
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu1,2†*
Yutong Lin1,3†* Yue Cao1* Han Hu1*‡ Yixuan Wei1,4†

Zheng Zhang1 Stephen Lin1 Baining Guo1

1Microsoft Research Asia 2University of Science and Technology of China
3Xian Jiaotong University 4Tsinghua University

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Abstract

This paper presents a new vision Transformer, called

Swin Transformer, that capably serves as a general-purpose

backbone for computer vision. Challenges in adapting

Transformer from language to vision arise from differences

between the two domains, such as large variations in the

scale of visual entities and the high resolution of pixels

in images compared to words in text. To address these

differences, we propose a hierarchical Transformer whose

representation is computed with Shifted windows. The

shifted windowing scheme brings greater efficiency by lim-

iting self-attention computation to non-overlapping local

windows while also allowing for cross-window connection.

This hierarchical architecture has the flexibility to model

at various scales and has linear computational complexity

with respect to image size. These qualities of Swin Trans-

former make it compatible with a broad range of vision

tasks, including image classification (87.3 top-1 accuracy

on ImageNet-1K) and dense prediction tasks such as object

detection (58.7 box AP and 51.1 mask AP on COCO test-

dev) and semantic segmentation (53.5 mIoU on ADE20K

val). Its performance surpasses the previous state-of-the-

art by a large margin of +2.7 box AP and +2.6 mask AP on

COCO, and +3.2 mIoU on ADE20K, demonstrating the po-

tential of Transformer-based models as vision backbones.

The hierarchical design and the shifted window approach

also prove beneficial for all-MLP architectures. The code

and models are publicly available at https://github.

com/microsoft/Swin-Transformer.

1. Introduction

Modeling in computer vision has long been dominated

by convolutional neural networks (CNNs). Beginning with

AlexNet [35] and its revolutionary performance on the

ImageNet image classification challenge, CNN architec-

*Equal contribution. †Interns at MSRA. ‡Contact person.

Figure 1. (a) The proposed Swin Transformer builds hierarchical

feature maps by merging image patches (shown in gray) in deeper

layers and has linear computation complexity to input image size

due to computation of self-attention only within each local win-

dow (shown in red). It can thus serve as a general-purpose back-

bone for both image classification and dense recognition tasks.

(b) In contrast, previous vision Transformers [19] produce fea-

ture maps of a single low resolution and have quadratic compu-

tation complexity to input image size due to computation of self-

attention globally.

tures have evolved to become increasingly powerful through

greater scale [27, 69], more extensive connections [31], and

more sophisticated forms of convolution [64, 17, 75]. With

CNNs serving as backbone networks for a variety of vision

tasks, these architectural advances have led to performance

improvements that have broadly lifted the entire field.

On the other hand, the evolution of network architectures

in natural language processing (NLP) has taken a different

path, where the prevalent architecture today is instead the

Transformer [58]. Designed for sequence modeling and

transduction tasks, the Transformer is notable for its use

of attention to model long-range dependencies in the data.

Its tremendous success in the language domain has led re-

searchers to investigate its adaptation to computer vision,

where it has recently demonstrated promising results on cer-

tain tasks, specifically image classification [19] and joint

vision-language modeling [43].

10012

https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer


In this paper, we seek to expand the applicability of

Transformer such that it can serve as a general-purpose

backbone for computer vision, as it does for NLP and

as CNNs do in vision. We observe that significant chal-

lenges in transferring its high performance in the language

domain to the visual domain can be explained by differ-

ences between the two modalities. One of these differ-

ences involves scale. Unlike the word tokens that serve

as the basic elements of processing in language Trans-

formers, visual elements can vary substantially in scale, a

problem that receives attention in tasks such as object de-

tection [38, 49, 50]. In existing Transformer-based mod-

els [58, 19], tokens are all of a fixed scale, a property un-

suitable for these vision applications. Another difference

is the much higher resolution of pixels in images com-

pared to words in passages of text. There exist many vi-

sion tasks such as semantic segmentation that require dense

prediction at the pixel level, and this would be intractable

for Transformer on high-resolution images, as the compu-

tational complexity of its self-attention is quadratic to im-

age size. To overcome these issues, we propose a general-

purpose Transformer backbone, called Swin Transformer,

which constructs hierarchical feature maps and has linear

computational complexity to image size. As illustrated in

Figure 1(a), Swin Transformer constructs a hierarchical rep-

resentation by starting from small-sized patches (outlined in

gray) and gradually merging neighboring patches in deeper

Transformer layers. With these hierarchical feature maps,

the Swin Transformer model can conveniently leverage ad-

vanced techniques for dense prediction such as feature pyra-

mid networks (FPN) [38] or U-Net [47]. The linear compu-

tational complexity is achieved by computing self-attention

locally within non-overlapping windows that partition an

image (outlined in red). The number of patches in each

window is fixed, and thus the complexity becomes linear

to image size. These merits make Swin Transformer suit-

able as a general-purpose backbone for various vision tasks,

in contrast to previous Transformer based architectures [19]

which produce feature maps of a single resolution and have

quadratic complexity.

A key design element of Swin Transformer is its shift

of the window partition between consecutive self-attention

layers, as illustrated in Figure 2. The shifted windows

bridge the windows of the preceding layer, providing con-

nections among them that significantly enhance modeling

power (see Table 4). This strategy is also efficient in re-

gards to real-world latency: all query patches within a win-

dow share the same key set1, which facilitates memory ac-

cess in hardware. In contrast, earlier sliding window based

self-attention approaches [30, 46] suffer from low latency

on general hardware due to different key sets for different

1The query and key are projection vectors in a self-attention layer.

Figure 2. An illustration of the shifted window approach for com-

puting self-attention in the proposed Swin Transformer architec-

ture. In layer l (left), a regular window partitioning scheme is

adopted, and self-attention is computed within each window. In

the next layer l + 1 (right), the window partitioning is shifted, re-

sulting in new windows. The self-attention computation in the new

windows crosses the boundaries of the previous windows in layer

l, providing connections among them.

query pixels2. Our experiments show that the proposed

shifted window approach has much lower latency than the

sliding window method, yet is similar in modeling power

(see Tables 5 and 6). The shifted window approach also

proves beneficial for all-MLP architectures [56].

