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for multi-modal medical
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Institute, Fudan University, Shanghai, China, 3Philips Healthcare, Shanghai, China
Medical image-to-image translation is considered a new direction with many

potential applications in the medical field. The medical image-to-image

translation is dominated by two models, including supervised Pix2Pix and

unsupervised cyclic-consistency generative adversarial network (GAN).

However, existing methods still have two shortcomings: 1) the Pix2Pix requires

paired and pixel-aligned images, which are difficult to acquire. Nevertheless, the

optimum output of the cycle-consistency model may not be unique. 2) They are

still deficient in capturing the global features and modeling long-distance

interactions, which are critical for regions with complex anatomical structures.

We propose a Swin Transformer-based GAN for Multi-Modal Medical Image

Translation, named MMTrans. Specifically, MMTrans consists of a generator, a

registration network, and a discriminator. The Swin Transformer-based

generator enables to generate images with the same content as source

modality images and similar style information of target modality images. The

encoder part of the registration network, based on Swin Transformer, is utilized

to predict deformable vector fields. The convolution-based discriminator

determines whether the target modality images are similar to the generator or

from the real images. Extensive experiments conducted using the public dataset

and clinical datasets showed that our network outperformed other advanced

medical image translation methods in both aligned and unpaired datasets and

has great potential to be applied in clinical applications.

KEYWORDS

magnetic resonance imaging, Swin Transformer, generative adversarial network,
multi-modal, medical image translation frontiers
1 Introduction

Magnetic resonance imaging (MRI) has become one of the most widely used and

powerful tools for clinical diagnosis and treatment nowadays. Since it is a non-invasive

imaging method, MRI can yield multiple tissue contrasts by applying various pulse

sequences and parameters without exposing the subject to radiation, thus generating
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multi-modal MR images of the same anatomical structure (1, 2).

Some common modalities are T1-weighted (T1), T2-weighted

(T2), T1 with contrast enhancement (T1c), and T2 fluid-

attenuated inversion recovery (FLAIR) (3). Each modality has

its own specific pathological features. The complementary

information about tissue morphology allows physicians to

diagnose with greater accuracy and confidence. However,

many factors, such as limited scanning time and the expensive

cost, hinder multi-modal MR imaging. Therefore, there has been

growing interest in retrospectively synthesizing missing or

corrupted modalities from other successfully acquired ones.

Bypassing the cost of additional scanning, this kind of medical

image-to-image translation method not only facilitates the

reliability of clinical diagnosis but also promotes follow-up

image analysis tasks such as registration (4, 5) and

segmentation (6, 7).

Recently, various deep learning methods have been exploited

to solve the problem of medical image-to-image translation in an

end-to-end manner. Previous studies (8) have demonstrated that

generative adversarial network (GAN) has significant potential

in solving image-to-image translation problems. GAN is a

framework that simultaneously trains a generator G and a

discriminator D by an adversarial process. During the training

process, the generator is used to translate the distribution of

source modality MRIs to the distribution of target modality

MRIs. The discriminator is used to identify whether target

modality MRIs are likely from the generator or the real data.

These GAN-based approaches can be broadly divided into two

categories. One refers to the supervised Pix2Pix (8–12) GAN

approach, which utilizes paired images from the source and

target modalities. However, it relies on paired and pixel-aligned

images, which may not always be possible due to respiratory

movements or anatomical changes between the times when

multi-modality images are scanned. For instance, Isola et al.

proposed (13) a conditional adversarial network for image-to-

image translation tasks. A three-dimensional (3D) auto-context-

based locality adaptive multi-modality GAN model (LA-GANs)

(9) is developed to synthesize the high-quality FDG PET image

from the low-dose one with the help of MRIs. Zhan et al. (10)

utilized a conditional GAN for multimodal MRI synthesis by

modeling the non-linear mapping between input and output.

