases with M . Finally, we
remark that from comparing figs. 1(a) and (b), it is now
apparent that indeed eq. (8) essentially gives u∝∇φ.

Phase diagram. Figure 3 shows the phase diagram
in (φeq,M) parameter space with the four regimes of
the droplet dynamics: resting, swimming, stopping, and
oscillating. Since there is no swimming motion possible
for negative φeq, as discussed before, we only show the
phase diagram in the range 0� φeq � 0.8 (see footnote

2).
We find similar phase diagrams for smaller values of κ.
For κ= 0.01 the swimming region increases in size and
then shrinks again for κ= 0.001 until for κ= 0 swimming
solutions are no longer possible. The Marangoni number at
the onset of the swimming regime stays, however, roughly
constant. On the other hand, for κ= 1 and 10, i.e., in
the limit of fast bromination reaction and exchange of

2Due to the φ-dependent diffusion coefficient in eq. (6), numerics
requires a much finer grid above φeq = 0.8. However, in several tests
for different values of M no swimming solutions were found above
φeq = 0.8.
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Fig. 4: (Color online) Droplet dynamics in the reduced phase
space (φ1, φ2). Black dots show the fixed points for different
values of M ; from dot to dot M increases by 0.2. The red and
the green line show, respectively, trajectories in the swimming
(M = 3) and stopping (M = 4.5) state. Inset (a): limit cycle in
the oscillating state (M = 10.5). Inset (b): map for the swimmer
type in the (φ1, φ2) space classified by the stirring parameter
β =−φ2/|φ1| (see main text).

surfactants, only resting, stopping and oscillating solutions
but no stable swimming solutions were found.

Reduced phase space. Due to the axisymmetric geom-
etry we can decompose the order parameter φ determined
from numerically solving eq. (12) into Legendre modes

φ(θ, t) =
∞
�

n=0

Pn(cos(θ))φn(t) . (14)

Together with eqs. (11) and (8) one obtains an expression
for uθ as a function of the mode amplitudes φn. φ1
determines the swimming speed and φn>1 corresponds
to the higher modes of uθ. In the following, we use the
initial condition φ0(t= 0) = φeq. In order to investigate
the four regimes of the droplet dynamics, we plot in
fig. 4 the fixed points in (φ1, φ2) space for increasing
Marangoni number M at φeq = 0.5. For the cases M = 3
and M = 4.5 the full trajectories are shown. Note that
this illustration is a projection onto only two modes of
infinitely many modes that make up the full phase space
of φ. Starting with the resting state, one has a stable
fixed point at φ1 = 0, φ2 = 0 for M � 2.7. Via a subcritical
bifurcation the droplet enters the swimming state at
M = 2.8. Figure 4 demonstrates that for the chosen initial
condition (φ1, φ2)≈ (0, 0) both modes φ1 and φ2 develop
non-zero amplitudes at the same Marangoni number M =
2.8. The trajectory in the swimming state does increase
its size with increasing M , whereas the swimming speed
decreases until the droplet reaches the stopping state at
M = 4.3. As already observed in fig. 1, the second mode φ2,
which is symmetric around θ= π/2, clearly dominates in
the stopping state. In the oscillating regime aboveM = 9.5
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Fig. 5: (Color online) Displacement of the oscillating droplet
plotted vs. time. The color of the line gives the value of the
stirring parameter β, according to the color scale next to the
figure.

a stationary solution does not exist. Instead, the dynamics
follows a stable limit cycle as the inset (a) in fig. 4
demonstrates for M = 10.5. Finally we remark, since the
bifurcation is subcritical there exists a hysteresis interval
in M where the found state depends on the chosen initial
condition. For example, starting the numerical solution at
φ1 = φ2 =−0.1, the droplet starts to swim at M = 1.7.

The active droplet as pusher. To describe the basic
features of a squirming swimmer, it is sufficient to only
study the first two modes of its surface velocity field [2,
21,28]. While the the first mode φ1 determines the swim-
ming velocity, the dimensionless “stirring” parameter β =
−φ2/|φ1| characterizes the swimmer type. When β is nega-
tive, the flow around the droplet is similar to the flow
around a swimming bacterium such as E. coli. Such a
swimmer is called a “pusher” since it pushes fluid away
from itself at the front and at the back. Accordingly,
a swimmer with β > 0 is called a “puller”. The algae
Chlamydomonas is an example for a puller since it swims
by pulling liquid towards itself at the front and at the
back [7]. For β→±∞ the droplet becomes a “shaker”,
i.e., a droplet that shakes the adjacent fluid but does not
swim. If β = 0, the first mode dominates and propels the
droplet, as is the case for Volvox algae [7]. The classifi-
cation of the swimmers according to the “stirring” para-
meter β is illustrated in the inset (b) of fig. 4. Hydro-
dynamic interactions between swimmers and with bound-
ing walls depend on their type (“stirring” parameter β)
and strongly influence their (collective) dynamics [6,29].
For instance, adjacent pushers generally tend to align and
swim parallel to each other, i.e., show a polar velocity
correlation [30]. In fact this kind of behavior was observed
in experiments of our active droplets [12]. It is therefore
of great interest to determine β. The swimming droplet
with φeq = 0.5 is a pusher with β ranging from −0.7 for
M = 2.8 to −1.5 forM = 4.2. Similar values from β =−0.5
up to −7 were observed throughout the whole swimming
regime of the droplet. The stopping droplet is always a
shaker with β =−∞. Since the limit cycle of the oscillat-
ing droplet perambulates all four quadrants of the reduced

44008-p5



M. Schmitt and H. Stark

phase space, it oscillates in the swimming direction as well
as in β, i.e., between being a pusher and a puller. This is
demonstrated by the droplet displacement plotted vs. time
in fig. 5.

Conclusions. – We have presented a model for an
active squirming droplet with a surfactant mixture at its
interface that drives a Marangoni flow and thereby drags
the droplet forward. Based on a free energy functional
for the mixture, we derived a diffusion-advection-reaction
equation for the mixture order parameter at the droplet
interface. Relevant parameters are the Marangoni number
M and the reduced relaxation time κ−1 with which
the mixture approaches its equilibrium value φeq by
bromination or de- and absorption of the surfactants from
the surrounding.
As predicted from linear stability analysis in [12],

numerical solutions of the diffusion-advection-reaction
equation show that above a critical Marangoni number
the resting state of the droplet becomes unstable. The
order parameter develops a non-uniform profile and the
droplet moves with a constant swimming velocity. This
only occurs when the relaxation time κ−1 (relative to
the diffusion time) is sufficiently large. The negative
stirring parameter β identifies the droplet as a pusher
in agreement with polar velocity correlations found in
experiments [12]. A full parameter study in (φeq,M)
space also reveals a stopping droplet, which is a shaker
(β =−∞), and an oscillating droplet that oscillates
between being a puller and a pusher. We hope that
our work initiates further research on the active droplet
which constitutes an attractive realization of the model
swimmer called squirmer.
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