The proposed Swin Transformer achieves strong perfor-

mance on the recognition tasks of image classification, ob-

ject detection and semantic segmentation. It outperforms

the ViT / DeiT [19, 57] and ResNe(X)t models [27, 64] sig-

nificantly with similar latency on the three tasks. Its 58.7

box AP and 51.1 mask AP on the COCO test-dev set sur-

pass the previous state-of-the-art results by +2.7 box AP

(Copy-paste [23] without external data) and +2.6 mask AP

(DetectoRS [42]). On ADE20K semantic segmentation, it

obtains 53.5 mIoU on the val set, an improvement of +3.2

mIoU over the previous state-of-the-art (SETR [73]). It also

achieves a top-1 accuracy of 87.3% on ImageNet-1K image

classification.

It is our belief that a unified architecture across com-

puter vision and natural language processing could benefit

both fields, since it would facilitate joint modeling of vi-

sual and textual signals and the modeling knowledge from

both domains can be more deeply shared. We hope that

Swin Transformer’s strong performance on various vision

problems can drive this belief deeper in the community and

encourage unified modeling of vision and language signals.

2. Related Work

CNN and variants CNNs serve as the standard network

model throughout computer vision. While the CNN has ex-

isted for several decades [36], it was not until the introduc-

tion of AlexNet [35] that the CNN took off and became

mainstream. Since then, deeper and more effective con-

2While there are efficient methods to implement a sliding-window

based convolution layer on general hardware, thanks to its shared kernel

weights across a feature map, it is difficult for a sliding-window based

self-attention layer to have efficient memory access in practice.

210013



volutional neural architectures have been proposed to fur-

ther propel the deep learning wave in computer vision, e.g.,

VGG [48], GoogleNet [53], ResNet [27], DenseNet [31],

HRNet [59], and EfficientNet [54]. In addition to these

architectural advances, there has also been much work on

improving individual convolution layers, such as depth-

wise convolution [64] and deformable convolution [17, 75].

While the CNN and its variants are still the primary back-

bone architectures for computer vision applications, we

highlight the strong potential of Transformer-like architec-

tures for unified modeling between vision and language.

Our work achieves strong performance on several basic vi-

sual recognition tasks, and we hope it will contribute to a

modeling shift.

Self-attention based backbone architectures Also in-

spired by the success of self-attention layers and Trans-

former architectures in the NLP field, some works employ

self-attention layers to replace some or all of the spatial con-

volution layers in the popular ResNet [30, 46, 72]. In these

works, the self-attention is computed within a local window

of each pixel to expedite optimization [30], and they achieve

slightly better accuracy/FLOPs trade-offs than the counter-

part ResNet architecture. However, their costly memory

access causes their actual latency to be significantly larger

than that of the convolutional networks [30]. Instead of us-

ing sliding windows, we propose to shift windows between

consecutive layers, which allows for a more efficient imple-

mentation in general hardware.

Self-attention/Transformers to complement CNNs An-

other line of work is to augment a standard CNN architec-

ture with self-attention layers or Transformers. The self-

attention layers can complement backbones [61, 7, 3, 65,

21, 68, 51] or head networks [29, 24] by providing the ca-

pability to encode distant dependencies or heterogeneous

interactions. More recently, the encoder-decoder design in

Transformer has been applied for the object detection and

instance segmentation tasks [8, 13, 76, 52]. Our work ex-

plores the adaptation of Transformers for basic visual fea-

ture extraction and is complementary to these works.

Transformer based vision backbones Most related to

our work is the Vision Transformer (ViT) [19] and its

follow-ups [57, 66, 15, 25, 60]. The pioneering work of

ViT directly applies a Transformer architecture on non-

overlapping medium-sized image patches for image clas-

sification. It achieves an impressive speed-accuracy trade-

off on image classification compared to convolutional net-

works. While ViT requires large-scale training datasets

(i.e., JFT-300M) to perform well, DeiT [57] introduces sev-

eral training strategies that allow ViT to also be effective

using the smaller ImageNet-1K dataset. The results of ViT

on image classification are encouraging, but its architec-

ture is unsuitable for use as a general-purpose backbone

network on dense vision tasks or when the input image

resolution is high, due to its low-resolution feature maps

and the quadratic increase in complexity with image size.

There are a few works applying ViT models to the dense

vision tasks of object detection and semantic segmenta-

tion by direct upsampling or deconvolution but with rela-

tively lower performance [2, 73]. Concurrent to our work

are some that modify the ViT architecture [66, 15, 25]

for better image classification. Empirically, we find our

Swin Transformer architecture to achieve the best speed-

accuracy trade-off among these methods on image classi-

fication, even though our work focuses on general-purpose

performance rather than specifically on classification. An-

other concurrent work [60] explores a similar line of think-

ing to build multi-resolution feature maps on Transform-

ers. Its complexity is still quadratic to image size, while

ours is linear and also operates locally which has proven

beneficial in modeling the high correlation in visual sig-

nals [32, 22, 37]. Our approach is both efficient and ef-

fective, achieving state-of-the-art accuracy on both COCO

object detection and ADE20K semantic segmentation.

3. Method

3.1. Overall Architecture

An overview of the Swin Transformer architecture is pre-

sented in Figure 3, which illustrates the tiny version (Swin-

T). It first splits an input RGB image into non-overlapping

patches by a patch splitting module, like ViT. Each patch is

treated as a “token” and its feature is set as a concatenation

of the raw pixel RGB values. In our implementation, we use

a patch size of 4× 4 and thus the feature dimension of each

patch is 4 × 4 × 3 = 48. A linear embedding layer is ap-

plied on this raw-valued feature to project it to an arbitrary

dimension (denoted as C).