The other category involves unsupervised cycle-consistency

GAN (14–16), which can be used for misaligned images

through a cycle-consistency loss. However, it is known that the

cycle-consistency framework may have multiple solutions (17,

18), indicating that the results may not be accurate and sensitive

to perturbation. To solve the mentioned problems, Kong et al.

(19) proposed RegGAN, which incorporates a registration

network and regards the misaligned target images as noisy labels.

However, the convolution kernel usually has a limited

receptive field and thus cannot capture long-range

dependencies, which are essential for MR image-to-image

translation. Nowadays, vision transformer (20) is capable of
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modeling global interactions between contexts and has

promising performance in MRI restoration (21, 22),

segmentation (23, 24), and registration (25, 26). Nevertheless,

vision transformers for image restoration need to divide the

input image into small patches of fixed size, which may

introduce border artifacts around each small patch in the

restored images. To solve this problem, Swin Transformer (27)

has been proposed to solve many vision problems (28, 29) since

it integrates the advantages of both the convolutional neural

network (CNN) and the self-attention mechanism (30) with

shifted windows.

In this paper, we propose a Swin Transformer-based GAN

for Multi-Modal Medical Image Translation, called MMTrans.

More specifically, our framework consists of three modules: a

Generator, a Registration Network, and a Discriminator. The

Generator is based on the framework of SwinIR (30), which is

utilized to generate images with the same content as source

modality images and the similar style information of target

modality images. The registration network is a Swin

Transformer model, which is trained to predict the deformable

vector field (DVF). For paired images, we assume that there

exists a tiny mismatch between the source domain images and

the target domain images. Therefore, the mismatch can be

corrected by the registration network. For unpaired images, as

shown in Figure 1, the G( x ) generates images with the same

morphology as T1 and the same style as T2, whileR( G( x ),y )

represents the image with the same style and the same

morphology of T2. The discriminator, a CNN model,

determines whether the target modality images are similar to

the generator or from the real images. Extensive experiments on

paired and unpaired public and clinical data demonstrated that

the proposed MMTrans outperforms state-of-the-art

approaches and has great potential to be applied in

clinical practice.

This paper’s sections were arranged as follows: in Section 2,

we elaborate on the proposed MMTrans framework, including

Swin Transformer Generator, Swin Transformer Registration,

Swin Transformer Layer, and the loss function. In Section 3, we

give the details of the experiment. Then we present and discuss

the experimental results in Section 4 and finally summarize the

conclusions in Section 5.
2 Methods

The task of this study is to synthesize translated modalities

from given modalities in MR images. In order to obtain better

performance, we propose a Swin Transformer-based GAN for

multi-modal MRI translation. Figure 1 shows the flowchart of

the whole framework. In this section, we will introduce in detail

the Swin Transformer Generator, Swin Transformer

Registration, Swin Transformer Layer, and loss functions.
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2.1 Swin Transformer layer

The most significant improvement and development of the

Swin Transformer to the transformer are replacing the previous

standard multiple self-attention (MSA) module with a shift

window-based module, with no substantial changes to the

other layers. Each Swin Transformer block consisted of layer

norm, multi-headed self-focused modules, residual connections,

and a two-level MLP with GELU non-linearity. Similar to

previous reports (31, 32), self-concern was calculated as follows:

Attention Q,K,Vð Þ = SoftMax
Q K Tffiffiffi

d
p + B

� �
V (1)

We represented the query, key, and value as Q, K, and V ∈
Rm

2×d

respectively; m2 represents the number of patches in the

window, while B depicts the dimension of the query or key. The

values in B were selected from B̂ ∈ R(2m−1)�(2m+1), the

bias matrix.
2.2 Swin Transformer generator

Currently, the models that can only be applied to specific

scenes or from minimal modeling capabilities generally perform

well in image translation. Most direct training CNNs first encode

the image as a high-level feature representation and then decode

it to full spatial resolution. Thus, these models are challenging to

apply in medical imaging. Image-to-image translation is

ultimately about inputting a high-dimensional input tensor
Frontiers in Oncology 03
and then corresponding this tensor to an output tensor with a

different appearance but identical in basic structure. In the

image-to-image conversion, shallow and deep characteristics

are extracted from the input and the actual images to achieve

high-quality image translation. To achieve this goal, a Swin

Transformer-based generative network for target image

generation was constructed. By using the transformer to

introduce a self-attention mechanism into the encoder design,

deep hierarchical representations were extracted with rich

remote dependencies from both the target and reference

images, which performed the translation task more efficiently

and accurately. As shown in Figure 1, Swin Transformer

Generator (STG) consisted of multiple residual Swin

Transformer blocks (RSTBs), each using various Swin

Transformer Layers (STLs) for local attention and cross-

window interaction learning, and the RSTB used residual

learning to ensure the stability of feature extraction and 3 × 3

convolutional layers between RSTBs and STLs for feature

enhancement. The feature extraction process of RSTBs was

expressed as follows:

TRSTB = Conv FSTL� �
+ TIN (2)

where FSTL denotes the model generated from STLs; Conv means

3 × 3 Conv2D, and TIN represents the input feature of RSTBs. As

shown in Figure 1, each STL consisted of multi-headed self-

attentive blocks and multi-layer perception. In this study, the

number of RSTBs and STLs in STG is set at four and six,

respectively. As shown in Figure 1, the STG consisted of multiple

RSTBs, each using various STLs for local attention and cross-
FIGURE 1

The overall architecture of the proposed MMTrans, including the Swin Transformer Generator (STG) for target image translation and the Swin
Transformer Registration (STR) for mismatch correction.
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window interaction learning, and each RSTB used residual

learning to ensure the stability of feature extraction and 3 × 3

convolutional layers between RSTB and STL for feature

enhancement. The generation section was defined as follows:

GIMAGE = FREC TRSTB� �
(3)

where FREC represents the function of the recovery module

through the long-skit connection. We used the STG module to

feed the low-frequency information wholly and directly into the

recovery module to extract high-frequency data from the depth

features. In the recovery, the subpixel convolutional layer was

adopted by us.
2.3 Swin Transformer registration

Compared with the traditional image translation tasks, image

translation in the medical field is more difficult because of the large

amount of detailed medical information contained in the structure

of the medical images. This information is inevitably lost during

training. The approach in the current work required the

construction of a network specifically for the specific medical

image translation task to solve this problem. A primary

registration network was added to the image translation work in

this study of RegGAN (19). Therefore, it was feasible to use the

registration networks to train generators in the medical image

translation process. We referred to a previous study (26) using a

U-shaped structure as the structure of the registration network, both

through the encoder-decoder paradigm, to achieve a smooth and

gradual transition from the image to the registration. Unlike the

previous study (33) and its variants, the encoder part of our Swin

Transformer Registration (STR) architecture better learned the

display’s global and remote semantic information interaction. In

our STR network, a Swin Transformer Layer was added to the

encoder part to perform the feature extraction process, which

improved the performance of our network by obtaining better

global information. We also used alternative up-sampling, general

convolution, and jump junction, which allowed the image features

extracted in the encoder part of the network to be passed directly to

the decoder section. We adopted a standard convolutional layer

with an available kernel size of 3 × 3 and a stride size of 2 × 2 for this

work. We added a LeakyRelu layer with the parameters equal to 0.2

behind the standard convolutional layer. As shown in the STR

section of Figure 1, each rectangle represents a two-dimensional

image to better train the registration architecture SWR for target

image generation. The numbers of rectangles represented how

many filter convolutions were used in the process. The down-

sampling operation was represented with bright red arrows, and the

up-sampling procedure was represented with green arrows; the gray

connecting line represented the jump connection between the

encoder and the decoder. Finally, the full-resolution image was

further refined after two layers of standard convolution. Our results
Frontiers in Oncology 04
showed that this registration network could performwell in the task

of image translation.
2.4. Loss functions

First, the underlying network framework involves GANs (34),

where the generator G and the discriminator D are continuously

trained to play against each other during the training process and

are eventually introduced to the desired ideal state. In this process,

we trained the generator to produce the medical target image G( x )

ideally from the input x image. Quite differently, this was the

discriminator in our network, which was continuously trained to

separate from the ground truth image y or the perfect target medical

image G( x ) developed by the generator. The adversarial loss

function was as follows:

min

G

max

D
LAdv G,Dð Þ

= ϵy log D yð Þð Þ½ � + ϵx log 1�D G xð Þð Þð Þ½ � (4)