Several Transformer blocks with modified self-attention

computation (Swin Transformer blocks) are applied on these

patch tokens. The Transformer blocks maintain the number

of tokens (H4 × W

4 ), and together with the linear embedding

are referred to as “Stage 1”.

To produce a hierarchical representation, the number of

tokens is reduced by patch merging layers as the network

gets deeper. The first patch merging layer concatenates the

features of each group of 2 × 2 neighboring patches, and

applies a linear layer on the 4C-dimensional concatenated

features. This reduces the number of tokens by a multiple

of 2×2 = 4 (2× downsampling of resolution), and the out-

put dimension is set to 2C. Swin Transformer blocks are

applied afterwards for feature transformation, with the res-

olution kept at H

8 × W

8 . This first block of patch merging

and feature transformation is denoted as “Stage 2”. The pro-

310014



(a) Architecture

MLP

LN

LN

W-MSA

(b) Two Successive Swin Transformer Blocks

MLP

LN

LN

SW-MSAImages
Swin

Transformer
Block

Li
ne

ar
 E

m
be

dd
in

g

Swin
Transformer

Block

Pa
tc

h 
M

er
gi

ng

Swin
Transformer

Block

Pa
tc

h 
M

er
gi

ng

Swin
Transformer

Block

Pa
tc

h 
M

er
gi

ng

Stage 1 Stage 2 Stage 3 Stage 4

2 2 6 2

Pa
tc

h 
Pa

rt
it

io
n

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with

Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

cedure is repeated twice, as “Stage 3” and “Stage 4”, with

output resolutions of H

16 × W

16 and H

32 × W

32 , respectively.

These stages jointly produce a hierarchical representation,

with the same feature map resolutions as those of typical

convolutional networks, e.g., VGG [48] and ResNet [27].

As a result, the proposed architecture can conveniently re-

place the backbone networks in existing methods for vari-

ous vision tasks.

Swin Transformer block Swin Transformer is built by

replacing the standard multi-head self attention (MSA)

module in a Transformer block by a module based on

shifted windows (described in Section 3.2), with other lay-

ers kept the same. As illustrated in Figure 3(b), a Swin

Transformer block consists of a shifted window based MSA

module, followed by a 2-layer MLP with GELU non-

linearity in between. A LayerNorm (LN) layer is applied

before each MSA module and each MLP, and a residual

connection is applied after each module.

3.2. Shifted Window based SelfAttention

The standard Transformer architecture [58] and its adap-

tation for image classification [19] both conduct global self-

attention, where the relationships between a token and all

other tokens are computed. The global computation leads to

quadratic complexity with respect to the number of tokens,

making it unsuitable for many vision problems requiring an

immense set of tokens for dense prediction or to represent a

high-resolution image.

Self-attention in non-overlapped windows For efficient

modeling, we propose to compute self-attention within lo-

cal windows. The windows are arranged to evenly partition

the image in a non-overlapping manner. Supposing each

window contains M ×M patches, the computational com-

plexity of a global MSA module and a window based one

on an image of h× w patches are3:

Ω(MSA) = 4hwC2 + 2(hw)2C, (1)

Ω(W-MSA) = 4hwC2 + 2M2hwC, (2)

where the former is quadratic to patch number hw, and the

latter is linear when M is fixed (set to 7 by default). Global

self-attention computation is generally unaffordable for a

large hw, while the window based self-attention is scalable.

Shifted window partitioning in successive blocks The

window-based self-attention module lacks connections

across windows, which limits its modeling power. To intro-

duce cross-window connections while maintaining the effi-

cient computation of non-overlapping windows, we propose

a shifted window partitioning approach which alternates be-

tween two partitioning configurations in consecutive Swin

Transformer blocks.

As illustrated in Figure 2, the first module uses a regular

window partitioning strategy which starts from the top-left

pixel, and the 8 × 8 feature map is evenly partitioned into

2× 2 windows of size 4× 4 (M = 4). Then, the next mod-

ule adopts a windowing configuration that is shifted from

that of the preceding layer, by displacing the windows by

(⌊M

2 ⌋, ⌊M

2 ⌋) pixels from the regularly partitioned windows.

With the shifted window partitioning approach, consec-

utive Swin Transformer blocks are computed as

ẑ
l = W-MSA

(

LN
(

z
l−1

))

+ z
l−1,

z
l = MLP

(

LN
(

ẑ
l
))

+ ẑ
l,

ẑ
l+1 = SW-MSA

(

LN
(

z
l
))

+ z
l,

z
l+1 = MLP

(

LN
(

ẑ
l+1

))

+ ẑ
l+1, (3)

where ẑ
l and z

l denote the output features of the (S)W-

MSA module and the MLP module for block l, respectively;

3We omit SoftMax computation in determining complexity.

410015



CC

cyclic shift

A

AC

B

window partition
reverse cyclic shift

A

AC

B

C

...

masked
MSA

A

B

AA

B

masked
MSA

Figure 4. Illustration of an efficient batch computation approach

for self-attention in shifted window partitioning.

W-MSA and SW-MSA denote window based multi-head

self-attention using regular and shifted window partitioning

configurations, respectively.

The shifted window partitioning approach introduces

connections between neighboring non-overlapping win-

dows in the previous layer and is found to be effective in im-

age classification, object detection, and semantic segmenta-

tion, as shown in Table 4.

Efficient batch computation for shifted configuration

An issue with shifted window partitioning is that it will re-

sult in more windows, from ⌈ h

M
⌉ × ⌈ w

M
⌉ to (⌈ h

M
⌉ + 1) ×

(⌈ w

M
⌉+1) in the shifted configuration, and some of the win-

dows will be smaller than M ×M 4. A naive solution is to

pad the smaller windows to a size of M × M and mask

out the padded values when computing attention. When

the number of windows in regular partitioning is small, e.g.

2× 2, the increased computation with this naive solution is

considerable (2 × 2 → 3× 3, which is 2.25 times greater).

Here, we propose a more efficient batch computation ap-

proach by cyclic-shifting toward the top-left direction, as il-

lustrated in Figure 4. After this shift, a batched window may

be composed of several sub-windows that are not adjacent

in the feature map, so a masking mechanism is employed to

limit self-attention computation to within each sub-window.