After experiencing the target medical image G( x ) produced

after generating the adversarial network, we added the

registration network R as a label noise model to correct the

generated target image G( x ) to achieve better translation.

The correction loss is shown in Equation 5:

min

G,R
LCorr G,Rð Þ = ϵx,y ∥ y − G xð Þ ∘R G xð Þ, yð Þ ∥1½ � (5)

In Equation 5, we used R( G( x ),y ) to represent the

deformation field operation and we used ° to describe the

resampling operation. Our network’s registration network was

constructed based on the U-Net (35). In Equation 6, the

smoothness of the deformation field was evaluated by the loss

function, and the gradient of the deformation field was

minimized.

min

R
LSmooth Rð Þ = ϵx,y ∥∇R G xð Þ, yð Þ ∥2

� �
(6)

Finally, the total loss function of our network is shown in

Equation 7, which has three components.

min

G,R

max

D
LTotal G,R,Dð Þ = kLAdv + lLCorr + mLsmooth (7)
3 Experiment

In the following paragraph, we introduced the experimental

setup, including the used data and practical methods, evaluation

indicators, and some implementation details.
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3.1 Dataset

We employ three different datasets to evaluate our method,

as shown in Table 1:
Fron
• Open access BraTs2018 (36) dataset. The dataset

contains multi-contrast images, such as T1 and T2.

BraTs2018 was selected because the original images

were paired and well aligned.

• Public fastMRI (37) dataset with paired multi-contrast

knee DICOM images. We only used the coronal PD and

PD-FS images.

• The clinical brain MRI dataset was acquired with a 3T

Philips Ingenia MRI system (Philips Healthcare, Best,

the Netherlands) scanner, including T1-weighted (T1W)

and FLAIR imaging. The dataset consists of 17 healthy

subjects and five patients. All subjects gave their

informed consent for inclusion before they participated

in the study with approval from the local institutional

review board (in accordance with the Declaration of

Helsinki). The institutional review board has approved

the MRI scanning.
When training on paired images, all the MRIs were well

aligned and normalized into the range of [0, 1]. However, when

training on unpaired images, we randomly sample one image

from T1 and the other one from T2.
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3.2 Implementation details

Our proposal was implemented in PyTorch with an NVIDIA

Tesla V100 GPU (4 × 16 GB). The optimizer used was Adam at a

learning rate of 1e−4 to test all the developed methods. Each

training process protected 80 epochs, and the weights of the

different loss functions were k = 1, l= 20, and m= 10. The error

maps are calculated by calculating the absolute difference between

the generated images with the ground truth images. The error

maps are calculated by calculating the absolute difference between

the generated images with the ground truth images.
3.3 Comparison methods and
evaluation metrics

Two board-certified radiologists (with 7 and 10 years of

experience) independently reviewed the images synthesized by

all the comparison methods. The synthesized images were

anonymized, and the order of the image translation methods

was randomized. Three types of image quality measures (overall

image quality, image contrast, and structure outline) were scored

with 5-point Likert scale, 5-point Likert scale, and 3-point scale.

The 5-point Likert scale for overall image quality and image

contrast was as follows: 1, unacceptable; 2, poor; 3, acceptable; 4,

good; and 5, excellent. The 3-point scale for structure outline was

as follows: 1, indistinct outline; 2, perceptible outline; and 3,
TABLE 1 Three datasets and number of images for training validation and test.