With the cyclic-shift, the number of batched windows re-

mains the same as that of regular window partitioning, and

thus is also efficient. The low latency of this approach is

shown in Table 5.

Relative position bias In computing self-attention, we

follow [45, 1, 29, 30] by including a relative position bias

B ∈ R
M

2
×M

2

to each head in computing similarity:

Attention(Q,K, V ) = SoftMax(QKT /
√
d+B)V, (4)

where Q,K, V ∈ R
M

2
×d are the query, key and value ma-

trices; d is the query/key dimension, and M2 is the number

of patches in a window. Since the relative position along

each axis lies in the range [−M +1,M −1], we parameter-

ize a smaller-sized bias matrix B̂ ∈ R
(2M−1)×(2M−1), and

values in B are taken from B̂.

4To make the window size (M,M) divisible by the feature map size of

(h,w), bottom-right padding is employed on the feature map if needed.

We observe significant improvements over counterparts

without this bias term or that use absolute position embed-

ding, as shown in Table 4. Further adding absolute posi-

tion embedding to the input as in [19] drops performance

slightly, thus it is not adopted in our implementation.

The learnt relative position bias in pre-training can be

also used to initialize a model for fine-tuning with a differ-

ent window size through bi-cubic interpolation [19, 57].

3.3. Architecture Variants

We build our base model, called Swin-B, to have of

model size and computation complexity similar to ViT-

B/DeiT-B. We also introduce Swin-T, Swin-S and Swin-L,

which are versions of about 0.25×, 0.5× and 2× the model

size and computational complexity, respectively. Note that

the complexity of Swin-T and Swin-S are similar to those

of ResNet-50 (DeiT-S) and ResNet-101, respectively. The

window size is set to M = 7 by default. The query dimen-

sion of each head is d = 32, and the expansion layer of

each MLP is α = 4, for all experiments. The architecture

hyper-parameters of these model variants are:

• Swin-T: C = 96, layer numbers = {2, 2, 6, 2}

• Swin-S: C = 96, layer numbers ={2, 2, 18, 2}

• Swin-B: C = 128, layer numbers ={2, 2, 18, 2}

• Swin-L: C = 192, layer numbers ={2, 2, 18, 2}

where C is the channel number of the hidden layers in the

first stage. The model size, theoretical computational com-

plexity (FLOPs), and throughput of the model variants for

ImageNet image classification are listed in Table 1.

4. Experiments

We conduct experiments on ImageNet-1K image classi-

fication [18], COCO object detection [39], and ADE20K

semantic segmentation [74]. In the following, we first com-

pare the proposed Swin Transformer architecture with the

previous state-of-the-arts on the three tasks. Then, we ab-

late the important design elements of Swin Transformer.

4.1. Image Classification on ImageNet1K

Settings For image classification, we benchmark the pro-

posed Swin Transformer on ImageNet-1K [18], which con-

tains 1.28M training images and 50K validation images

from 1,000 classes. The top-1 accuracy on a single crop

is reported. We consider two training settings:

• Regular ImageNet-1K training. This setting mostly

follows [57]. We employ an AdamW [33] optimizer

for 300 epochs using a cosine decay learning rate

scheduler and 20 epochs of linear warm-up. A batch

size of 1024, an initial learning rate of 0.001, and a

510016



weight decay of 0.05 are used. We include most of

the augmentation and regularization strategies of [57]

in training, except for repeated augmentation [28] and

EMA [41], which do not enhance performance. Note

that this is contrary to [57] where repeated augmenta-

tion is crucial to stabilize the training of ViT.

• Pre-training on ImageNet-22K and fine-tuning on

ImageNet-1K. We also pre-train on the ImageNet-22K

dataset, which contains 14.2 million images and 22K

classes. We employ an AdamW optimizer for 90

epochs using a cosine learning rate scheduler with a

5-epoch linear warm-up. A batch size of 4096, an ini-

tial learning rate of 0.001, and a weight decay of 0.01

are used. In ImageNet-1K fine-tuning, we train for 30

epochs with a batch size of 1024, a constant learning

rate of 10−5, and a weight decay of 10−8.

Results with regular ImageNet-1K training Table 1(a)

presents comparisons to other backbones, including both

Transformer-based and ConvNet-based, using regular

ImageNet-1K training.

Compared to the previous state-of-the-art Transformer-

based architecture, i.e. DeiT [57], Swin Transformers no-

ticeably surpass the counterpart DeiT architectures with

similar complexities: +1.5% for Swin-T (81.3%) over

DeiT-S (79.8%) using 2242 input, and +1.5%/1.4% for

Swin-B (83.3%/84.5%) over DeiT-B (81.8%/83.1%) using

2242/3842 input, respectively.

Compared with the state-of-the-art ConvNets, i.e. Reg-

Net [44], the Swin Transformer achieves a slightly better

speed-accuracy trade-off. Noting that while RegNet [44]

are obtained via a thorough architecture search, the Swin

Transformer is manually adapted from a standard Trans-

former and has potential for further improvement.

Results with ImageNet-22K pre-training We also pre-

train the larger-capacity Swin-B and Swin-L on ImageNet-

22K. Results fine-tuned on ImageNet-1K image classifica-

tion are shown in Table 1(b). For Swin-B, the ImageNet-

22K pre-training brings 1.8%∼1.9% gains over training

on ImageNet-1K from scratch. Compared with the previ-

ous best results for ImageNet-22K pre-training, our mod-

els achieve significantly better speed-accuracy trade-offs:

Swin-B obtains 86.4% top-1 accuracy, which is 2.4% higher

than that of ViT with similar inference throughput (84.7

vs. 85.9 images/sec) and slightly lower FLOPs (47.0G vs.

55.4G). The larger Swin-L model achieves 87.3% top-1 ac-

curacy, +0.9% better than that of the Swin-B model.

4.2. Object Detection on COCO

Settings Object detection and instance segmentation ex-

periments are conducted on COCO 2017, which contains

(a) Regular ImageNet-1K trained models

method
image

size
#param. FLOPs

throughput

(image / s)

ImageNet

top-1 acc.

RegNetY-4G [44] 2242 21M 4.0G 1156.7 80.0

RegNetY-8G [44] 2242 39M 8.0G 591.6 81.7

RegNetY-16G [44] 2242 84M 16.0G 334.7 82.9

ViT-B/16 [19] 3842 86M 55.4G 85.9 77.9

ViT-L/16 [19] 3842 307M 190.7G 27.3 76.5

DeiT-S [57] 2242 22M 4.6G 940.4 79.8

DeiT-B [57] 2242 86M 17.5G 292.3 81.8

DeiT-B [57] 3842 86M 55.4G 85.9 83.1

Swin-T 2242 29M 4.5G 755.2 81.3

Swin-S 2242 50M 8.7G 436.9 83.0

Swin-B 2242 88M 15.4G 278.1 83.5

Swin-B 3842 88M 47.0G 84.7 84.5

(b) ImageNet-22K pre-trained models

method
image

size
#param. FLOPs

throughput

(image / s)

ImageNet

top-1 acc.

R-101x3 [34] 3842 388M 204.6G - 84.4

R-152x4 [34] 4802 937M 840.5G - 85.4

ViT-B/16 [19] 3842 86M 55.4G 85.9 84.0

ViT-L/16 [19] 3842 307M 190.7G 27.3 85.2

Swin-B 2242 88M 15.4G 278.1 85.2

Swin-B 3842 88M 47.0G 84.7 86.4

Swin-L 3842 197M 103.9G 42.1 87.3

Table 1. Comparison of different backbones on ImageNet-1K clas-

sification. Throughput is measured using the GitHub repository

of [62] and a V100 GPU, following [57].

118K training, 5K validation and 20K test-dev images. An

ablation study is performed using the validation set, and a

system-level comparison is reported on test-dev. For the

ablation study, we consider four typical object detection

frameworks: Cascade Mask R-CNN [26, 6], ATSS [71],

RepPoints v2 [12], and Sparse RCNN [52] in mmdetec-

tion [10]. For these four frameworks, we utilize the same

settings: multi-scale training [8, 52] (resizing the input such

that the shorter side is between 480 and 800 while the longer

side is at most 1333), AdamW [40] optimizer (initial learn-

ing rate of 0.0001, weight decay of 0.05, and batch size of

16), and 3x schedule (36 epochs). For system-level compar-

ison, we adopt an improved HTC [9] (denoted as HTC++)

with instaboost [20], stronger multi-scale training [7], 6x

schedule (72 epochs), soft-NMS [5], and ImageNet-22K

pre-trained model as initialization.

We compare our Swin Transformer to standard Con-

vNets, i.e. ResNe(X)t, and previous Transformer networks,

e.g. DeiT. The comparisons are conducted by changing only

the backbones with other settings unchanged. Note that

while Swin Transformer and ResNe(X)t are directly appli-

cable to all the above frameworks because of their hierar-

chical feature maps, DeiT only produces a single resolu-

tion of feature maps and cannot be directly applied. For fair

comparison, we follow [73] to construct hierarchical feature

maps for DeiT using deconvolution layers.

610017



(a) Various frameworks

Method Backbone APbox APbox
50 APbox

75 #param. FLOPs FPS

Cascade

Mask R-CNN

R-50 46.3 64.3 50.5 82M 739G 18.0

Swin-T 50.5 69.3 54.9 86M 745G 15.3

ATSS
R-50 43.5 61.9 47.0 32M 205G 28.3

Swin-T 47.2 66.5 51.3 36M 215G 22.3

RepPointsV2
R-50 46.5 64.6 50.3 42M 274G 13.6

Swin-T 50.0 68.5 54.2 45M 283G 12.0

Sparse

R-CNN

R-50 44.5 63.4 48.2 106M 166G 21.0

Swin-T 47.9 67.3 52.3 110M 172G 18.4

(b) Various backbones w. Cascade Mask R-CNN

APboxAPbox
50 APbox

75 APmaskAPmask
50 APmask

75 paramFLOPsFPS

DeiT-S† 48.0 67.2 51.7 41.4 64.2 44.3 80M 889G 10.4

R50 46.3 64.3 50.5 40.1 61.7 43.4 82M 739G 18.0

Swin-T 50.5 69.3 54.9 43.7 66.6 47.1 86M 745G 15.3

X101-32 48.1 66.5 52.4 41.6 63.9 45.2 101M 819G 12.8

Swin-S 51.8 70.4 56.3 44.7 67.9 48.5 107M 838G 12.0

X101-64 48.3 66.4 52.3 41.7 64.0 45.1 140M 972G 10.4

Swin-B 51.9 70.9 56.5 45.0 68.4 48.7 145M 982G 11.6

(c) System-level Comparison

Method
mini-val test-dev

#param. FLOPs
APbox APmask APbox APmask

RepPointsV2* [12] - - 52.1 - - -

GCNet* [7] 51.8 44.7 52.3 45.4 - 1041G

RelationNet++* [13] - - 52.7 - - -

DetectoRS* [42] - - 55.7 48.5 - -

YOLOv4 P7* [4] - - 55.8 - - -

Copy-paste [23] 55.9 47.2 56.0 47.4 185M 1440G

X101-64 (HTC++) 52.3 46.0 - - 155M 1033G

Swin-B (HTC++) 56.4 49.1 - - 160M 1043G

Swin-L (HTC++) 57.1 49.5 57.7 50.2 284M 1470G

Swin-L (HTC++)* 58.0 50.4 58.7 51.1 284M -

Table 2. Results on COCO object detection and instance segmen-

tation. †denotes that additional decovolution layers are used to

produce hierarchical feature maps. * indicates multi-scale testing.

Comparison to ResNe(X)t Table 2(a) lists the results of

Swin-T and ResNet-50 on the four object detection frame-

works. Our Swin-T architecture brings consistent +3.4∼4.2

box AP gains over ResNet-50, with slightly larger model

size, FLOPs and latency.