Datasets BraTs2018 fastMRI Clinical brain MRI

Original image T1 PD T1

Target image T2 PD-FS T2

Train/valid/test 1,000/300/300 300/80/80 500/150/150
FIGURE 2

Hyperparameter selection results in the objective function.
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sharp outline. One-tailed Wilcoxon signed-rank tests based on

the ratings of two radiologists were used to test the difference

between synthesized images of different methods and the ground

truth images. The significance level was set as 0.01.
4 Experimental results

4.1 Hyperparameter selection

We obtain the hyperparameters k, l, and m by the greedy

method, as shown in Figure 2. Note that the hyperparameter

tuning is performed in the BraTs2018 dataset. The coefficient of

the adversarial loss was first adjusted. When k increased from

0.01 to 1, PSNR and SSIM show a growth tendency. However, it

can be seen that both PSNR and SSIM decrease slightly when k
boosts from 1.0 to 100. Thus, k is set to 1. When k is fixed, m is

increased from 0.01 to 100. As can be seen, the PSNR and SSIM

values keep growing until m reaches 10. When m >10, both PSNR

and SSIM values show a declining trend. Therefore, we set m to

10. In practice, we found that it is adequate to set l from 1 to 20

such that the magnitude of different loss terms is balanced

into similar scales. As shown in Figure 2, we set l to 20.
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Moreover, it has been demonstrated that adjusting the

hyperparameter determination order will not affect the final

hyperparameter setting.
4.2 Qualitative results

Four tasks are used to evaluate and test the proposed image

translation model. First, on the BraTs2018 paired dataset, the T2

modality of the T1 translation was used. On the public fastMRI

dataset, converting PDmodality to PD-FS modality is performed

as a second task. The third task was to convert T1 mode to T2

mode on a clinical brain MRI paired dataset. Finally, on the

BraTs2018 unpaired dataset, the T2 modality of the T1

translation was used. The translation performance of

MMTrans is first evaluated on BraTs2018 paired images;

Figure 3 shows the comparison of the translation method

proposed in the paired dataset BraTs2018 with other state-of-

the-art. Clearly, our proposed method produces better

translation results, which are valuable in clinical applications.

For the second task (implementing PD image to PD-FS image

translation using public fastMRI datasets), Figure 4 shows that

our model generates target images with higher quality and better
FIGURE 3

Qualitative results of T1 modality translation to T2 modality using the BraTs2018 paired dataset with different translation methods, displaying
translation images and corresponding error map.
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clarity as compared to other models. Admittedly, in the

qualitative comparison results shown in Figure 5, the best

performance of our method is also achieved in the third task
Frontiers in Oncology 07
(conversion from T1 mode to T2 mode images on top of the

clinical brain MRI dataset). Lastly, the performance was

evaluated using the BraTs2018 unpaired dataset; the results in
FIGURE 5

Qualitative results of different translation methods for translating T2 from T1 using the paired clinical brain MRI dataset, showing translation
images and corresponding error maps.
FIGURE 4

Qualitative results of different translation methods from PD to PD-FS using public fastMRI dataset, displaying translation images and
corresponding error map.
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Figure 6 show that our proposed MMTrans achieves the best

translation performance. In Figure 7, we show how MMTrans

corrects unpaired data. It can be seen that MMTrans will try its

best to eliminate the influence of unpaired through registration.
Frontiers in Oncology 08
4.3 Quantitative results

The values of quantitative metrics for the two raters are shown

in Table 2 and Figure 8. Both raters agreed that our translated
FIGURE 6

Qualitative results of different translation methods for synthesizing T2 from T1 on unpaired BraTs2018 dataset.
FIGURE 7

Display of MMTrans output on unpaired data. T1 and T2 are unpaired images. Translated represents the translation result of T1 to T2. Registered
represents the registration result of the translated images.
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images significantly improved overall quality (p < 0.01), image

contrast (p < 0.01), and deep brain structure contours (p < 0.01).

Meanwhile, our synthetic T2 images and real T2 images were not

significantly different for all measures of image quality (all p > 0.01)..