Table 2(b) compares Swin Transformer and ResNe(X)t

under different model capacity using Cascade Mask R-

CNN. Swin Transformer achieves a high detection accuracy

of 51.9 box AP and 45.0 mask AP, which are significant

gains of +3.6 box AP and +3.3 mask AP over ResNeXt101-

64x4d, which has similar model size, FLOPs and latency.

On a higher baseline of 52.3 box AP and 46.0 mask AP us-

ing an improved HTC framework, the gains by Swin Trans-

former are also high, at +4.1 box AP and +3.1 mask AP (see

Table 2(c)). Regarding inference speed, while ResNe(X)t is

built by highly optimized Cudnn functions, our architecture

is implemented with built-in PyTorch functions that are not

all well-optimized. A thorough kernel optimization is be-

yond the scope of this paper.

ADE20K val test
#param. FLOPs FPS

Method Backbone mIoU score

DLab.v3+ [11] ResNet-101 44.1 - 63M 1021G 16.0

DNL [65] ResNet-101 46.0 56.2 69M 1249G 14.8

OCRNet [67] ResNet-101 45.3 56.0 56M 923G 19.3

UperNet [63] ResNet-101 44.9 - 86M 1029G 20.1

OCRNet [67] HRNet-w48 45.7 - 71M 664G 12.5

DLab.v3+ [11] ResNeSt-101 46.9 55.1 66M 1051G 11.9

DLab.v3+ [11] ResNeSt-200 48.4 - 88M 1381G 8.1

SETR [73] T-Large‡ 50.3 61.7 308M - -

UperNet DeiT-S† 44.0 - 52M 1099G 16.2

UperNet Swin-T 46.1 - 60M 945G 18.5

UperNet Swin-S 49.3 - 81M 1038G 15.2

UperNet Swin-B‡ 51.6 - 121M 1841G 8.7

UperNet Swin-L‡ 53.5 62.8 234M 3230G 6.2

Table 3. Results of semantic segmentation on the ADE20K val

and test set. † indicates additional deconvolution layers are used

to produce hierarchical feature maps. ‡ indicates that the model is

pre-trained on ImageNet-22K.

Comparison to DeiT The performance of DeiT-S us-

ing the Cascade Mask R-CNN framework is shown in Ta-

ble 2(b). The results of Swin-T are +2.5 box AP and +2.3

mask AP higher than DeiT-S with similar model size (86M

vs. 80M) and significantly higher inference speed (15.3 FPS

vs. 10.4 FPS). The lower inference speed of DeiT is mainly

due to its quadratic complexity to input image size.

Comparison to previous state-of-the-art Table 2(c)

compares our best results with those of previous state-of-

the-art models. Our best model achieves 58.7 box AP and

51.1 mask AP on COCO test-dev, surpassing the previous

best results by +2.7 box AP (Copy-paste [23] without exter-

nal data) and +2.6 mask AP (DetectoRS [42]).

4.3. Semantic Segmentation on ADE20K

Settings ADE20K [74] is a widely-used semantic seg-

mentation dataset, covering a broad range of 150 semantic

categories. It has 25K images in total, with 20K for training,

2K for validation, and another 3K for testing. We utilize

UperNet [63] in mmseg [16] as our base framework for its

high efficiency. More details are presented in the Appendix.

Results Table 3 lists the mIoU, model size (#param),

FLOPs and FPS for different method/backbone pairs. From

these results, it can be seen that Swin-S is +5.3 mIoU higher

(49.3 vs. 44.0) than DeiT-S with similar computation cost.

It is also +4.4 mIoU higher than ResNet-101, and +2.4

mIoU higher than ResNeSt-101 [70]. Our Swin-L model

with ImageNet-22K pre-training achieves 53.5 mIoU on the

val set, surpassing the previous best model by +3.2 mIoU

(50.3 mIoU by SETR [73] which has a larger model size).

710018



ImageNet COCO ADE20k

top-1 top-5 APbox APmask mIoU

w/o shifting 80.2 95.1 47.7 41.5 43.3

shifted windows 81.3 95.6 50.5 43.7 46.1

no pos. 80.1 94.9 49.2 42.6 43.8

abs. pos. 80.5 95.2 49.0 42.4 43.2

abs.+rel. pos. 81.3 95.6 50.2 43.4 44.0

rel. pos. w/o app. 79.3 94.7 48.2 41.9 44.1

rel. pos. 81.3 95.6 50.5 43.7 46.1

Table 4. Ablation study on the shifted windows approach and dif-

ferent position embedding methods on three benchmarks, using

the Swin-T architecture. w/o shifting: all self-attention modules

adopt regular window partitioning, without shifting; abs. pos.: ab-

solute position embedding term of ViT; rel. pos.: the default set-

tings with an additional relative position bias term (see Eq. (4));

app.: the first scaled dot-product term in Eq. (4).

4.4. Ablation Study

In this section, we ablate important design elements in

the proposed Swin Transformer, using ImageNet-1K image

classification, Cascade Mask R-CNN on COCO object de-

tection, and UperNet on ADE20K semantic segmentation.

Shifted windows Ablations of the shifted window ap-

proach on the three tasks are reported in Table 4. Swin-T

with the shifted window partitioning outperforms the coun-

terpart built on a single window partitioning at each stage by

+1.1% top-1 accuracy on ImageNet-1K, +2.8 box AP/+2.2

mask AP on COCO, and +2.8 mIoU on ADE20K. The re-

sults indicate the effectiveness of using shifted windows to

build connections among windows in the preceding layers.

The latency overhead by shifted window is also small, as

shown in Table 5.

Relative position bias Table 4 shows comparisons of dif-

ferent position embedding approaches. Swin-T with rela-

tive position bias yields +1.2%/+0.8% top-1 accuracy on

ImageNet-1K, +1.3/+1.5 box AP and +1.1/+1.3 mask AP

on COCO, and +2.3/+2.9 mIoU on ADE20K in relation to

those without position encoding and with absolute position

embedding, respectively, indicating the effectiveness of the

relative position bias. Also note that while the inclusion of

absolute position embedding improves image classification

accuracy (+0.4%), it harms object detection and semantic

segmentation (-0.2 box/mask AP on COCO and -0.6 mIoU

on ADE20K).

Different self-attention methods The real speed of dif-

ferent self-attention computation methods and implementa-

tions are compared in Table 5. Our cyclic implementation

is more hardware efficient than naive padding, particularly

for deeper stages. Overall, it brings a 13%, 18% and 18%

speed-up on Swin-T, Swin-S and Swin-B, respectively.

method
MSA in a stage (ms) Arch. (FPS)

S1 S2 S3 S4 T S B

sliding window (naive) 122.5 38.3 12.1 7.6 183 109 77

sliding window (kernel) 7.6 4.7 2.7 1.8 488 283 187

Performer [14] 4.8 2.8 1.8 1.5 638 370 241

window (w/o shifting) 2.8 1.7 1.2 0.9 770 444 280

shifted window (padding) 3.3 2.3 1.9 2.2 670 371 236

shifted window (cyclic) 3.0 1.9 1.3 1.0 755 437 278

Table 5. Real speed of different self-attention computation meth-

ods and implementations on a V100 GPU.

ImageNet COCO ADE20k

Backbone top-1 top-5 APbox APmask mIoU

sliding window Swin-T 81.4 95.6 50.2 43.5 45.8

Performer [14] Swin-T 79.0 94.2 - - -

shifted window Swin-T 81.3 95.6 50.5 43.7 46.1

Table 6. Accuracy of Swin Transformer using different methods

for self-attention computation on three benchmarks.

The self-attention modules built on the proposed

shifted window approach are 40.8×/2.5×, 20.2×/2.5×,

9.3×/2.1×, and 7.6×/1.8× more efficient than those of slid-

ing windows in naive/kernel implementations on four net-

work stages, respectively. Overall, the Swin Transformer

architectures built on shifted windows are 4.1/1.5, 4.0/1.5,

3.6/1.5 times faster than variants built on sliding windows

for Swin-T, Swin-S, and Swin-B, respectively. Table 6 com-

pares their accuracy on the three tasks, showing that they are

similarly accurate in visual modeling.

Compared to Performer [14], which is one of the fastest

Transformer architectures (see [55]), the proposed shifted

window based self-attention computation and the overall

Swin Transformer architectures are slightly faster (see Ta-

ble 5), while achieving +2.3% top-1 accuracy compared to

Performer on ImageNet-1K using Swin-T (see Table 6).

5. Conclusion

This paper presents Swin Transformer, a new vision

Transformer which produces a hierarchical feature repre-

sentation and has linear computational complexity with re-

spect to input image size. Swin Transformer achieves the

state-of-the-art performance on COCO object detection and

ADE20K semantic segmentation, significantly surpassing

previous best methods. We hope that Swin Transformer’s

strong performance on various vision problems will encour-

age unified modeling of vision and language signals.

Acknowledgement

We thank Li Dong and Furu Wei for useful discussions;

Bin Xiao, Lu Yuan and Lei Zhang for help on datasets;

Jiarui Xu for help on the mmdetection and mmsegmenta-

tion codebases.

810019



References

[1] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang,

Xiaodong Liu, Yu Wang, Jianfeng Gao, Songhao Piao, Ming

Zhou, et al. Unilmv2: Pseudo-masked language models for

unified language model pre-training. In International Con-

ference on Machine Learning, pages 642–652. PMLR, 2020.

5

[2] Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew

Zhai, and Dmitry Kislyuk. Toward transformer-based object

detection. arXiv preprint arXiv:2012.09958, 2020. 3

[3] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V. Le. Attention augmented convolutional net-

works, 2020. 3

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934, 2020. 7

[5] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and

Larry S. Davis. Soft-nms – improving object detection with

one line of code. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 6

[6] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delv-

ing into high quality object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6154–6162, 2018. 6

[7] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han

Hu. Gcnet: Non-local networks meet squeeze-excitation net-

works and beyond. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV) Workshops,

Oct 2019. 3, 6, 7

[8] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European Confer-

ence on Computer Vision, pages 213–229. Springer, 2020. 3,

6

[9] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping

Shi, Wanli Ouyang, et al. Hybrid task cascade for instance

segmentation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4974–

4983, 2019. 6

[10] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,

Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-

box and benchmark. arXiv preprint arXiv:1906.07155, 2019.

6

[11] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018. 7

[12] Yihong Chen, Zheng Zhang, Yue Cao, Liwei Wang, Stephen

Lin, and Han Hu. Reppoints v2: Verification meets regres-

sion for object detection. In NeurIPS, 2020. 6, 7

[13] Cheng Chi, Fangyun Wei, and Han Hu. Relationnet++:

Bridging visual representations for object detection via trans-

former decoder. In NeurIPS, 2020. 3, 7

[14] Krzysztof Marcin Choromanski, Valerii Likhosherstov,

David Dohan, Xingyou Song, Andreea Gane, Tamas Sar-

los, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin,

Lukasz Kaiser, David Benjamin Belanger, Lucy J Colwell,

and Adrian Weller. Rethinking attention with performers.