The translation performance of MMTrans is first evaluated

on BraTs2018 paired images. Table 3 shows the results of

quantitative evaluations on the four tasks. The first is

evaluated on BraTs2018 paired images; Table 3 shows that our
Frontiers in Oncology 09
model dominates the PSNR, NAME, and SSIM metrics,

indicating that our model achieves better target image

translation. Based on Table 3, we can find that our model

method outperforms other image translation methods on the

fastMRI public dataset, especially in image contrast restoration.

Admittedly, quantitative results on the third task (translation

from T1 modality to T2 modality images on a clinical brain MRI

paired dataset) suggest that our approach is the best solution.
TABLE 2 Compare the mean scores of translated images given by P2P images, CycleGAN images, RegGAN images, and MMTrans images.

Ratings (mean ± standard deviation) p-Value
MMTrans

P2P CycleGAN RegGAN MMTrans GT

Quality 4.25 ± 0.53 3.40 ± 1.13 4.75 ± 0.17 4.88 ± 0.07 0.029

Contrast 4.20 ± 0.56 3.75 ± 0.88 4.65 ± 0.24 4.95 ± 0.07 0.015

Outline 2.50 ± 0.35 1.95 ± 0.74 2.75 ± 0.17 2.95 ± 0.03 0.023
fro
FIGURE 8

Two board-certified radiologists (7 and 10 years of experience) independently reviewed the results of images synthesized by all contrast
methods.
TABLE 3 Quantitative metrics results (mean and standard deviation) on different datasets in terms of PSNR, MAE, and SSIM.

Dataset BraTs2018 (paired) fastMRI (paired)

Metrics PSNR MAE (10-2) SSIM (10-2) PSNR MAE (10-2) SSIM (10-2)

P2P 23.80 ± 3.81* 8.27 ± 1.90* 81.67 ± 3.80* 35.36 ± 2.37* 4.31 ± 0.90* 76.17 ± 6.40*

CycleGAN 22.59 ± 3.26* 8.85 ± 1.90* 80.64 ± 3.40* 34.20 ± 2.64* 4.38 ± 1.30* 74.27 ± 8.60*

RegGAN 24.08 ± 3.38* 8.18 ± 1.90* 82.83 ± 3.60* 37.28 ± 2.05* 4.28 ± 1.10* 80.18 ± 6.40*

MMTrans 24.83 ± 3.36 8.06 ± 1.80 83.95 ± 3.70 39.37 ± 2.38 4.10 ± 1.20 81.17 ± 7.00

Dataset Clinical brain MRI (paired) BraTs2018 (unpaired)

P2P 34.67 ± 4.08* 1.62 ± 1.10* 84.86 ± 8.00* 12.57 ± 2.8* 19.36 ± 3.50* 67.90 ± 1.90*

CycleGAN 34.23 ± 2.74* 1.67 ± 0.10* 83.92 ± 7.30* 13.34 ± 2.11* 18.11 ± 3.40* 70.25 ± 2.50*

RegGAN 36.13 ± 3.69* 1.34 ± 0.80* 86.37 ± 8.00* 14.02 ± 2.11* 17.82 ± 2.80* 71.17 ± 2.40*

MMTrans 36.70 ± 3.13 1.28 ± 0.60 87.49 ± 8.00 14.86 ± 2.34 16.26 ± 2.80 73.09 ± 2.90
The best quantitative metrics results are marked in bold.
*Significant difference between different comparison methods and our proposed MMTrans.
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Finally, the BraTs2018 unaligned dataset is used to evaluate the

performance of using T1 image transfer to T2 modality; the

quantitative evaluation results of this task are shown in Table 3.