In International Conference on Learning Representations,

2021. 8

[15] Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and

Huaxia Xia. Do we really need explicit position encodings

for vision transformers? arXiv preprint arXiv:2102.10882,

2021. 3

[16] MMSegmentation Contributors. MMSegmentation:

Openmmlab semantic segmentation toolbox and bench-

mark. https://github.com/open-mmlab/

mmsegmentation, 2020. 7

[17] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 764–773, 2017. 1, 3

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 5

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. In International Conference on Learning Representa-

tions, 2021. 1, 2, 3, 4, 5, 6

[20] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, Minghao

Gou, Yong-Lu Li, and Cewu Lu. Instaboost: Boosting

instance segmentation via probability map guided copy-

pasting. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 682–691, 2019. 6

[21] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhi-

wei Fang, and Hanqing Lu. Dual attention network for

scene segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3146–

3154, 2019. 3

[22] Kunihiko Fukushima. Cognitron: A self-organizing multi-

layered neural network. Biological cybernetics, 20(3):121–

136, 1975. 3

[23] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-

Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple

copy-paste is a strong data augmentation method for instance

segmentation. arXiv preprint arXiv:2012.07177, 2020. 2, 7

[24] Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei, and Jifeng

Dai. Learning region features for object detection. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), 2018. 3

[25] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,

and Yunhe Wang. Transformer in transformer. arXiv preprint

arXiv:2103.00112, 2021. 3

[26] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 6

910020

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 2, 3, 4

[28] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten

Hoefler, and Daniel Soudry. Augment your batch: Improving

generalization through instance repetition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8129–8138, 2020. 6

[29] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen

Wei. Relation networks for object detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3588–3597, 2018. 3, 5

[30] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local

relation networks for image recognition. In Proceedings of

the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 3464–3473, October 2019. 2, 3, 5

[31] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017. 1, 3

[32] David H Hubel and Torsten N Wiesel. Receptive fields,

binocular interaction and functional architecture in the cat’s

visual cortex. The Journal of physiology, 160(1):106–154,

1962. 3

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[34] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan

Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.

Big transfer (bit): General visual representation learning.

arXiv preprint arXiv:1912.11370, 6(2):8, 2019. 6

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 1, 2

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

2

[37] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Ben-

gio. Object recognition with gradient-based learning. In

Shape, contour and grouping in computer vision, pages 319–

345. Springer, 1999. 3

[38] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July

2017. 2

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 5

[40] Ilya Loshchilov and Frank Hutter. Decoupled weight de-

cay regularization. In International Conference on Learning

Representations, 2019. 6

[41] Boris T Polyak and Anatoli B Juditsky. Acceleration of

stochastic approximation by averaging. SIAM journal on

control and optimization, 30(4):838–855, 1992. 6

[42] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors:

Detecting objects with recursive feature pyramid and switch-

able atrous convolution. arXiv preprint arXiv:2006.02334,

2020. 2, 7

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision, 2021. 1

[44] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10428–

10436, 2020. 6

[45] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. Exploring the limits of transfer learning with a

unified text-to-text transformer. Journal of Machine Learn-

ing Research, 21(140):1–67, 2020. 5

[46] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-

attention in vision models. In Advances in Neural Informa-

tion Processing Systems, volume 32. Curran Associates, Inc.,

2019. 2, 3

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 2

[48] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, May 2015. 3, 4

[49] Bharat Singh and Larry S Davis. An analysis of scale in-

variance in object detection snip. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3578–3587, 2018. 2

[50] Bharat Singh, Mahyar Najibi, and Larry S Davis. Sniper:

Efficient multi-scale training. In Advances in Neural Infor-

mation Processing Systems, volume 31. Curran Associates,

Inc., 2018. 2

[51] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon

Shlens, Pieter Abbeel, and Ashish Vaswani. Bottle-

neck transformers for visual recognition. arXiv preprint

arXiv:2101.11605, 2021. 3

[52] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-

feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan

Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end

object detection with learnable proposals. arXiv preprint

arXiv:2011.12450, 2020. 3, 6

[53] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

3

1010021



[54] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

Conference on Machine Learning, pages 6105–6114. PMLR,

2019. 3

[55] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,

Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Sebastian

Ruder, and Donald Metzler. Long range arena : A bench-

mark for efficient transformers. In International Conference

on Learning Representations, 2021. 8

[56] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-

cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,

Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario

Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp ar-

chitecture for vision, 2021. 2

[57] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. arXiv preprint arXiv:2012.12877, 2020. 2, 3, 5, 6

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017. 1,

2, 4

[59] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,

Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

Tan, Xinggang Wang, et al. Deep high-resolution represen-

tation learning for visual recognition. IEEE transactions on

pattern analysis and machine intelligence, 2020. 3

[60] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao

Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for

dense prediction without convolutions. arXiv preprint

arXiv:2102.12122, 2021. 3

[61] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2018,

2018. 3

[62] Ross Wightman. Pytorch image mod-

els. https://github.com/rwightman/

pytorch-image-models, 2019. 6

[63] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understand-

ing. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 418–434, 2018. 7

[64] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1492–

1500, 2017. 1, 2, 3

[65] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,

Stephen Lin, and Han Hu. Disentangled non-local neural

networks. In Proceedings of the European conference on

computer vision (ECCV), 2020. 3, 7

[66] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,

Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-

to-token vit: Training vision transformers from scratch on

imagenet. arXiv preprint arXiv:2101.11986, 2021. 3

[67] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-

contextual representations for semantic segmentation. In

16th European Conference Computer Vision (ECCV 2020),

August 2020. 7

[68] Yuhui Yuan and Jingdong Wang. Ocnet: Object context net-

work for scene parsing. arXiv preprint arXiv:1809.00916,

2018. 3

[69] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016. 1

[70] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi

Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R

Manmatha, et al. Resnest: Split-attention networks. arXiv

preprint arXiv:2004.08955, 2020. 7

[71] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and

Stan Z Li. Bridging the gap between anchor-based and

anchor-free detection via adaptive training sample selection.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 9759–9768, 2020. 6

[72] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Explor-

ing self-attention for image recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10076–10085, 2020. 3

[73] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,

Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao

Xiang, Philip HS Torr, et al. Rethinking semantic segmen-

tation from a sequence-to-sequence perspective with trans-

formers. arXiv preprint arXiv:2012.15840, 2020. 2, 3, 6,

7

[74] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic under-

standing of scenes through the ade20k dataset. International

Journal on Computer Vision, 2018. 5, 7

[75] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-

formable convnets v2: More deformable, better results. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 9308–9316, 2019. 1, 3

[76] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,

and Jifeng Dai. Deformable {detr}: Deformable transform-

ers for end-to-end object detection. In International Confer-

ence on Learning Representations, 2021. 3

1110022

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