Comparing the three evaluation metrics in Table 3, MMTrans

performs better.
4.4 Ablation study

To analyze the impact of STL modules in our proposed

architecture, we perform an ablation study for four different

scenarios: 1) baseline GAN: both G and R consist of the

convolutional layer. 2) SwinG: we disable the registration module

and only add the STL module to the G network. 3) SwinG+R: the

STL module is added to generator G, while the registration R is

without the STL module. 4) MMTrans (ours): both G and R adopt

STL modules. The qualitative and quantitative results are shown in

Figures 9, 10, respectively. First, adding the registration network

(+R) obviously improves the performance of the method. Second,

the residual Swin Transformer group enables better modeling of

long-range dependency of MRIs since MRIs often have repeating

visual patterns and similar structures. As shown in Figure 11,

adding the registration R network makes the translation more

accurate, and the STL modules are added to generator G

and registration R, which can learn more features of MRIs.

Therefore, the proposed MMTrans can be regarded as a better

translation scheme.
Frontiers in Oncology 10
5 Discussion

In contrast to previous image-to-image translation methods,

the Pix2Pix must be trained with enough paired data to generate

a clear image of the pathological target. However, unavoidable

physical factors during the MR image acquisition, including

respiratory motion or anatomical variations between the

acquired pairs of photos, make it very difficult to achieve

precisely matched MR data from the same individual. Even

with the excellent performance of the Pix2Pix mode, it must

require a large number of pixels to align medical images, which

is a very time-consuming task for MRI. Specific to cyclic

consistency, it is impossible to meet the medical image

requirements at the accuracy level. Applying image translation

to medical imaging requires a change in style between two

images and, more importantly, the ability to achieve higher-

resolution conversions between specific pairs of medical images.

The result should be unique, and the translated image must

maximize the anatomical features of the original image. Our

model performed best with paired and unpaired data combining

image translation with the Swin Transformer.

This work proposed a framework that can translate the medical

image patterns accurately. In medical image translation,

convolutional operations have a fixed localization, making it

difficult for CNN-based approaches to learn the display’s global

and remote semantic information interaction. In other words,

because the convolutional kernel can be considered as a small
FIGURE 9

Qualitative results in ablation studies under different scenarios on the BraTs2018 dataset.
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patch in which the acquired features are of local information, the

global data are lost when remote dependency modeling training is

performed at its location, which also leads to the inability to obtain

the anatomical details contained inside the image during the

translation process. With the help of the Swin Transformer, the

generator part of our network was built based on the work, where

the input medical image is segmented into non-overlapping image

patches; each patch can be referred to as a token, and these patches

are then fed into an encoder created based on the transformer to

learn the deep feature representation in the image. The contextual

features known by the transformer are then obtained using a
Frontiers in Oncology 11
decoder with patch extensions and fused with multiscale elements

from the encoder via a jump connection to recover the spatial

resolution of the feature images to further complete the translation

of the target images. In our network, we also considered the global

information of the picture to improve the performance of medical

image translation. For images generated by the generator, we added

deformable registration to our architecture to better train the

generator in our network so that our model could yield better

results in the image translation.

This study also has limitations, and further modifications to

MMTrans are required for the practical implementation of medical
FIGURE 11

The learned attention map. Visualization of attention maps in SwinG, SwinG+R, and MMTrans. Blue and red values represent low and high
response values, respectively.
FIGURE 10

Ablation study results with different scenarios on the BraTs2018 dataset. *Significant difference between different comparison methods and our
proposed MMTrans (p < 0.01).
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imaging. Although computing with two-dimensional (2D) slices is

significantly more efficient than the 3D counterparts, the

information retained in the 3D data is indispensable for most

medical imaging tasks. Therefore, future studies should further

adapt MMTrans to 3D medical volumes.
Conclusion

We present a novel Swin Transformer-based GAN for

Multi-Modal Medical Image Translation, named MMTrans.

First, the Swin Transformer-based generator with long-range

dependency modeling ability is utilized for target image

generation. Furthermore, a U-shaped registration network

with Swin Transformer-based encoder is incorporated for

better predicting deformable vector fields. Experimental results

show that our MMTrans is superior to the existing MRI image-

to-image translation methods and has great potential to be used

in clinical practice.
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